Constructing Faithful Homomorphisms over Fields of Finite Characteristic

PRERONA CHATTERJEE JOINT WORK WITH RAMPRASAD SAPTHARISHI

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI

FST&TCS, IIT BOMBAY

DECEMBER 11, 2019

FAITHFUL MAPS

ALGEBRAIC INDEPENDENCE

$$(1,0,1)$$
 $(0,1,0)$ $(1,2,1)$

$$1 \times (1,0,1) + 2 \times (0,1,0) - 1 \times (1,2,1) = 0$$

$$(1,0,1)$$
 $(0,1,0)$ $(1,2,1)$

are linearly dependent.

$$(1,0,1)$$
 $(0,1,0)$ $(1,2,1)$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C} ,

$$x^2$$
 y^2 xy

$$(1,0,1)$$
 $(0,1,0)$ $(1,2,1)$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C} ,

$$x^2 \times y^2 - (xy)^2 = 0$$

$$(1,0,1)$$
 $(0,1,0)$ $(1,2,1)$

are linearly dependent.

In the space of bi-variate polynomials over \mathbb{C} ,

$$x^2$$
 y^2 xy

are algebraically dependent.

Definition: Suppose $\{f_1, \ldots, f_k\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$.

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important.

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime *p*,

$$x^p + y^p \qquad x + y$$

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$x^p + y^p \qquad x + y$$

■ are algebraically independent over C.

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$x^p + y^p \qquad x + y$$

are algebraically independent over C.
are algebraically dependent over 𝔽_p.

 $\mathbf{A}(\mathbf{y}_1,\ldots,\mathbf{y}_k)\neq 0; \qquad \mathbf{A}(f_1,\ldots,f_k)=0.$

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

$$x^p + y^p \qquad x + y$$

- are algebraically independent over C.
- are algebraically dependent over \mathbb{F}_p . $[x^p + y^p = (x + y)^p]$

■ Linear rank of $S = \{v_1, ..., v_m\} \subseteq V$ is the size of the largest linearly independent subset of *S*.

- Linear rank of $S = \{v_1, ..., v_m\} \subseteq V$ is the size of the largest linearly independent subset of *S*.
- Linear rank of {(1,0,1), (0,1,0), (1,2,1)} is 2.

■ Linear rank of $S = \{v_1, ..., v_m\} \subseteq V$ is the size of the largest linearly independent subset of *S*.

Linear rank of {(1,0,1), (0,1,0), (1,2,1)} is 2.

■ Algebraic rank of $S = \{f_1, ..., f_m\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of *S*.

Linear rank of S = {v₁,..., v_m} ⊆ V is the size of the largest linearly independent subset of S.

Linear rank of {(1,0,1), (0,1,0), (1,2,1)} is 2.

- Algebraic rank of $S = \{f_1, ..., f_m\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of *S*.
- Algebraic rank of $\{x^p + y^p, x + y\}$ is 1

Linear rank of S = {v₁,..., v_m} ⊆ V is the size of the largest linearly independent subset of S.

Linear rank of {(1,0,1), (0,1,0), (1,2,1)} is 2.

- Algebraic rank of $S = \{f_1, ..., f_m\} \subseteq \mathbb{F}[\mathbf{x}]$ is the size of the largest algebraically independent subset of *S*.
- Algebraic rank of $\{x^p + y^p, x + y\}$ is 2

Definition: Faithful Maps

Given a set of polynomials $\{f_1, f_2, \dots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \dots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \dots, y_k]$

is said to be a faithful map if the algebraic rank of $\{f_1 \circ \varphi, f_2 \circ \varphi, \dots, f_m \circ \varphi\}$ is also k.

Definition: Faithful Maps

Given a set of polynomials $\{f_1, f_2, \dots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \dots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \dots, y_k]$

is said to be a faithful map if the algebraic rank of $\{f_1 \circ \varphi, f_2 \circ \varphi, \dots, f_m \circ \varphi\}$ is also k.

Question: Can we construct faithful maps efficiently?

Definition: Faithful Maps

Given a set of polynomials $\{f_1, f_2, \dots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \dots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \dots, y_k]$

is said to be a faithful map if the algebraic rank of $\{f_1 \circ \varphi, f_2 \circ \varphi, \dots, f_m \circ \varphi\}$ is also k.

> **Question**: Can we construct faithful maps efficiently? **Bonus**: Helps in polynomial identity testing.

Trivial Upperbound: $(d + 1)^n$

Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Trivial Upperbound: $(d + 1)^n$

Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Special Case: $C = C'(f_1, f_2, \dots, f_m)$ where

algebraic rank of $\{f_1, \ldots, f_m\} = k$, and

k ≪ n

Trivial Upperbound: $(d + 1)^n$

Approach: Reduce no. of variables Keep degree under control Preserve non-zeroness

Special Case: $C = C'(f_1, f_2, \dots, f_m)$ where

algebraic rank of $\{f_1, \ldots, f_m\} = k$, and

 $k \ll n$

Q: Can the upperbound be made $\approx (d+1)^k$?

Property required: $C \neq 0 \implies C \circ \varphi \neq 0$

Property required: $C \neq 0 \implies C \circ \varphi \neq 0$

If k = m and $C' \neq 0$,

 $\mathcal{C}'(f_1,\ldots,f_k)\neq 0$

Property required: $C \neq 0 \implies C \circ \varphi \neq 0$ If k = m and $C' \neq 0$, $C'(f_1, \dots, f_k) \neq 0$ Since φ is faithful,

$$\mathcal{C} \circ \varphi = \mathcal{C}'(f_1 \circ \varphi, \dots, f_k \circ \varphi) \neq 0$$

Property required: $C \neq 0 \implies C \circ \varphi \neq 0$ If k = m and $C' \neq 0$, $\mathcal{C}'(f_1,\ldots,f_k)\neq 0$ Since φ is faithful, $\mathcal{C} \circ \varphi = \mathcal{C}'(f_1 \circ \varphi, \dots, f_k \circ \varphi) \neq 0$ Thus, $\mathcal{C} \neq 0 \implies \mathcal{C} \circ \varphi \neq 0$

Property required: $C \neq 0 \implies C \circ \varphi \neq 0$ If k = m and $C' \neq 0$, $\mathcal{C}'(f_1,\ldots,f_k)\neq 0$ Since φ is faithful, $\mathcal{C} \circ \varphi = \mathcal{C}'(f_1 \circ \varphi, \dots, f_k \circ \varphi) \neq 0$ Thus. $\mathcal{C} \neq 0 \implies \mathcal{C} \circ \varphi \neq 0$

Fact: Even when k < m, if φ is faithful,

 $\mathcal{C} \neq 0 \implies \mathcal{C} \circ \varphi \neq 0$
CONSTRUCTING FAITHFUL MAPS

Given a set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, \ldots, x_n]$, we want to construct a map

$$\varphi: \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \to \mathbb{F}[\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k]$$

such that

 $\operatorname{algrank}(f_1(\varphi), f_2(\varphi), \dots, f_m(\varphi)) = \operatorname{algrank}(f_1, f_2, \dots, f_m)$

Given a set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, \ldots, x_n]$, we want to construct a map

$$\varphi: \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \to \mathbb{F}[\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k]$$

such that

$$\operatorname{algrank}(f_1(\varphi), f_2(\varphi), \dots, f_m(\varphi)) = \operatorname{algrank}(f_1, f_2, \dots, f_m)$$

Fact: A random affine transformation is a faithful map

$$\varphi: \mathbf{x}_i = \sum_{j=1}^k \mathbf{s}_{ij} \mathbf{y}_j + \mathbf{a}_i$$

Given a set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, \ldots, x_n]$, we want to construct a map

$$\varphi: \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \to \mathbb{F}[\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k]$$

such that

$$\operatorname{algrank}(f_1(\varphi), f_2(\varphi), \dots, f_m(\varphi)) = \operatorname{algrank}(f_1, f_2, \dots, f_m)$$

Fact: A random affine transformation is a faithful map

$$\varphi: \mathbf{x}_i = \sum_{j=1}^k \mathbf{s}_{ij} \mathbf{y}_j + \mathbf{a}_i$$

Question: Can we construct faithful maps deterministically?

Step 1: Capture algebraic rank via linear rank

Step 1: Capture algebraic rank via linear rank

For $\{f_1, f_2, ..., f_m\} \subseteq \mathbb{F}[x_1, x_2, ..., x_n]$ and $\mathbf{f} = (f_1, f_2, ..., f_m)$,

$$\mathbf{J}_{\mathbf{X}}(\mathbf{f}) = \begin{bmatrix} \partial_{X_1}(f_1) & \partial_{X_2}(f_1) & \dots & \partial_{X_n}(f_1) \\ \partial_{X_1}(f_2) & \partial_{X_2}(f_2) & \dots & \partial_{X_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{X_1}(f_m) & \partial_{X_2}(f_m) & \dots & \partial_{X_n}(f_m) \end{bmatrix}$$

Step 1: Capture algebraic rank via linear rank

For $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ and $\mathbf{f} = (f_1, f_2, \ldots, f_m)$,

$$\mathbf{J}_{\mathbf{X}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \dots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \dots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \dots & \partial_{x_n}(f_m) \end{bmatrix}$$

The Jacobian Criterion [Jac41]

If \mathbb{F} has characteristic zero, the algebraic rank of $\{f_1, f_2, \ldots, f_m\}$ is equal to the linear rank of its Jacobian matrix.

For $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ and $\mathbf{f} = (f_1, f_2, \ldots, f_m)$,

$$\mathbf{J}_{\mathbf{X}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \dots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \dots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \dots & \partial_{x_n}(f_m) \end{bmatrix}$$

The Jacobian Criterion [Jac41]

If \mathbb{F} has characteristic zero, the algebraic rank of $\{f_1, f_2, \ldots, f_m\}$ is equal to the linear rank of its Jacobian matrix.

Step 2: Start with a generic linear transformation

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Step 2: Start with a generic linear transformation

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Step 2: Start with a generic linear transformation

$$\varphi : \mathbf{x}_i = \sum_{j=1}^k \mathbf{s}_{ij} \mathbf{y}_j + \mathbf{a}_i$$
$$\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \qquad \Bigg] = \left[\qquad \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \qquad \Bigg] \times \left[\qquad \mathbf{M}_{\varphi} \qquad \right]$$

L

Step 2: Start with a generic linear transformation

$$\varphi : \mathbf{x}_{i} = \sum_{j=1}^{R} \mathbf{s}_{ij} \mathbf{y}_{j} + \mathbf{a}_{i}$$
$$\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \qquad = \begin{bmatrix} \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \\ \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \end{bmatrix} \times \begin{bmatrix} \mathbf{M}_{\varphi} \end{bmatrix}$$

What we need: φ such that

a rank(
$$\mathbf{J}_{\mathbf{X}}(\mathbf{f})$$
) = rank($\varphi(\mathbf{J}_{\mathbf{X}}(\mathbf{f}))$)

L

Step 2: Start with a generic linear transformation

$$\varphi : \mathbf{X}_{i} = \sum_{j=1}^{k} \mathbf{S}_{ij} \mathbf{y}_{j} + \mathbf{a}_{i}$$
$$\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \qquad \left] = \left[\qquad \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \qquad \right] \times \left[\qquad M_{\varphi} \qquad \right]$$

What we need: φ such that

rank($\mathbf{J}_{\mathbf{X}}(\mathbf{f})$) = rank($\varphi(\mathbf{J}_{\mathbf{X}}(\mathbf{f}))$) : Can be done if f_i s are structured

Step 2: Start with a generic linear transformation

$$\varphi : \mathbf{x}_{i} = \sum_{j=1}^{k} \mathbf{s}_{ij} \mathbf{y}_{j} + \mathbf{a}_{i}$$
$$\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) = \begin{bmatrix} \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \\ \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \end{bmatrix} \times \begin{bmatrix} \mathbf{M}_{\varphi} \\ \mathbf{M}_{\varphi} \end{bmatrix}$$

What we need: φ such that

- rank($J_x(f)$) = rank($\varphi(J_x(f))$): Can be done if f_i s are structured
- $\blacksquare M_{\varphi} \text{ preserves rank}$

Step 2: Start with a generic linear transformation

$$\varphi : \mathbf{x}_{i} = \sum_{j=1}^{k} \mathbf{s}_{ij} \mathbf{y}_{j} + \mathbf{a}_{i}$$
$$\mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \qquad \left] = \left[\begin{array}{c} \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \\ \end{array} \right] \times \left[\begin{array}{c} M_{\varphi} \\ \end{array} \right]$$

What we need: φ such that

- rank($\mathbf{J}_{\mathbf{x}}(\mathbf{f})$) = rank($\varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f}))$): Can be done if f_i s are structured
- M_{φ} preserves rank : True if $\left\{M_{\varphi}[i,j]=s^{ij}\right\}$ [GR05]

Step 2: Start with a generic linear transformation

What we need: φ such that

- rank($\mathbf{J}_{\mathbf{x}}(\mathbf{f})$) = rank($\varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f}))$): Can be done if f_i s are structured
- M_{φ} preserves rank : True if $\left\{M_{\varphi}[i,j]=s^{ij}\right\}$ [GRo5]

The Jacobian Criterion is **false** over finite characteristic fields.

The Jacobian Criterion is **false** over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{lacobian}} + \text{higher order terms}$$

WHAT HAPPENS OVER FINITE CHARACTERISTIC FIELDS?

The Jacobian Criterion is **false** over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS18]: Look up till the inseparable degree in the expansion.

The Jacobian Criterion is **false** over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator

For any
$$f \in \mathbb{F}[x_1, x_2, \ldots, x_n]$$
,

$$\mathcal{H}_t(f) = \deg^{\leq t} \left(f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) \right)$$

The Jacobian Criterion is **false** over finite characteristic fields.

Taylor Expansion

For any $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS18]: Look up till the inseparable degree in the expansion.

Definition: A new Operator

For any
$$f \in \mathbb{F}[x_1, x_2, \dots, x_n]$$
,

$$\mathcal{H}_t(f) = \deg^{\leq t} \left(f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) \right)$$

$$\mathcal{H}(\mathbf{f},\mathbf{v}) = \left[egin{array}{cccc} \ldots & \mathcal{H}_t(f_1) + \mathsf{v}_1 & \ldots & \ & \ldots & \mathcal{H}_t(f_2) + \mathsf{v}_2 & \ldots & \ & & \vdots & \ & & \ddots & \mathcal{H}_t(f_k) + \mathsf{v}_k & \ldots & \end{array}
ight]$$

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \left[egin{array}{cccc} \dots & \mathcal{H}_t(f_1) + \mathbf{v}_1 & \dots & \ & \dots & \mathcal{H}_t(f_2) + \mathbf{v}_2 & \dots & \ & & \vdots & & \ & \dots & \mathcal{H}_t(f_k) + \mathbf{v}_k & \dots & \end{array}
ight] \mathbf{f}$$

has full rank over $\mathbb{F}(\mathbf{z})$

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix} \text{ has full rank over } \mathbb{F}(\mathbf{z})$$

where t is the inseparable degree of $\{f_1, f_2, \ldots, f_k\}$ and

$$\mathcal{I}_t = \langle \mathcal{H}_t(f_1), \mathcal{H}_t(f_2), \dots, \mathcal{H}_t(f_k)
angle_{\mathbb{F}(\mathbf{z})}^{\geq 2} mmod \langle \mathbf{x}
angle^{t+1} \subseteq \mathbb{F}(\mathbf{z})[\mathbf{x}].$$

Suppose $\circ f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$ • algebraic rank of $\{f_1, \ldots, f_m\} = k$ • inseparable degree of $\{f_1, \ldots, f_m\} = t$

Suppose
$$\circ f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$$

 \circ algebraic rank of $\{f_1, \ldots, f_m\} = k$
 \circ inseparable degree of $\{f_1, \ldots, f_m\} = t$

Then, we can construct

$$\Phi: \mathbb{F}[\mathbf{x}] \to \mathbb{F}(\mathbf{s})[y_0, y_1, \dots, y_k]$$

Suppose
$$\circ f_1, \dots, f_m \in \mathbb{F}[x_1, \dots, x_n]$$

 \circ algebraic rank of $\{f_1, \dots, f_m\} = k$
 \circ inseparable degree of $\{f_1, \dots, f_m\} = t$

Then, we can construct

$$\Phi: \mathbb{F}[\mathbf{X}] \to \mathbb{F}(\mathbf{s})[y_0, y_1, \dots, y_k]$$

such that

$$\mathsf{algrank}_{\mathbb{F}}(f_1\circ\Phi,\ldots,f_m\circ\Phi)=k$$

Suppose
$$\circ f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$$

 \circ algebraic rank of $\{f_1, \ldots, f_m\} = k$
 \circ inseparable degree of $\{f_1, \ldots, f_m\} = t$

Then, we can construct

$$\Phi: \mathbb{F}[\mathbf{x}] \to \mathbb{F}(\mathbf{s})[y_0, y_1, \dots, y_k]$$

such that

$$\mathsf{algrank}_{\mathbb{F}}(f_1 \circ \Phi, \dots, f_m \circ \Phi) = k$$

whenever

- each of the f_i 's are sparse polynomials,
- each of the f_i's are products of variable disjoint, multilinear, sparse polynomials.

Step 2: For a generic linear map $\Phi : \mathbf{x} \to \mathbb{F}(s)[y_1, \dots, y_k]$, write **PSS** $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of **PSS** $\mathbf{J}_{\mathbf{x}}(\mathbf{f})$.

Step 2: For a generic linear map $\Phi : \mathbf{x} \to \mathbb{F}(s)[y_1, \dots, y_k]$, write **PSS** $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of **PSS** $\mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$\mathsf{PSS} \, \mathsf{J}_{\mathsf{y}}(f \circ \Phi) = \Phi(\mathsf{PSS} \, \mathsf{J}_{\mathsf{x}}(\mathsf{f})) \cdot M_{\Phi}.$$

Step 2: For a generic linear map $\Phi : \mathbf{x} \to \mathbb{F}(s)[y_1, \dots, y_k]$, write **PSS** $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of **PSS** $\mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$\mathsf{PSS} \, \mathsf{J}_{\mathsf{y}}(f \circ \Phi) = \Phi(\mathsf{PSS} \, \mathsf{J}_{\mathsf{x}}(\mathsf{f})) \cdot M_{\Phi}.$$

What we need: Φ such that

■ rank(Φ(PSS J_x(f))) = rank(PSS J_x(f)): Can be done if f's are some structured polynomials (for example, sparse).

Step 2: For a generic linear map $\Phi : \mathbf{x} \to \mathbb{F}(s)[y_1, \dots, y_k]$, write **PSS** $\mathbf{J}_{\mathbf{y}}(\mathbf{f} \circ \Phi)$ in terms of **PSS** $\mathbf{J}_{\mathbf{x}}(\mathbf{f})$. This can be described succinctly as

$$\mathsf{PSS} \, \mathsf{J}_{\mathsf{y}}(f \circ \Phi) = \Phi(\mathsf{PSS} \, \mathsf{J}_{\mathsf{x}}(\mathsf{f})) \cdot \mathsf{M}_{\Phi}.$$

What we need: Φ such that

- rank(Φ(PSS J_x(f))) = rank(PSS J_x(f)): Can be done if f's are some structured polynomials (for example, sparse).
- \blacksquare M_{Φ} preserves rank. That is,

 $\mathsf{rank}(\Phi(\mathsf{PSS}\;\mathsf{J}_{\mathsf{X}}(\mathbf{f}))\cdot M_{\Phi}) = \mathsf{rank}(\Phi(\mathsf{PSS}\;\mathsf{J}_{\mathsf{X}}(\mathbf{f}))).$

$$M_{\Phi}(\mathbf{x^e}, \mathbf{y^d}) = \text{coeff}_{\mathbf{y^d}}(\Phi(\mathbf{x^e}))$$

$$M_{\Phi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \mathsf{coeff}_{\mathbf{y}^{\mathbf{d}}}(\Phi(\mathbf{x}^{\mathbf{e}}))$$

Taking inspiration from the prev. case: $M_{\Phi}(x_i, y_j) = s^{wt(i)j}$

$$M_{\Phi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\Phi(\mathbf{x}^{\mathbf{e}}))$$

Taking inspiration from the prev. case: $M_{\Phi}(x_i, y_j) = s^{\text{wt}(i)j}$

For the correct definition of wt(*i*), things work out.

$$M_{\Phi}(\mathbf{x^e}, \mathbf{y^d}) = \mathsf{coeff}_{\mathbf{y^d}}(\Phi(\mathbf{x^e}))$$

Taking inspiration from the prev. case: $M_{\Phi}(x_i, y_j) = s^{\text{wt}(i)j}$

For the correct definition of wt(*i*), things work out.

$$\Phi(\mathbf{x}_i) = \mathbf{a}_i \cdot \mathbf{y}_0 + \sum_{j \in [k]} \mathbf{s}^{\mathsf{wt}(i)j} \cdot \mathbf{y}_j$$

1. Construct $\mathbb{F}(s)$ -Faithful maps over arbitrary fields.

- 1. Construct $\mathbb{F}(s)$ -Faithful maps over arbitrary fields.
- 2. Improve the dependence on "inseparable degree".

- 1. Construct $\mathbb{F}(s)$ -Faithful maps over arbitrary fields.
- 2. Improve the dependence on "inseparable degree".
- [GSS'18]: Different characterisation for Algebraic dependence

 not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

- 1. Construct $\mathbb{F}(s)$ -Faithful maps over arbitrary fields.
- 2. Improve the dependence on "inseparable degree".
- [GSS'18]: Different characterisation for Algebraic dependence

 not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Thank you!