A QUADRATIC LOWER BOUND AGAINST ALGEBRAIC BRANCHING PROGRAMS

PRERONA CHATTERJEE

TATA INSTUTUTE OF FUNDAMENTAL RESEARCH, MUMBAI

WITH MRINAL KUMAR (IITB), ADRIAN SHE (UOT), BEN LEE VOLK (CALTECH)

JULY 29, 2020

■ Label on each edge: An affine linear form in $\{x_1, x_2, ..., x_n\}$

Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$

• Weight of path p = wt(p): Product of the edge labels on p

- **Label on each edge:** An affine linear form in $\{x_1, x_2, ..., x_n\}$
- Weight of path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$

- **Label on each edge:** An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Weight of path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$

Central Question: Can one give an *n*-variate, degree *d* polynomial that can not be represented by an ABP of size poly(n, d)?

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General ABPs [Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

Our Main Result:

Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

 $(x+y)\cdot(x+y)\cdot(x+y)$

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

 $(x+y) \cdot (x+y) \cdot (x+y)$

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}$ requires $\Omega(n^3)$ wires.

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^2$$

 $(x+y)\cdot(x+y)\cdot(x+y)$

[Shpilka, Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

 $(x+y)\cdot(x+y)\cdot(x+y)$

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}$ requires $\Omega(n^3)$ wires.

[Shpilka, Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

Our Result: Any formula computing $\text{ESym}_{n,0.1n}$ requires $\Omega(n^2)$ vertices, where

$$\mathsf{ESym}(n, \mathsf{O}.\mathsf{1}n) = \sum_{i_1 < \cdots < i_{\mathsf{O}.\mathsf{1}n} \in [n]} \prod_{j=1}^{\mathsf{O}.\mathsf{1}n} x_{i_j}.$$

1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.

- 1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.
- 2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.

- 1. If the edge labels on the ABP are allowed to have degree Δ , then the lower bound we get is $\Omega(n^2/\Delta)$.
- 2. For unlayered ABPs with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.
- 3. The lower bound is also true for the elementary symmetric polynomial.

$$\mathsf{ESym}(n, 0.1n) = \sum_{i_1 < \dots < i_{0.1n} \in [n]} \prod_{j=1}^{0.1n} x_{i_j}$$

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).
- 3. Reprove the $\Omega(n \log n)$ lower bound for general circuits.

- 1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
- 2. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).
- 3. Reprove the $\Omega(n \log n)$ lower bound for general circuits.

Thank you!