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Algebraic Formulas and Algebraic Circuits
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Algebraic Formulas and Algebraic Circuits

VF ⊆ VP

Algebraic Formula (VF)
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Algebraic Branching Programs

s

t

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3) (x + 3y) (y + 5)
10

(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}

Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)
10

(x + y + 7)(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p

Polynomial computed by the circuit:
∑

p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3) (x + 3y) (y + 5)
10

(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?

That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



Our Main Result

General ABPs [Baur-Strassen]:
Any ABP computing

∑n
i=1 xdi requires Ω(n log d) wires.

Restricted ABPs [Kumar]:
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Our Main Result:
Any ABP computing

∑n
i=1 xdi requires Ω(nd) vertices.
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How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers

computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d,

has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,
the size does not increase,
the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,
number of error terms collected is small.

7 12
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The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12
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Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t

a1
β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2

= A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t

β · a1

α · a2

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s

β · a1

α · a2
t

9 12



Other Results for ABPs

1. If the edge labels on the ABP are allowed to have degree ∆,
then the lower bound we get is Ω(n2/∆).

2. For unlayered ABPs with edge labels of degree ≤ ∆, the
lower bound we get is Ω(n log n/∆ log log n).

3. The lower bound is also true for a multilinear polynomial

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

10 12
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A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.

[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .
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Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered
Algebraic Branching Programs

2. Prove a super-quadratic lower bound on (homogeneous?)
formulas (of constant depth?)

3. Reprove the Ω(n log n) lower bound for general circuits

Thank you!
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