Constructing FAITHFUL HOMOMORPHISMS OVER Fields of Finite Characteristic

Prerona Chatterjee
Joint work with Ramprasad Saptharishi
Tata Institute of Fundamental research, Mumbai

FST\&TCS, IIT BOMBAY

DECEMBER 11, 2019

FAITHFUL MAPS

Algebraic Independence

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
(1,0,1) \quad(0,1,0) \quad(1,2,1)
$$

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
1 \times(1,0,1)+2 \times(0,1,0)-1 \times(1,2,1)=0
$$

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
(1,0,1) \quad(0,1,0) \quad(1,2,1)
$$

are linearly dependent.

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
(1,0,1) \quad(0,1,0) \quad(1,2,1)
$$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C},

$$
x^{2} \quad y^{2} \quad x y
$$

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
\begin{equation*}
(1,0,1) \quad(0,1,0) \tag{1,2,1}
\end{equation*}
$$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C},

$$
x^{2} \times y^{2}-(x y)^{2}=0
$$

Algebraic Independence

In the vector space \mathbb{R}^{3} over \mathbb{R},

$$
\begin{equation*}
(1,0,1) \quad(0,1,0) \tag{1,2,1}
\end{equation*}
$$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C},

$$
x^{2} \quad y^{2} \quad x y
$$

are algebraically dependent.

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Otherwise, they are said to be algebraically independent.

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important.

ALGEBRAIC INDEPENDENCE

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$
x^{p}+y^{p} \quad x+y
$$

ALGEBRAIC INDEPENDENCE

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$
x^{p}+y^{p} \quad x+y
$$

■ are algebraically independent over \mathbb{C}.

ALGEBRAIC INDEPENDENCE

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0 .
$$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$
x^{p}+y^{p} \quad x+y
$$

- are algebraically independent over \mathbb{C}.
- are algebraically dependent over \mathbb{F}_{p}.

Algebraic Independence

Definition: Suppose $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. They are said to be algebraically dependent if there exists $A \in \mathbb{F}\left[y_{1}, \ldots, y_{k}\right]$ such that

$$
A\left(y_{1}, \ldots, y_{k}\right) \neq 0 ; \quad A\left(f_{1}, \ldots, f_{k}\right)=0
$$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$
x^{p}+y^{p} \quad x+y
$$

■ are algebraically independent over \mathbb{C}.
■ are algebraically dependent over $\mathbb{F}_{p} . \quad\left[x^{p}+y^{p}=(x+y)^{p}\right]$

Algebraic Rank

■ Linear rank of $S=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{V}$ is the size of the largest linearly independent subset of S.

Algebraic Rank

■ Linear rank of $S=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{V}$ is the size of the largest linearly independent subset of S.

- Linear rank of $\{(1,0,1),(0,1,0),(1,2,1)\}$ is 2.

Algebraic Rank

■ Linear rank of $S=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{V}$ is the size of the largest linearly independent subset of S.

- Linear rank of $\{(1,0,1),(0,1,0),(1,2,1)\}$ is 2.

■ Algebraic rank of $S=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of S.

Algebraic Rank

■ Linear rank of $S=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{V}$ is the size of the largest linearly independent subset of S.

- Linear rank of $\{(1,0,1),(0,1,0),(1,2,1)\}$ is 2.

■ Algebraic rank of $S=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of S.
■ Algebraic rank of $\left\{x^{p}+y^{p}, x+y\right\}$ is 1

Algebraic Rank

■ Linear rank of $S=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \mathbb{V}$ is the size of the largest linearly independent subset of S.

- Linear rank of $\{(1,0,1),(0,1,0),(1,2,1)\}$ is 2.

■ Algebraic rank of $S=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of S.
■ Algebraic rank of $\left\{x^{p}+y^{p}, x+y\right\}$ is 2

Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ with linear rank k, there is a basis of size k.

Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank k, a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

is said to be a faithful map if the algebraic rank

$$
\text { of }\left\{f_{1} \circ \varphi, f_{2} \circ \varphi, \ldots, f_{m} \circ \varphi\right\} \text { is also } k .
$$

Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank k, a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

is said to be a faithful map if the algebraic rank

$$
\text { of }\left\{f_{1} \circ \varphi, f_{2} \circ \varphi, \ldots, f_{m} \circ \varphi\right\} \text { is also } k .
$$

Question: Can we construct faithful maps efficiently?

Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank k, a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

is said to be a faithful map if the algebraic rank

$$
\text { of }\left\{f_{1} \circ \varphi, f_{2} \circ \varphi, \ldots, f_{m} \circ \varphi\right\} \text { is also } k \text {. }
$$

Question: Can we construct faithful maps efficiently?
Bonus: Helps in polynomial identity testing.

Polynomial Identity Testing

Given: Circuit \mathcal{C} that computes an n-variate, degree d polynomial Goal: Check whether $\mathcal{C} \cong$ Zero Polynomial.

Polynomial Identity Testing

Given: Circuit \mathcal{C} that computes an n-variate, degree d polynomial Goal: Check whether $\mathcal{C} \cong$ Zero Polynomial.

Trivial Upperbound: $(d+1)^{n}$
Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Polynomial Identity Testing

Given: Circuit \mathcal{C} that computes an n-variate, degree d polynomial Goal: Check whether $\mathcal{C} \cong$ Zero Polynomial.

Trivial Upperbound: $(d+1)^{n}$
Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Special Case: $\mathcal{C}=\mathcal{C}^{\prime}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ where algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$, and

$$
k \ll n
$$

Polynomial Identity Testing

Given: Circuit \mathcal{C} that computes an n-variate, degree d polynomial Goal: Check whether $\mathcal{C} \cong$ Zero Polynomial.

Trivial Upperbound: $(d+1)^{n}$
Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Special Case: $\mathcal{C}=\mathcal{C}^{\prime}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ where algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$, and

$$
k \ll n
$$

Q: Can the upperbound be made $\approx(d+1)^{k}$?

Faithful Maps and PIT [BMS13, ASSS16]

$$
\text { Property required: } \mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0
$$

Faithful Maps and PIT [BMS13, ASSS16]

Property required: $\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0$ If $k=m$ and $\mathcal{C}^{\prime} \neq 0$,

$$
\mathcal{C}^{\prime}\left(f_{1}, \ldots, f_{k}\right) \neq 0
$$

Falthful Maps and PIT [BMS13, ASSS16]

Property required: $\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0$
If $k=m$ and $\mathcal{C}^{\prime} \neq 0$,

$$
\mathcal{C}^{\prime}\left(f_{1}, \ldots, f_{k}\right) \neq 0
$$

Since φ is faithful,

$$
\mathcal{C} \circ \varphi=\mathcal{C}^{\prime}\left(f_{1} \circ \varphi, \ldots, f_{k} \circ \varphi\right) \neq 0
$$

Falthful Maps and PIT [BMS13, ASSS16]

Property required: $\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0$
If $k=m$ and $\mathcal{C}^{\prime} \neq 0$,

$$
\mathcal{C}^{\prime}\left(f_{1}, \ldots, f_{k}\right) \neq 0
$$

Since φ is faithful,

$$
\mathcal{C} \circ \varphi=\mathcal{C}^{\prime}\left(f_{1} \circ \varphi, \ldots, f_{k} \circ \varphi\right) \neq 0
$$

Thus,

$$
\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0
$$

Faithful Maps and PIT [BMS13, ASSS16]

Property required: $\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0$
If $k=m$ and $\mathcal{C}^{\prime} \neq 0$,

$$
\mathcal{C}^{\prime}\left(f_{1}, \ldots, f_{k}\right) \neq 0
$$

Since φ is faithful,

$$
\mathcal{C} \circ \varphi=\mathcal{C}^{\prime}\left(f_{1} \circ \varphi, \ldots, f_{k} \circ \varphi\right) \neq 0
$$

Thus,

$$
\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0
$$

Fact: Even when $k<m$, if φ is faithful,

$$
\mathcal{C} \neq 0 \Longrightarrow \mathcal{C} \circ \varphi \neq 0
$$

CONSTRUCTING FAITHFUL MAPS

The Question

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we want to construct a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

such that

$$
\operatorname{algrank}\left(f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right)=\operatorname{algrank}\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

The Question

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we want to construct a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

such that

$$
\operatorname{algrank}\left(f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right)=\operatorname{algrank}\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

Fact: A random affine transformation is a faithful map

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

The Question

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we want to construct a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left[y_{1}, y_{2}, \ldots, y_{k}\right]
$$

such that

$$
\operatorname{algrank}\left(f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right)=\operatorname{algrank}\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

Fact: A random affine transformation is a faithful map

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

Question: Can we construct faithful maps deterministically?

Characteristic Zero Fields [BMS13, ASSS16]

Characteristic Zero Fields [BMS13, ASSS16]

Step 1: Capture algebraic rank via linear rank

Characteristic Zero Fields [BMS13, ASSS16]

Step 1: Capture algebraic rank via linear rank
For $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$,

$$
\mathbf{J}_{\mathbf{x}}(\mathbf{f})=\left[\begin{array}{cccc}
\partial_{x_{1}}\left(f_{1}\right) & \partial_{x_{2}}\left(f_{1}\right) & \ldots & \partial_{x_{n}}\left(f_{1}\right) \\
\partial_{x_{1}}\left(f_{2}\right) & \partial_{x_{2}}\left(f_{2}\right) & \ldots & \partial_{x_{n}}\left(f_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{1}}\left(f_{m}\right) & \partial_{x_{2}}\left(f_{m}\right) & \ldots & \partial_{x_{n}}\left(f_{m}\right)
\end{array}\right]
$$

Characteristic Zero Fields [BMS13, ASSS16]

Step 1: Capture algebraic rank via linear rank
For $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$,

$$
\mathbf{J}_{\mathbf{x}}(\mathbf{f})=\left[\begin{array}{cccc}
\partial_{x_{1}}\left(f_{1}\right) & \partial_{x_{2}}\left(f_{1}\right) & \ldots & \partial_{x_{n}}\left(f_{1}\right) \\
\partial_{x_{1}}\left(f_{2}\right) & \partial_{x_{2}}\left(f_{2}\right) & \ldots & \partial_{x_{n}}\left(f_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{1}}\left(f_{m}\right) & \partial_{x_{2}}\left(f_{m}\right) & \ldots & \partial_{x_{n}}\left(f_{m}\right)
\end{array}\right]
$$

The Jacobian Criterion [Jac41]

If \mathbb{F} has characteristic zero, the algebraic rank of $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is equal to the linear rank of its Jacobian matrix.

Characteristic Zero Fields [BMS13, ASSS16]

Step 1: Capture algebraic rank via linear rank of the Jacobian
For $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$,

$$
\mathbf{J}_{\mathbf{x}}(\mathbf{f})=\left[\begin{array}{cccc}
\partial_{x_{1}}\left(f_{1}\right) & \partial_{x_{2}}\left(f_{1}\right) & \ldots & \partial_{x_{n}}\left(f_{1}\right) \\
\partial_{x_{1}}\left(f_{2}\right) & \partial_{x_{2}}\left(f_{2}\right) & \ldots & \partial_{x_{n}}\left(f_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{1}}\left(f_{m}\right) & \partial_{x_{2}}\left(f_{m}\right) & \ldots & \partial_{x_{n}}\left(f_{m}\right)
\end{array}\right]
$$

The Jacobian Criterion [Jac41]

If \mathbb{F} has characteristic zero, the algebraic rank of $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is equal to the linear rank of its Jacobian matrix.

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

$$
\left[\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi))\right]
$$

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

$$
\left.\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi))\right]=\left[\quad \varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right.
$$

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

What we need: φ such that
■ $\operatorname{rank}\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right)$

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

What we need: φ such that
■ $\operatorname{rank}\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right):$ Can be done if f_{i} s are structured

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

$\left[\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi))\right]=\left[\quad \varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right.$

What we need: φ such that
■ $\operatorname{rank}\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right):$ Can be done if f_{i} s are structured

- M_{φ} preserves rank

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

$$
\left[\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi))\right.
$$

$$
\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)
$$

What we need: φ such that
■ $\operatorname{rank}\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right):$ Can be done if f_{i} s are structured
■ M_{φ} preserves rank : True if $\left\{M_{\varphi}[i, j]=s^{i j}\right\} \ldots \ldots \ldots$. [GRO5]

Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

$$
\varphi: x_{i}=\sum_{j=1}^{k} s^{i j} y_{j}+a_{i}
$$

What we need: φ such that
■ $\operatorname{rank}\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\varphi\left(\mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right):$ Can be done if f_{i} s are structured
$\square M_{\varphi}$ preserves rank : True if $\left\{M_{\varphi}[i, j]=s^{i j}\right\} \ldots \ldots \ldots$. [GRO5]

What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.
Taylor Expansion
For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.
Taylor Expansion
For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

[PSS18]: Look up till the inseparable degree in the expansion.

What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

$$
\mathcal{H}_{t}(f)=\operatorname{deg}^{\leq t}(f(\mathbf{x}+\mathbf{z})-f(\mathbf{z}))
$$

What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

$$
\mathcal{H}_{t}(f)=\operatorname{deg}^{\leq t}(f(\mathbf{x}+\mathbf{z})-f(\mathbf{z}))
$$

$$
\hat{\mathcal{H}}(\mathbf{f})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right) & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}\right) & \ldots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{k}\right) & \ldots
\end{array}\right]
$$

Alternate Criterion for the General Case [PSS18]

$f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{F}[\mathbf{x}]$ are algebraically independent if and only if for every $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ with $v_{i} s$ in \mathcal{I}_{t},

Alternate Criterion for the General Case [PSS18]

$f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{F}[\mathbf{x}]$ are algebraically independent if and only if for every $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ with $v_{i} s$ in \mathcal{I}_{t},

$$
\mathcal{H}(\mathbf{f}, \mathbf{v})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right)+v_{1} & \cdots \\
\cdots & \mathcal{H}_{t}\left(f_{2}\right)+v_{2} & \cdots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{k}\right)+v_{k} & \cdots
\end{array}\right]
$$

Alternate Criterion for the General Case [PSS18]

$f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{F}[\mathbf{x}]$ are algebraically independent if and only if for every $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ with $v_{i} s$ in \mathcal{I}_{t},

$$
\mathcal{H}(\mathbf{f}, \mathbf{v})=\left[\begin{array}{ccc}
\cdots & \mathcal{H}_{t}\left(f_{1}\right)+v_{1} & \cdots \\
\cdots & \mathcal{H}_{t}\left(f_{2}\right)+v_{2} & \cdots \\
& \vdots &
\end{array}\right] \text { has full rank over } \mathbb{F}(\mathbf{z})
$$

Alternate Criterion for the General Case [PSS18]

$f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{F}[\mathbf{x}]$ are algebraically independent if and only if for every $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ with $v_{i} s$ in \mathcal{I}_{t},

$$
\mathcal{H}(\mathbf{f}, \mathbf{v})=\left[\begin{array}{ccc}
\cdots & \mathcal{H}_{t}\left(f_{1}\right)+v_{1} & \cdots \\
\cdots & \mathcal{H}_{t}\left(f_{2}\right)+v_{2} & \cdots \\
& \vdots & \\
\cdots & \mathcal{H}_{t}\left(f_{k}\right)+v_{k} & \cdots
\end{array}\right] \text { has full rank over } \mathbb{F}(\mathbf{z})
$$

where t is the inseparable degree of $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ and

$$
\left.\mathcal{I}_{\mathrm{t}}=\left\langle\mathcal{H}_{\mathrm{t}}\left(f_{1}\right), \mathcal{H}_{\mathrm{t}}\left(f_{2}\right), \ldots, \mathcal{H}_{\mathrm{t}}\left(f_{\mathrm{k}}\right)\right\rangle\right\rangle_{\mathbb{F}(\mathbf{z})}^{\geq 2} \bmod \langle\mathbf{x}\rangle^{t+1} \subseteq \mathbb{F}(\mathbf{z})[\mathbf{x}] .
$$

OUR Result

Suppose

- $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$
- inseparable degree of $\left\{f_{1}, \ldots, f_{m}\right\}=t$

OUR Result

Suppose $\circ f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

- algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$
- inseparable degree of $\left\{f_{1}, \ldots, f_{m}\right\}=t$

Then, we can construct

$$
\Phi: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{F}(s)\left[y_{0}, y_{1}, \ldots, y_{k}\right]
$$

OUR Result

Suppose

- $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$
- inseparable degree of $\left\{f_{1}, \ldots, f_{m}\right\}=t$

Then, we can construct

$$
\Phi: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{F}(s)\left[y_{0}, y_{1}, \ldots, y_{k}\right]
$$

such that

$$
\operatorname{algrank}_{\mathbb{F}}\left(f_{1} \circ \Phi, \ldots, f_{m} \circ \Phi\right)=k
$$

OUR RESULT

Suppose $\circ f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

- algebraic rank of $\left\{f_{1}, \ldots, f_{m}\right\}=k$
- inseparable degree of $\left\{f_{1}, \ldots, f_{m}\right\}=t$

Then, we can construct

$$
\Phi: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{F}(s)\left[y_{0}, y_{1}, \ldots, y_{k}\right]
$$

such that

$$
\operatorname{algrank}_{\mathbb{F}}\left(f_{1} \circ \Phi, \ldots, f_{m} \circ \Phi\right)=k
$$

whenever
■ each of the f_{i}^{\prime} 's are sparse polynomials,
■ each of the f_{i} 's are products of variable disjoint, multilinear, sparse polynomials.

Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian
Step 2: For a generic linear map $\Phi: \mathbf{x} \rightarrow \mathbb{F}(s)\left[y_{1}, \ldots, y_{k}\right]$, write $\mathbf{P S S} \mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of $\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})$.

Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian
Step 2: For a generic linear map $\Phi: \mathbf{x} \rightarrow \mathbb{F}(s)\left[y_{1}, \ldots, y_{k}\right]$, write PSS $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of $\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$
\text { PSS } \mathbf{J}_{\mathbf{y}}(f \circ \Phi)=\Phi\left(\operatorname{PSS} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right) \cdot M_{\phi}
$$

Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian
Step 2: For a generic linear map $\Phi: \mathbf{x} \rightarrow \mathbb{F}(s)\left[y_{1}, \ldots, y_{k}\right]$, write PSS $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of $\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$
\text { PSS } \mathbf{J}_{\mathbf{y}}(f \circ \Phi)=\Phi\left(\text { PSS } \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right) \cdot M_{\phi}
$$

What we need: Φ such that
■ $\operatorname{rank}\left(\Phi\left(\mathbf{P S S}_{\mathbf{x}}(\mathbf{f})\right)\right)=\operatorname{rank}\left(\operatorname{PSS} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)$: Can be done if $\mathbf{f}^{\prime} \mathrm{s}$ are some structured polynomials (for example, sparse).

Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian
Step 2: For a generic linear map $\Phi: \mathbf{x} \rightarrow \mathbb{F}(s)\left[y_{1}, \ldots, y_{k}\right]$, write PSS $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of $\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$
\text { PSS } \mathbf{J}_{\mathbf{y}}(f \circ \Phi)=\Phi\left(\operatorname{PSS} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right) \cdot M_{\Phi}
$$

What we need: Φ such that
■ $\operatorname{rank}\left(\Phi\left(\mathbf{P S S}_{\mathbf{x}}(\mathbf{f})\right)\right)=\operatorname{rank}\left(\operatorname{PSS} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)$: Can be done if \mathbf{f}^{\prime} S are some structured polynomials (for example, sparse).
■ M_{Φ} preserves rank. That is,

$$
\operatorname{rank}\left(\Phi\left(\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right) \cdot \mathbf{M}_{\Phi}\right)=\operatorname{rank}\left(\Phi\left(\mathbf{P S S} \mathbf{J}_{\mathbf{x}}(\mathbf{f})\right)\right)
$$

The Faithful Map

$$
M_{\Phi}\left(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}\right)=\operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}\left(\Phi\left(\mathbf{x}^{\mathbf{e}}\right)\right)
$$

The FAITHFUL MAP

$$
M_{\Phi}\left(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}\right)=\operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}\left(\Phi\left(\mathbf{x}^{\mathbf{e}}\right)\right)
$$

Taking inspiration from the prev. case: $M_{\Phi}\left(x_{i}, y_{j}\right)=s^{w t(i) j}$

The Falthful Map

$$
M_{\Phi}\left(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}\right)=\operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}\left(\Phi\left(\mathbf{x}^{\mathbf{e}}\right)\right)
$$

Taking inspiration from the prev. case: $M_{\Phi}\left(x_{i}, y_{j}\right)=s^{w t(i) j}$

For the correct definition of wt(i), things work out.

The FAITHFUL MAP

$M_{\Phi}\left(\mathbf{x}^{\mathbf{e}}, \boldsymbol{y}^{\mathbf{d}}\right)=\operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}\left(\Phi\left(\mathbf{x}^{\mathbf{e}}\right)\right)$

Taking inspiration from the prev. case: $M_{\Phi}\left(x_{i}, y_{j}\right)=s^{w t(i) j}$

For the correct definition of wt((i), things work out.
$\Phi\left(x_{i}\right)=a_{i} \cdot y_{0}+\sum_{j \in[k]} s^{w t(i) j} \cdot y_{j}$

Open Threads

1. Construct $\mathbb{F}(s)$-Faithful maps over arbitrary fields.

Open Threads

1. Construct $\mathbb{F}(s)$-Faithful maps over arbitrary fields.
2. Improve the dependence on "inseparable degree".

Open Threads

1. Construct $\mathbb{F}(s)$-Faithful maps over arbitrary fields.
2. Improve the dependence on "inseparable degree".
3. [GSS'18]: Different characterisation for Algebraic dependence - not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Open Threads

1. Construct $\mathbb{F}(s)$-Faithful maps over arbitrary fields.
2. Improve the dependence on "inseparable degree".
3. [GSS'18]: Different characterisation for Algebraic dependence - not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Thank you!

