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Basis in Linear Algebra: Given a set of vectors {v,,V,,... vy}
with linear rank R, there is a basis of size k.

Definition: Faithful Maps

Given a set of polynomials {fi,f5,...,fm} with algebraic rank k, a
map @ X, X2, Xn} = Flya, Vo, -0 Vil

is said to be a faithful map if the algebraic rank
of {frop,foop,....,fmop}isalsok.

Question: Can we construct faithful maps efficiently?

Bonus: Helps in polynomial identity testing.
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POLYNOMIAL IDENTITY TESTING

Given: Circuit C that computes an n-variate, degree d polynomial
Goal: Check whether C = Zero Polynomial.

Trivial Upperbound: (d + 1)"

Approach: Reduce no. of variables
Keep degree under control
Preserve non-zeroness

Special Case: C = C'(f1,f2, .- -, fm) where

algebraic rank of {fi,...,fm} = R, and

k< n

Q: Can the upperbound be made ~ (d + 1)k?
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FAITHFUL MAPS AND PIT [BMS13, ASSS16]

Property required: C #0 — Cop #0

Cop
If k=mandC’' #0,
C'(fr, -, fr) #0
C’ Since ¢ is faithful,

. - Cop=C(frop,....,frop)#0
@ ...... Fjﬁ Thus'

...... C#O — COSO#O
AR A

| | Fact: Even when kR < m, if ¢ is faithful,
C#0 = Cop#0
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Given a set of polynomials {f:,f>,...,fm} C F[xs, ..., Xp], we want
to construct a map

()D . {X17X27' 0 '7Xn} — F[y17)/27~~ 0 7yk]
such that

algrank(fi(¢), f2(#), - - - . fm()) = algrank(fy, f2, ..., fm)

Fact: A random affine transformation is a faithful map

k
905Xizzsijyj+ai

j=1

Question: Can we construct faithful maps deterministically?
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X = ZSUYJJFG,’
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The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion
Forany f € F[xq,X,,...,Xp] and z € F",

f(x+2)—f(z) = X1 - Ox.f + -+ + Xn - Ox,f + higher order terms

~~

Jacobian

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator

®
S
N—r

Forany f € F[X;,Xa, ..., Xn], . He(f2)
Hi(f) = deg™" (f(x + 2) — f(2))
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ALTERNATE CRITERION FOR THE GENERAL CASE [PSS18]

fi.fa, ..., fr € F[x] are algebraically independent if and only if for

every (vq,Va, ..., Vg) with v;sin 7y,
He(fr) + v
HE V) =| Ht(fz,) MR has full rank over F(z)
Ht(fk.) + Ve

where t is the inseparable degree of {f,f>,...,fr} and

To = (Mel(fy), Helfe), ., Halfi))32) mod (0" C F(2)[x]
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OUR RESULT

Suppose ofy,....fm € FXq,...,Xn]
o algebraic rank of {fs,....,fm} =k
o inseparable degree of {f;,....fm} =t

Then, we can construct

d) : F[X] — F(S)Iy()’y‘h 000 7yk]
such that
algrankgp(fio®,....fmo®) =R

whenever
m each of the f;'s are sparse polynomials,

m each of the f;'s are products of variable disjoint, multilinear,
sparse polynomials.
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Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map ® : X — F(S)[V1, - - ., Y],
write PSS J (f o ®) in terms of PSS J,(f). This can be

described succinctly as
PSS Jy(f o ®) = ®(PSS Jx(f)) - Mo.

What we need: ¢ such that

B rank(® (PSS J(F))) = rank(PSS J,(f)): Can be done if f's are
some structured polynomials (for example, sparse).

m My preserves rank. That is,

rank(P(PSS Jx(f)) - Mo) = rank(®(PSS Jy())).
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THE FAITHFUL MAP

1 Mo (x2,y?) = coeff a(d(x?))

Taking inspiration from th.e.
prev. case: Mo (x;, y;) = stV

For the correct definition of
wt(i), things work out.

®(Xi) = a; - Yo + D jeph W) Y
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1. Construct IF(s)-Faithful maps over arbitrary fields.
2. Improve the dependence on "inseparable degree".
3. [GSS'18]: Different characterisation for Algebraic dependence

- not algorithmic but has no dependence on "inseparable
degree"

Can we get PIT applications out of it?

Thank you!
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