A QUADRATIC LOWER BOUND AGAINST ALgEBRAIC BRANCHING PROGRAMS

Prerona Chatterjee

Tata Instutute of Fundamental Research, Mumbai
With Mrinal Kumar (iitb), Adrian She (Uot), Ben Lee Volk (Caltech)
JULY 26, 2020

Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Sparse Representation

Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Sparse Representation

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Formulas and Algebraic Circuits

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Formula (VF)

$(x+y) \cdot(x+y) \cdot(x+y)$

Algebraic Formulas and Algebraic Circuits

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Formula (VF)

$(x+y) \cdot(x+y) \cdot(x+y)$

Algebraic Formulas and Algebraic Circuits

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Formula (VF)

Algebraic Circuits (VP)
$(x+y) \cdot(x+y) \cdot(x+y)$

$$
(x+y)^{3}
$$

Algebraic Formulas and Algebraic Circuits

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Algebraic Formula (VF)

Algebraic Circuits (VP)
$(x+y) \cdot(x+y) \cdot(x+y)$
$(x+y)^{3}$

Algebraic Formulas and Algebraic Circuits

Algebraic Formula (VF)

$(x+y) \cdot(x+y) \cdot(x+y)$

Algebraic Circuits (VP)

$$
(x+y)^{3} \quad(x+y)^{3}+(x+y)
$$

Algebraic Formulas and Algebraic Circuits

$$
\mathbf{V F} \subseteq \mathbf{V P}
$$

Algebraic Formula (VF)
$(x+y) \cdot(x+y) \cdot(x+y)$

Algebraic Branching Programs

Algebraic Branching Programs

■ Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

■ Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
■ Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p

Algebraic Branching Programs

■ Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
■ Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p

- Polynomial computed by the circuit: $\quad \sum_{p} w t(p)$

Algebraic Branching Programs

■ Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

- Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p
- Polynomial computed by the circuit: $\quad \sum_{p} w t(p)$

$$
\mathbf{V F} \subseteq \mathbf{V B P} \subseteq \mathbf{V P}
$$

The Lower Bound Question

Q: Can one give a polynomial that is not succinctly representable?

The Lower Bound Question

Q: Can one give a polynomial that is not succinctly representable?
That is: Can one give an n-variate, degree d polynomial that can not be represented by a circuit/formula/ABP of size poly (n, d) ?

The Lower Bound Question

Q: Can one give a polynomial that is not succinctly representable?
That is: Can one give an n-variate, degree d polynomial that can not be represented by a circuit/formula/ABP of size poly (n, d) ?

Aim: Show a super-polynomial lower bound.

The Lower Bound Question

Q: Can one give a polynomial that is not succinctly representable?
That is: Can one give an n-variate, degree d polynomial that can not be represented by a circuit/formula/ABP of size poly (n, d) ?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ multiplication gates.

The Lower Bound Question

Q: Can one give a polynomial that is not succinctly representable?
That is: Can one give an n-variate, degree d polynomial that can not be represented by a circuit/formula/ABP of size poly (n, d) ?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.

OUR MAIN Result

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

OUR MAIN Result

General ABPs [Baur-Strassen]:
Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

OUR MAIN Result

General ABPs [Baur-Strassen]:
Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

Our Main Result:
Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

How do we show this?

Step o ([Kumar]): Look at the homogeneous case
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

How do we show this?

Step o ([Kumar]): Look at the homogeneous case
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

Step 1: Generalise above statement to get the base case
Any ABP with $(d+1)$ layers

How do we show this?

Step o ([Kumar]): Look at the homogeneous case
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

Step 1: Generalise above statement to get the base case
Any ABP with $(d+1)$ layers computing a polynomial of the form

$$
f=\sum_{i=1}^{n} x_{i}^{d}+\sum_{i=1}^{r} A_{i}(\mathbf{x}) \cdot B_{i}(\mathbf{x})+\delta(\mathbf{x})
$$

How do we show this?

Step o ([Kumar]): Look at the homogeneous case
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

Step 1: Generalise above statement to get the base case
Any ABP with $(d+1)$ layers computing a polynomial of the form

$$
f=\sum_{i=1}^{n} x_{i}^{d}+\sum_{i=1}^{r} A_{i}(\mathbf{x}) \cdot B_{i}(\mathbf{x})+\delta(\mathbf{x})
$$

where $A_{i}(0)=0=B_{i}(0)$ and $\operatorname{deg}(\delta(\mathbf{x}))<d$,

How do we show this?

Step o ([Kumar]): Look at the homogeneous case
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ has $\Omega(n d)$ vertices.

Step 1: Generalise above statement to get the base case
Any ABP with $(d+1)$ layers computing a polynomial of the form

$$
f=\sum_{i=1}^{n} x_{i}^{d}+\sum_{i=1}^{r} A_{i}(\mathbf{x}) \cdot B_{i}(\mathbf{x})+\delta(\mathbf{x})
$$

where $A_{i}(0)=0=B_{i}(0)$ and $\operatorname{deg}(\delta(\mathbf{x}))<d$, has at least

$$
((n / 2)-r) \cdot(d-1) \quad \text { vertices. }
$$

How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
$(d+1)$ such that

How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes $(d+1)$ such that

- the number of layers is reduced by a constant fraction,

How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes $(d+1)$ such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,

How do we show this?

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes $(d+1)$ such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,

■ the polynomial being computed continues to look like

$$
f_{\ell+1}=\sum_{i=1}^{n} x_{i}^{d}+\sum_{i=1}^{r_{\ell+1}} A_{i}(\mathbf{x}) \cdot B_{i}(\mathbf{x})+\delta_{\ell+1}(\mathbf{x})
$$

where

$$
A_{i}(0)=0=B_{i}(0) \quad \text { and } \quad \operatorname{deg}\left(\delta_{\ell+1}(\mathbf{x})\right)<d
$$

How do we show this?

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes $(d+1)$ such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,

■ the polynomial being computed continues to look like

$$
f_{\ell+1}=\sum_{i=1}^{n} x_{i}^{d}+\sum_{i=1}^{r_{\ell+1}} A_{i}(\mathbf{x}) \cdot B_{i}(\mathbf{x})+\delta_{\ell+1}(\mathbf{x})
$$

where

$$
A_{i}(0)=0=B_{i}(0) \quad \text { and } \quad \operatorname{deg}\left(\delta_{\ell+1}(\mathbf{x})\right)<d
$$

■ number of error terms collected is small.

The Induction Step

$\underline{\ell \text {-th step }}$

The Induction Step

ℓ-th step

Given: $\operatorname{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$
no. of layers $=d_{\ell}$
no. of error terms $=r_{\ell}$

The Induction Step

ℓ-th step

Given: $\mathrm{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: $\operatorname{ABP} \mathcal{A}_{\ell+1}$ of size $=s_{\ell+1}$

The Induction Step

ℓ-th step

Given: $\mathrm{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: ABP $\mathcal{A}_{\ell+1}$ of size $=s_{\ell+1} \leq s_{\ell}$

The Induction Step

ℓ-th step

Given: $\mathrm{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: ABP $\mathcal{A}_{\ell+1}$ of size $=s_{\ell+1} \leq s_{\ell}$

$$
\text { no. of layers }=d_{\ell+1}
$$

The Induction Step

ℓ-th step

Given: $\operatorname{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: $\operatorname{ABP} \mathcal{A}_{\ell+1}$ of size $=s_{\ell+1} \leq s_{\ell}$

$$
\text { no. of layers }=d_{\ell+1} \leq \frac{2}{3} d_{\ell}
$$

The Induction Step

ℓ-th step

Given: $\mathrm{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: $\operatorname{ABP} \mathcal{A}_{\ell+1}$ of size $=s_{\ell+1} \leq s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell+1} \leq \frac{2}{3} d_{\ell} \\
& \text { no. of error terms }=r_{\ell+1}
\end{aligned}
$$

The Induction Step

ℓ-th step

Given: $\mathrm{ABP} \mathcal{A}_{\ell}$ of size $=s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell} \\
& \text { no. of error terms }=r_{\ell}
\end{aligned}
$$

Want to construct: $\operatorname{ABP} \mathcal{A}_{\ell+1}$ of size $=s_{\ell+1} \leq s_{\ell}$

$$
\begin{aligned}
& \text { no. of layers }=d_{\ell+1} \leq \frac{2}{3} d_{\ell} \\
& \text { no. of error terms }=r_{\ell+1} \leq r_{\ell}+\frac{s_{\ell}}{d_{\ell} / 3}
\end{aligned}
$$

Proof of the Induction Step

Proof of the Induction Step

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow \longleftarrow f_{2}=f_{2}^{\prime}+\beta
$$

Proof of the Induction Step

$$
\mathcal{A}_{\ell}=f_{1} \cdot f_{2}
$$

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow f_{2}=f_{2}^{\prime}+\beta
$$

(s)

Proof of the Induction Step

$$
\begin{aligned}
& \mathcal{A}_{\ell}=f_{1} \cdot f_{2} \\
& \\
& \longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow \longleftarrow f_{2}=f_{2}^{\prime}+\beta
\end{aligned}
$$

\qquad

Proof of the Induction Step

$$
\mathcal{A}_{\ell}=f_{1} \cdot f_{2}
$$

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow f_{2}=f_{2}^{\prime}+\beta
$$

(s)

O

Proof of the Induction Step

$$
\mathcal{A}_{\ell}=f_{1} \cdot f_{2}
$$

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow f_{2}=f_{2}^{\prime}+\beta
$$

(s)

Proof of the Induction Step

$$
\mathcal{A}_{\ell}=f_{1} \cdot f_{2}
$$

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow f_{2}=f_{2}^{\prime}+\beta
$$

\qquad
(s)
$\mathcal{A}_{\ell+1}=\beta \cdot f_{1}+\alpha \cdot f_{2}$

Proof of the Induction Step

$$
\mathcal{A}_{\ell}=f_{1} \cdot f_{2}
$$

$$
\longleftarrow f_{1}=f_{1}^{\prime}+\alpha \longrightarrow f_{2}=f_{2}^{\prime}+\beta
$$

\qquad
(s)
$\mathcal{A}_{\ell+1}=\beta \cdot f_{1}+\alpha \cdot f_{2}=\mathcal{A}_{\ell}-f_{1}^{\prime} \cdot f_{2}^{\prime}+\alpha \cdot \beta$

Proof of the Induction Step

Proof of the Induction Step

Proof of the Induction Step

OTher Results for AbPs

1. If the edge labels on the ABP are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.

OTHER RESULTS FOR ABPS

1. If the edge labels on the ABP are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.
2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.

OTHER RESULTS FOR ABPS

1. If the edge labels on the $A B P$ are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.
2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.
3. The lower bound is also true for a multilinear polynomial

$$
\operatorname{ESym}(n, 0.1 n)=\sum_{i_{1}<\cdots<i_{0.1 n} \in[n]} \prod_{j=1}^{0.1 n} x_{i_{j}}
$$

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method):
Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega\left(n^{2}\right)$ wires.

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method):
Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega\left(n^{2}\right)$ wires.
Interesting Case: Multilinear polynomials

- Trival to get $\Omega(n d)$ for n-variate, i-degree d polynomials.

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method):
Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega\left(n^{2}\right)$ wires.
Interesting Case: Multilinear polynomials

- Trival to get $\Omega(n d)$ for n-variate, i-degree d polynomials.
- Multilinearising the SY polynomial gives $\Omega\left(n^{2} / \log n\right)$.

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method):
Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega\left(n^{2}\right)$ wires.
Interesting Case: Multilinear polynomials

- Trival to get $\Omega(n d)$ for n-variate, i-degree d polynomials.
- Multilinearising the SY polynomial gives $\Omega\left(n^{2} / \log n\right)$.
- Kalorkoti's method can not give better than $\Omega\left(n^{2} / \log n\right)$.

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing Det $_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method):
Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega\left(n^{2}\right)$ wires.
Interesting Case: Multilinear polynomials

- Trival to get $\Omega(n d)$ for n-variate, i-degree d polynomials.
- Multilinearising the SY polynomial gives $\Omega\left(n^{2} / \log n\right)$.
- Kalorkoti's method can not give better than $\Omega\left(n^{2} / \log n\right)$.

Our Result: Any formula computing ESym $\mathrm{E}_{\mathrm{n}, \mathrm{0} 1 \mathrm{n}}$ has $\Omega\left(n^{2}\right)$ vertices, where

$$
\operatorname{ESym}(n, 0.1 n)=\sum_{i_{1}<\ldots<i_{0} .1 n \in[n]} \prod_{j=1}^{0.1 n} x_{i_{j}} .
$$

Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs

Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)

Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)
3. Reprove the $\Omega(n \log n)$ lower bound for general circuits

Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)
3. Reprove the $\Omega(n \log n)$ lower bound for general circuits

Thank you!

