A QUADRATIC LOWER BOUND AGAINST ALGEBRAIC BRANCHING PROGRAMS

PRERONA CHATTERJEE TATA INSTUTUTE OF FUNDAMENTAL RESEARCH, MUMBAI

WITH MRINAL KUMAR (IITB), ADRIAN SHE (UOT), BEN LEE VOLK (CALTECH)

JULY 26, 2020

How succinctly can one represent a given polynomial?

How succinctly can one represent a given polynomial?

$$x^3 + 3x^2y + 3xy^2 + y^3$$

How succinctly can one represent a given polynomial?

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Sparse Representation

How succinctly can one represent a given polynomial?

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Sparse Representation

 $x^3 + 3x^2y + 3xy^2 + y^3$

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Algebraic Formula (VF)

 $(x+y) \cdot (x+y) \cdot (x+y)$

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Algebraic Formula (VF)

 $(x+y)\cdot(x+y)\cdot(x+y)$

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Algebraic Formula (VF)

Algebraic Circuits (VP)

 $(x+y) \cdot (x+y) \cdot (x+y)$

 $(x + y)^{3}$

$$x^3 + 3x^2y + 3xy^2 + y^3$$

Algebraic Formula (VF)

Algebraic Circuits (VP)

 $(x+y)\cdot(x+y)\cdot(x+y)$

$$(x + y)^{3}$$

Algebraic Formula (VF)

 $(x+y)\cdot(x+y)\cdot(x+y)$

 $(x + y)^3$ $(x + y)^3 + (x + y)$

Algebraic Formula (VF)

 $(x+y)\cdot(x+y)\cdot(x+y)$

 $(x + y)^3$ $(x + y)^3 + (x + y)$

■ Label on each edge: An affine linear form in $\{x_1, x_2, ..., x_n\}$

Label on each edge: An affine linear form in {x₁, x₂,..., x_n}
 Weight of path p = wt(p): Product of the edge labels on p

■ Label on each edge: An affine linear form in {x₁, x₂,..., x_n}
 ■ Weight of path p = wt(p): Product of the edge labels on p
 ■ Polynomial computed by the circuit: ∑_p wt(p)

- Label on each edge: An affine linear form in $\{x_1, x_2, ..., x_n\}$
- Weight of path p = wt(p): Product of the edge labels on p
- Polynomial computed by the circuit: $\sum_{p} wt(p)$

$VF \subseteq VBP \subseteq VP$

THE LOWER BOUND QUESTION

Q: Can one give a polynomial that is not succinctly representable?

That is: Can one give an *n*-variate, degree *d* polynomial that can not be represented by a circuit/formula/ABP of size poly(n, d)?

That is: Can one give an *n*-variate, degree *d* polynomial that can not be represented by a circuit/formula/ABP of size poly(n, d)?

Aim: Show a super-polynomial lower bound.

That is: Can one give an *n*-variate, degree *d* polynomial that can not be represented by a circuit/formula/ABP of size poly(n, d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]: Any fan-in 2 circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ multiplication gates.

That is: Can one give an *n*-variate, degree *d* polynomial that can not be represented by a circuit/formula/ABP of size poly(n, d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]: Any fan-in 2 circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ multiplication gates.

For Formulas [Kalorkoti]: Any formula computing $\text{Det}_{n \times n}$ requires $\Omega(n^3)$ wires.

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Our Main Result: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices. **Step o** ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Step 1: Generalise above statement to get the base case Any ABP with (d + 1) layers

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

Step 1: Generalise above statement to get the base case Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta(\mathbf{x})) < d$,

Step 1: Generalise above statement to get the base case Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $deg(\delta(\mathbf{x})) < d$, has at least

$$((n/2) - r) \cdot (d - 1)$$
 vertices.

In each iteration, reduce the number of layers till it becomes (d + 1) such that

In each iteration, reduce the number of layers till it becomes (d + 1) such that

■ the number of layers is reduced by a constant fraction,

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,
- the polynomial being computed continues to look like

$$f_{\ell+1} = \sum_{i=1}^n x_i^d + \sum_{i=1}^{r_{\ell+1}} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta_{\ell+1}(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta_{\ell+1}(\mathbf{x})) < d$,

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,
- the polynomial being computed continues to look like

$$f_{\ell+1} = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r_{\ell+1}} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta_{\ell+1}(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta_{\ell+1}(\mathbf{x})) < d$, number of error terms collected is small.

THE INDUCTION STEP

 ℓ -th step

```
Given: ABP A_{\ell} of size = s_{\ell}
no. of layers = d_{\ell}
no. of error terms = r_{\ell}
```

```
Given: ABP A_{\ell} of size = s_{\ell}
no. of layers = d_{\ell}
no. of error terms = r_{\ell}
```

Want to construct: ABP $A_{\ell+1}$ of size = $s_{\ell+1}$

```
Given: ABP A_{\ell} of size = s_{\ell}
no. of layers = d_{\ell}
no. of error terms = r_{\ell}
```

Want to construct: ABP $A_{\ell+1}$ of size = $s_{\ell+1} \leq s_{\ell}$

Given: ABP
$$A_{\ell}$$
 of size = s_{ℓ}
no. of layers = d_{ℓ}
no. of error terms = r_{ℓ}

Want to construct: ABP $A_{\ell+1}$ of size = $s_{\ell+1} \le s_{\ell}$ no. of layers = $d_{\ell+1}$

Given: ABP
$$A_{\ell}$$
 of size = s_{ℓ}
no. of layers = d_{ℓ}
no. of error terms = r_{ℓ}

Want to construct: ABP
$$\mathcal{A}_{\ell+1}$$
 of size = $s_{\ell+1} \leq s_{\ell}$
no. of layers = $d_{\ell+1} \leq \frac{2}{3}d_{\ell}$

Given: ABP
$$A_{\ell}$$
 of size = s_{ℓ}
no. of layers = d_{ℓ}
no. of error terms = r_{ℓ}

Want to construct: ABP $A_{\ell+1}$ of size = $s_{\ell+1} \le s_{\ell}$ no. of layers = $d_{\ell+1} \le \frac{2}{3}d_{\ell}$ no. of error terms = $r_{\ell+1}$

Given: ABP
$$A_{\ell}$$
 of size = s_{ℓ}
no. of layers = d_{ℓ}
no. of error terms = r_{ℓ}

Want to construct: ABP $A_{\ell+1}$ of size = $s_{\ell+1} \le s_{\ell}$ no. of layers = $d_{\ell+1} \le \frac{2}{3}d_{\ell}$ no. of error terms = $r_{\ell+1} \le r_{\ell} + \frac{s_{\ell}}{d_{\ell}/3}$

 $\mathcal{A}_{\ell} = f_1 \cdot f_2$

1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.

- 1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.
- 2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.

- 1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.
- 2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.
- 3. The lower bound is also true for a multilinear polynomial

$$\mathsf{ESym}(n, \mathsf{0.1}n) = \sum_{i_1 < \cdots < i_{\mathsf{0.1}n} \in [n]} \prod_{j=1}^{\mathsf{0.1}n} x_{i_j}.$$

A LOWER BOUND FOR FORMULAS

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}$ requires $\Omega(n^3)$ wires.

Interesting Case: Multilinear polynomials

Trival to get $\Omega(nd)$ for *n*-variate, i-degree *d* polynomials.

Interesting Case: Multilinear polynomials

- Trival to get $\Omega(nd)$ for *n*-variate, i-degree *d* polynomials.
- Multilinearising the SY polynomial gives $\Omega(n^2/\log n)$.

Interesting Case: Multilinear polynomials

- Trival to get $\Omega(nd)$ for *n*-variate, i-degree *d* polynomials.
- Multilinearising the SY polynomial gives $\Omega(n^2 / \log n)$.
- Kalorkoti's method can not give better than $\Omega(n^2/\log n)$.

Interesting Case: Multilinear polynomials

- Trival to get $\Omega(nd)$ for *n*-variate, i-degree *d* polynomials.
- Multilinearising the SY polynomial gives $\Omega(n^2/\log n)$.
- Kalorkoti's method can not give better than $\Omega(n^2/\log n)$.

Our Result: Any formula computing $\text{ESym}_{n,0.1n}$ has $\Omega(n^2)$ vertices, where

$$\mathsf{ESym}(n, \mathsf{0.1}n) = \sum_{i_1 < \cdots < i_{\mathsf{0.1}n} \in [n]} \prod_{j=1}^{\mathsf{0.1}n} x_{i_j}.$$

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)
- 3. Reprove the $\Omega(n \log n)$ lower bound for general circuits

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?)
- 3. Reprove the $\Omega(n \log n)$ lower bound for general circuits

Thank you!