
A Quadratic Lower Bound against
Algebraic Branching Programs

Prerona Chatterjee
Tata Instutute of Fundamental Research, Mumbai

with Mrinal Kumar (IITB), Adrian She (UoT), Ben Lee Volk (Caltech)

July 26, 2020



Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

x3 + 3x2y + 3xy2 + y3

Sparse Representation

+

× × × ×

x x x x x y x y y y y y

3 3

1 12



Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

x3 + 3x2y + 3xy2 + y3

Sparse Representation

+

× × × ×

x x x x x y x y y y y y

3 3

1 12



Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

x3 + 3x2y + 3xy2 + y3

Sparse Representation

+

× × × ×

x x x x x y x y y y y y

3 3

1 12



Algebraic Circuit Complexity

How succinctly can one represent a given polynomial?

x3 + 3x2y + 3xy2 + y3

Sparse Representation

+

× × × ×

x x x x x y x y y y y y

3 3

1 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

x3 + 3x2y + 3xy2 + y3

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Formulas and Algebraic Circuits

VF ⊆ VP

Algebraic Formula (VF)

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

Algebraic Circuits (VP)

(x + y)3

×

+

x y

(x + y)3 + (x + y)

+

×

+

x y

2 12



Algebraic Branching Programs

s

t

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3) (x + 3y) (y + 5)
10

(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}

Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)
10

(x + y + 7)(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p

Polynomial computed by the circuit:
∑

p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t(2x + 3) (x + 3y) (y + 5)
10

(x + y + 7)

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



Algebraic Branching Programs

s

t

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the circuit:

∑
p wt(p)

VF ⊆ VBP ⊆ VP

3 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?

That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



The Lower Bound Question

Q: Can one give a polynomial that is not succinctly
representable?
That is: Can one give an n-variate, degree d polynomial that can
not be represented by a circuit/formula/ABP of size poly(n,d)?

Aim: Show a super-polynomial lower bound.

For Circuits [Baur-Strassen]:
Any fan-in 2 circuit computing

∑n
i=1 xdi requires Ω(n log d)

multiplication gates.

For Formulas [Kalorkoti]:
Any formula computing Detn×n requires Ω(n3) wires.

4 12



Our Main Result

General ABPs [Baur-Strassen]:
Any ABP computing

∑n
i=1 xdi requires Ω(n log d) wires.

Restricted ABPs [Kumar]:
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Our Main Result:
Any ABP computing

∑n
i=1 xdi requires Ω(nd) vertices.

5 12



Our Main Result

General ABPs [Baur-Strassen]:
Any ABP computing

∑n
i=1 xdi requires Ω(n log d) wires.

Restricted ABPs [Kumar]:
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Our Main Result:
Any ABP computing

∑n
i=1 xdi requires Ω(nd) vertices.

5 12



Our Main Result

General ABPs [Baur-Strassen]:
Any ABP computing

∑n
i=1 xdi requires Ω(n log d) wires.

Restricted ABPs [Kumar]:
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Our Main Result:
Any ABP computing

∑n
i=1 xdi requires Ω(nd) vertices.

5 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers

computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d,

has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 0 ([Kumar]): Look at the homogeneous case
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case
Any ABP with (d+ 1) layers computing a polynomial of the form

f =
n∑
i=1

xdi +
r∑
i=1

Ai(x) · Bi(x) + δ(x)

where Ai(0) = 0 = Bi(0) and deg(δ(x)) < d, has at least

((n/2)− r) · (d− 1) vertices.

6 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,
the size does not increase,
the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,
number of error terms collected is small.

7 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,

the size does not increase,
the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,
number of error terms collected is small.

7 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,
the size does not increase,

the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,
number of error terms collected is small.

7 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,
the size does not increase,
the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,

number of error terms collected is small.

7 12



How do we show this?

Step 2: Iteratively reduce to Base Case
In each iteration, reduce the number of layers till it becomes
(d+ 1) such that

the number of layers is reduced by a constant fraction,
the size does not increase,
the polynomial being computed continues to look like

f`+1 =
n∑
i=1

xdi +

r`+1∑
i=1

Ai(x) · Bi(x) + δ`+1(x)

where Ai(0) = 0 = Bi(0) and deg(δ`+1(x)) < d,
number of error terms collected is small.

7 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1

≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`

no. of layers = d`+1 ≤
2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1

≤ 2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1

≤ r` +
s`
d`/3

8 12



The Induction Step

`-th step

Given: ABP A` of size = s`
no. of layers = d`
no. of error terms = r`

Want to construct: ABP A`+1 of size = s`+1 ≤ s`
no. of layers = d`+1 ≤

2
3d`

no. of error terms = r`+1 ≤ r` +
s`
d`/3

8 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t

a1
β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2

= A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t
a1

β

a2α

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s t

β · a1

α · a2

9 12



Proof of the Induction Step

A` = f1 · f2

s t
a1 a2a1 a2

f1 = f ′1 + α f2 = f ′2 + β

A`+1 = β · f1 + α · f2 = A` − f ′1 · f ′2 + α · β

s

β · a1

α · a2
t

9 12



Other Results for ABPs

1. If the edge labels on the ABP are allowed to have degree ∆,
then the lower bound we get is Ω(n2/∆).

2. For unlayered ABPs with edge labels of degree ≤ ∆, the
lower bound we get is Ω(n log n/∆ log log n).

3. The lower bound is also true for a multilinear polynomial

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

10 12



Other Results for ABPs

1. If the edge labels on the ABP are allowed to have degree ∆,
then the lower bound we get is Ω(n2/∆).

2. For unlayered ABPs with edge labels of degree ≤ ∆, the
lower bound we get is Ω(n log n/∆ log log n).

3. The lower bound is also true for a multilinear polynomial

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

10 12



Other Results for ABPs

1. If the edge labels on the ABP are allowed to have degree ∆,
then the lower bound we get is Ω(n2/∆).

2. For unlayered ABPs with edge labels of degree ≤ ∆, the
lower bound we get is Ω(n log n/∆ log log n).

3. The lower bound is also true for a multilinear polynomial

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

10 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.

[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.

Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).

Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



A lower bound for formulas

[Kalorkoti]: Any formula computing Detn×n requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
Any formula computing

∑n
i=1

∑n
j=1 x

j
iyj requires Ω(n2) wires.

Interesting Case: Multilinear polynomials
Trival to get Ω(nd) for n-variate, i-degree d polynomials.
Multilinearising the SY polynomial gives Ω(n2/ log n).
Kalorkoti’s method can not give better than Ω(n2/ log n).

Our Result: Any formula computing ESymn,0.1n has Ω(n2) vertices,
where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .

11 12



Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered
Algebraic Branching Programs

2. Prove a super-quadratic lower bound on (homogeneous?)
formulas (of constant depth?)

3. Reprove the Ω(n log n) lower bound for general circuits

Thank you!

12 / 12



Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered
Algebraic Branching Programs

2. Prove a super-quadratic lower bound on (homogeneous?)
formulas (of constant depth?)

3. Reprove the Ω(n log n) lower bound for general circuits

Thank you!

12 / 12



Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered
Algebraic Branching Programs

2. Prove a super-quadratic lower bound on (homogeneous?)
formulas (of constant depth?)

3. Reprove the Ω(n log n) lower bound for general circuits

Thank you!

12 / 12



Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered
Algebraic Branching Programs

2. Prove a super-quadratic lower bound on (homogeneous?)
formulas (of constant depth?)

3. Reprove the Ω(n log n) lower bound for general circuits

Thank you!

12 / 12


