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Algebraic Branching Programs

s

t

Label on each edge: An a�ne linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Central Question: Can one give an n-variate, degree d polynomial that can not be
represented by an ABP of size poly(n,d)?
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Our Main Result

General ABPs [Baur-Strassen]:
Any ABP computing

∑n
i=1 xdi requires Ω(n log d) wires.

Restricted ABPs [Kumar]:
Any ABP with (d+ 1) layers computing

∑n
i=1 xdi requires Ω(nd) vertices.

Our Main Result:
Any ABP computing

∑n
i=1 xdi requires Ω(nd) vertices.
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Algebraic Formulas and a Lower Bound against them

x3 + 3x2y + 3xy2 + y3 = (x + y)3

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

[Kalorkoti]: Any formula computing Detn×n
requires Ω(n3) wires.
[Shpilka, Yehudayo�] (using Kalorkoti’s method):
There is a multilinear polynomial such that any
formula computing it requires Ω(n2/ log n) wires.

Our Result: Any formula computing ESymn,0.1n
requires Ω(n2) vertices, where

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .
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Other Results

1. If the edge labels on the ABP are allowed to have degree ∆, then the lower
bound we get is Ω(n2/∆).

2. For unlayered ABPs with edge labels of degree ≤ ∆, the lower bound we get is
Ω(n log n/∆ log log n).

3. The lower bound is also true for the elementary symmetric polynomial.

ESym(n,0.1n) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij
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Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching
Programs.

2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of
constant depth?).

3. Reprove the Ω(n log n) lower bound for general circuits.

Thank you!
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