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Faithful Maps



Algebraic Independence

In the vector space R3 over R,

1×

(1,0, 1)

+ 2×

(0, 1,0)

− 1×

(1, 2, 1)

= 0

are linearly dependent.

In the space of bi-variate polynomials over C,

x2

×

y2

− (

xy

)2 = 0

are algebraically dependent.
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Algebraic Independence

Definition: Suppose {f1, . . . , fk} ⊆ F[x1, x2, . . . , xn].

They are said
to be algebraically dependent if there exists A ∈ F[y1, . . . , yk]
such that

A(y1, . . . , yk) 6= 0; A(f1, . . . , fk) = 0.

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

xp + yp x + y

are algebraically independent over C.
are algebraically dependent over Fp. [xp + yp = (x + y)p]

2 15
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Algebraic Rank

R3

Linear rank of S = {v1, . . . , vm} ⊆ V is the
size of the largest linearly independent
subset of S.

Linear rank of {(1,0, 1), (0, 1,0), (1, 2, 1)}
is 2.

Algebraic rank of S = {f1, . . . , fm} ⊆ F[x]
is the size of the largest algebraically
independent subset of S.

Fp[x, y]

3 15
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Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors {v1, v2, . . . , vm}
with linear rank k, there is a basis of size k.

Definition: Faithful Maps
Given a set of polynomials {f1, f2, . . . , fm} with algebraic rank k, a
map ϕ : {x1, x2, . . . , xn} → F[y1, y2, . . . , yk]

is said to be a faithful map if the algebraic rank
of {f1 ◦ ϕ, f2 ◦ ϕ, . . . , fm ◦ ϕ} is also k.

Question: Can we construct faithful maps e�ciently?
Bonus: Helps in polynomial identity testing.

4 15
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Polynomial Identity Testing

Given: Circuit C that computes an n-variate, degree d polynomial
Goal: Check whether C ∼= Zero Polynomial.

C

×

+

x1 x2 · · · · · · xn

C′

f1 · · ·· · · fm
· · · · · ·

· · · · · ·x1 x2 xn

Trivial Upperbound: (d+ 1)n

Approach: Reduce no. of variables
Keep degree under control
Preserve non-zeroness

Special Case: C = C′(f1, f2, . . . , fm) where

algebraic rank of {f1, . . . , fm} = k, and

k� n

Q: Can the upperbound be made ≈ (d+ 1)k?

5 15
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Faithful Maps and PIT [BMS13, ASSS16]

C ◦ ϕ

C′

f1 · · ·· · · fm
· · · · · ·

· · · · · ·ϕ1 ϕ2 ϕn

y1 y2 · · · · · · yk

Property required: C 6= 0 =⇒ C ◦ ϕ 6= 0

If k = m and C′ 6= 0,

C′(f1, . . . , fk) 6= 0

Since ϕ is faithful,

C ◦ ϕ = C′(f1 ◦ ϕ, . . . , fk ◦ ϕ) 6= 0

Thus,
C 6= 0 =⇒ C ◦ ϕ 6= 0

Fact: Even when k < m, if ϕ is faithful,

C 6= 0 =⇒ C ◦ ϕ 6= 0

6 15
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Constructing Faithful Maps



The Question

Given a set of polynomials {f1, f2, . . . , fm} ⊆ F[x1, . . . , xn], we want
to construct a map

ϕ : {x1, x2, . . . , xn} → F[y1, y2, . . . , yk]

such that
algrank(f1(ϕ), f2(ϕ), . . . , fm(ϕ)) = algrank(f1, f2, . . . , fm)

Fact: A random a�ne transformation is a faithful map

ϕ : xi =
k∑
j=1

sijyj + ai

Question: Can we construct faithful maps deterministically?

7 15
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Characteristic Zero Fields [BMS13, ASSS16]

Step 1: Capture algebraic rank via linear rank

of the Jacobian

For {f1, f2, . . . , fm} ⊆ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =


∂x1(f1) ∂x2(f1) . . . ∂xn(f1)
∂x1(f2) ∂x2(f2) . . . ∂xn(f2)

...
... . . . ...

∂x1(fm) ∂x2(fm) . . . ∂xn(fm)



The Jacobian Criterion [Jac41]
If F has characteristic zero, the algebraic rank of {f1, f2, . . . , fm} is
equal to the linear rank of its Jacobian matrix.

8 15
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Characteristic Zero Fields [BMS13, ASSS16]

Step 2: Start with a generic linear transformation

ϕ : xi =
k∑
j=1

sijyj + ai

 Jy(f(ϕ))

 =

 ϕ(Jx(f))

×


Mϕ


What we need: ϕ such that

rank(Jx(f)) = rank(ϕ(Jx(f))) : Can be done if fis are structured

Mϕ preserves rank : True if
{
Mϕ[i, j] = sij

}
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What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion

For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x + z)− f (z) = x1 · ∂x1f + · · ·+ xn · ∂xnf︸ ︷︷ ︸
Jacobian

+ higher order terms

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator
For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x + z)− f (z))

Ĥ(f) =


. . . Ht(f1) . . .
. . . Ht(f2) . . .

...
. . . Ht(fk) . . .


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Alternate Criterion for the General Case [PSS18]

f1, f2, . . . , fk ∈ F[x] are algebraically independent if and only if for
every (v1, v2, . . . , vk) with vis in It,

H(f, v) =


. . . Ht(f1) + v1 . . .
. . . Ht(f2) + v2 . . .

...
. . . Ht(fk) + vk . . .

 has full rank over F(z)

where t is the inseparable degree of {f1, f2, . . . , fk} and

It = 〈Ht(f1),Ht(f2), . . . ,Ht(fk)〉≥2
F(z) mod 〈x〉t+1 ⊆ F(z)[x].
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Our Result

Suppose ◦ f1, . . . , fm ∈ F[x1, . . . , xn]
◦ algebraic rank of {f1, . . . , fm} = k
◦ inseparable degree of {f1, . . . , fm} = t

Then, we can construct

Φ : F[x]→ F(s)[y0, y1, . . . , yk]

such that
algrankF(f1 ◦ Φ, . . . , fm ◦ Φ) = k

whenever
each of the fi’s are sparse polynomials,
each of the fi’s are products of variable disjoint, multilinear,
sparse polynomials.
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Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x→ F(s)[y1, . . . , yk],
write PSS Jy(f ◦ Φ) in terms of PSS Jx(f). This can be
described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that
rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f ’s are

some structured polynomials (for example, sparse).
MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).
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The Faithful Map

xe

yd

1

2

. . .
. . .

t

MΦ(xe, yd) = coe�yd(Φ(xe))

Taking inspiration from the
prev. case: MΦ(xi, yj) = swt(i)j

For the correct definition of
wt(i), things work out.

Φ(xi) = ai · y0 +
∑

j∈[k] swt(i)j · yj
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Open Threads

1. Construct F(s)-Faithful maps over arbitrary fields.

2. Improve the dependence on "inseparable degree".

3. [GSS’18]: Di�erent characterisation for Algebraic dependence
- not algorithmic but has no dependence on "inseparable
degree"
Can we get PIT applications out of it?

Thank you!
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