A Quadratic Lower Bound against Algebraic Branching Programs

Prerona Chatterjee
Tata Instutute of Fundamental Research, Mumbal
with Mrinal Kumar (iitb), Adrian She (Uot), Ben Lee Volk (Caltech)
JULY 29, 2020

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=w t(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=w t(p)$: Product of the edge labels on p
- Polynomial computed by the ABP: $\quad \sum_{p} w t(p)$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=\mathrm{wt}(p)$: Product of the edge labels on p
- Polynomial computed by the ABP: $\quad \sum_{p} w t(p)$

Central Question: Can one give an n-variate, degree d polynomial that can not be represented by an ABP of size poly (n, d) ?

OUR MAIN Result

General ABPs [Baur-Strassen]:

Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs [Baur-Strassen]:

Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General ABPs [Baur-Strassen]:

Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Restricted ABPs [Kumar]:
Any ABP with $(d+1)$ layers computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Our Main Result:

Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}
$$

$$
(x+y) \cdot(x+y) \cdot(x+y)
$$

Algebraic Formulas and a Lower Bound against them

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}
$$

[Kalorkoti]: Any formula computing $\operatorname{Det}_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.

$$
(x+y) \cdot(x+y) \cdot(x+y)
$$

Algebraic Formulas and a Lower Bound against them

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}
$$

$$
(x+y) \cdot(x+y) \cdot(x+y)
$$

[Kalorkoti]: Any formula computing $\operatorname{Det}_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.

Algebraic Formulas and a Lower Bound against them

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}
$$

$$
(x+y) \cdot(x+y) \cdot(x+y)
$$

[Kalorkoti]: Any formula computing $\operatorname{Det}_{n \times n}$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka, Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.

Our Result: Any formula computing ESym ${ }_{n, 0.1 n}$ requires $\Omega\left(n^{2}\right)$ vertices, where

$$
\operatorname{ESym}(n, 0.1 n)=\sum_{i_{1}<\cdots<i_{0.1 n} \in[n]} \prod_{j=1}^{0.1 n} x_{i_{j}}
$$

Other Results

1. If the edge labels on the ABP are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.

Other Results

1. If the edge labels on the ABP are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.
2. For unlayered $A B P s$ with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.

Other Results

1. If the edge labels on the ABP are allowed to have degree Δ, then the lower bound we get is $\Omega\left(n^{2} / \Delta\right)$.
2. For unlayered $A B P s$ with edge labels of degree $\leq \Delta$, the lower bound we get is $\Omega(n \log n / \Delta \log \log n)$.
3. The lower bound is also true for the elementary symmetric polynomial.

$$
\operatorname{ESym}(n, 0.1 n)=\sum_{i_{1}<\cdots<i_{0.1 n} \in[n]} \prod_{j=1}^{0.1 n} x_{i_{j}}
$$

Open Threads

1. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
2. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
3. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).
4. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
5. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).
6. Reprove the $\Omega(n \log n)$ lower bound for general circuits.
7. Prove a quadratic lower bound (on wires?) for un-layered Algebraic Branching Programs.
8. Prove a super-quadratic lower bound on (homogeneous?) formulas (of constant depth?).
9. Reprove the $\Omega(n \log n)$ lower bound for general circuits.

Thank you!

