Separating ABPs and some Structured Formulas in the Non-Commutative Setting

Prerona Chatterjee

Tata Institute of Fundamental Research, Mumbai

July 20, 2021

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VBP}_{\mathsf{nc}}$

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$

So Nisan actually showed that $\mathsf{VBP}_{\mathsf{nc}} \neq \mathsf{VP}_{\mathsf{nc}}.$

• Label on each edge: Homogeneous linear forms in $\{x_1, x_2, \dots, x_n\}$

- Label on each edge: Homogeneous linear forms in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p

- Label on each edge: Homogeneous linear forms in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$

- Label on each edge: Homogeneous linear forms in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$
- Size of the ABP: Number of vertices in the ABP

- Label on each edge: Homogeneous linear forms in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$
- Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, $f = \text{Hom}_0(f) + \text{Hom}_1(f) + \cdots + \text{Hom}_d(f)$.

f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

Nisan (1991): For every $1 \le i \le d$, The number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

Nisan (1991): For every $1 \le i \le d$, The number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$size(\mathcal{A}) = \sum_{i=1}^{d} rank(M_f(i)).$$

The ABP vs Formulas Question

The Question [Nis91]:

Is $VF_{nc} = VBP_{nc}$?

 $\label{eq:linear} \textbf{The Question} \ [Nis91]: \qquad \qquad \mbox{Is } VF_{nc} = VBP_{nc}?$

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

 $\label{eq:constraint} \textbf{The Question} \ [Nis91]: \qquad \qquad \mbox{Is } VF_{nc} = VBP_{nc}?$

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

Definitions

 $\label{eq:linear} \textbf{The Question} \ [Nis91]: \qquad \qquad \mbox{Is } VF_{nc} = VBP_{nc}?$

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

The Question [Nis91]: Is $VF_{nc} = VBP_{nc}$?

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^* X_2^* \cdots X_m^*$.

The Question [Nis91]: Is $VF_{nc} = VBP_{nc}$?

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^*X_2^*\cdots X_m^*$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

 $\label{eq:constraint} \mbox{The Question [Nis91]:} \qquad \qquad \mbox{Is VF}_{nc} = \mbox{VBP}_{nc}?$

Note: Every monomial in a non-commutative polynomial $f(x_1, \ldots, x_n)$ can be thought of as a word over the underlying variables $\{x_1, \ldots, x_n\}$.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^* X_2^* \cdots X_m^*$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between *abecedarian* formulas and ABPs.

Variables can be partitioned into buckets such that every variable in position *i* is from bucket *i*.

$$\operatorname{Det}_n(\mathsf{x}) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x)$

$$\operatorname{Perm}_n(\mathsf{x}) = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Buckets	Example
$[\mathbf{Y}]$ where $\mathbf{Y} = [\mathbf{y}]$	Det(x) $Parrow(x)$
$\{\lambda_i\}_{i\in[n]}$ where $\lambda_i = \{x_{ij}\}_{j\in[n]}$	$\operatorname{Det}_n(x), \operatorname{Perm}_n(x)$

$$ext{CHSYM}_{n,d}(\mathsf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x), Perm_n(x)$
Variables in every monomial arranged in non-decreasing order of bucket indices.

$$ext{CHSYM}_{n,d}(\mathsf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x), Perm_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x)$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$\mathrm{ESYM}_{n,d}(x) = \sum_{1 \le i_1 < \ldots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x), Perm_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x), \mathrm{ESYM}_{n,d}(x)$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$f(x) \xrightarrow{\text{Order the monomials}} f^{(nc)}(x)$$

Buckets	Example
$\{X_i\}_{i \in [n]}$ where $X_i = \{x_{ij}\}_{j \in [n]}$	$\mathbf{D} \neq (\mathbf{r})$ $\mathbf{D} = \mathbf{r} \cdot \mathbf{r}$
	$\operatorname{Det}_n(x), \operatorname{Perm}_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x), \mathrm{ESYM}_{n,d}(x)$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x)$, $Perm_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x), \mathrm{ESYM}_{n,d}(x)$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \ldots, x_n]$

Note:

$$ext{ESYM}_{n,d}^{(\text{ord})} = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1}^{(1)} \cdots x_{i_d}^{(d)}$$

is abecedarian w.r.t. both
$$\left\{X_k = \left\{x_i^{(k)}\right\}_{i \in [n]}\right\}_{k \in [d]}$$
 as well as $\left\{X_i = \left\{x_i^{(k)}\right\}_{k \in [d]}\right\}_{i \in [n]}$

Abecedarian Polynomials: Non-commutative polynomials in which variables in every monomial arranged in non-decreasing order of bucket indices.

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$Det_n(x)$, $Perm_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x), \mathrm{ESYM}_{n,d}(x)$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

Is
$$VF_{nc} = VBP_{nc}$$
?

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

Our Main Theorems:

1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(x)$ which is abecedarian with respect to a partition of size n such that

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(x)$ which is abecedarian with respect to a partition of size n such that
 - $f_{n,d}(x)$ can be computed by an abecedarian ABP of polynomial size;

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(x)$ which is abecedarian with respect to a partition of size n such that
 - $f_{n,d}(x)$ can be computed by an abecedarian ABP of polynomial size;
 - any abecedarian formula computing $f_{n,\log n}(x)$ must have size that is super-polynomial in n.

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(x)$ which is abecedarian with respect to a partition of size n such that
 - $f_{n,d}(x)$ can be computed by an abecedarian ABP of polynomial size;
 - any abecedarian formula computing $f_{n,\log n}(x)$ must have size that is super-polynomial in n.
- 2. Let f be an n-variate abecedarian polynomial with respect to a partition of size $O(\log n)$ that can be computed by an ABP of size poly(n).

$$\mathsf{Is}\;\mathsf{VF}_{\mathsf{nc}}=\mathsf{VBP}_{\mathsf{nc}}?$$

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(x)$ which is abecedarian with respect to a partition of size n such that
 - $f_{n,d}(x)$ can be computed by an abecedarian ABP of polynomial size;
 - any abecedarian formula computing $f_{n,\log n}(x)$ must have size that is super-polynomial in n.
- 2. Let f be an n-variate abecedarian polynomial with respect to a partition of size $O(\log n)$ that can be computed by an ABP of size poly(n). A super-polynomial lower bound against abecedarian formulas for f would imply that $VF_{nc} \neq VBP_{nc}$.

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the partition?

- 1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the partition?
- 2. Is there a polynomial *f* which is abecedarian with respect to a partition of small size such that *f* witnesses a separation between abecedarian formulas and ABPs?

- 1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the partition?
- 2. Is there a polynomial *f* which is abecedarian with respect to a partition of small size such that *f* witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that $\mathsf{VBP}_{\mathsf{nc}} \neq \mathsf{VF}_{\mathsf{nc}}.$

$$\mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

$$\mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

• Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.

$$\mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).

$$\mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(x) has size $n^{\Omega(\log \log n)}$.

$$\mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(x) has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes linked_CHSYM_{n,log n}(x).

The Abecedarian ABP Upper Bound

$$h_{n,d}(\mathsf{x}) = \mathsf{linked_CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} \mathsf{x}_{i_0,i_1} \cdot \mathsf{x}_{i_1,i_2} \cdots \mathsf{x}_{i_{d-1},i_d} \right)$$

The Abecedarian ABP Upper Bound

$$h_{n,d}(\mathsf{x}) = \mathsf{linked}_{-}\mathsf{CHSYM}_{n,d}(\mathsf{x}) = \sum_{i_0=1}^{n} \left(\sum_{i_0 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

10

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.

• Use the lower bound against homogeneous multilinear formulas for $ESYM_{n,n/2}(x)$ [HY11].

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.

- There is a small homogeneous multilinear formula computing $ESYM_{n,n/2}(x)$.
- Use the lower bound against homogeneous multilinear formulas for $ESYM_{n,n/2}(x)$ [HY11].

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.

$$ext{CHSYM}_{n,d}(\mathsf{x}) = \sum_{1 \leq i_1 \leq \dots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $CHSYM_{n/2,n/2}(x)$.
- There is a small homogeneous multilinear formula computing $\mathrm{ESYM}_{n,n/2}(x)$.
- Use the lower bound against homogeneous multilinear formulas for $ESYM_{n,n/2}(x)$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(x)$.

$$ext{CHSYM}_{n,d}(\mathsf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $CHSYM_{n/2,n/2}(x)$.
- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(x)$.
- Use the lower bound against homogeneous multilinear formulas for $ESYM_{n,n/2}(x)$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(x)$.
- There is a small homogeneous abecedarian formula computing $\operatorname{CHSYM}_{n/2,\log n}(x)$.

$$ext{CHSYM}_{n,d}(\mathsf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $CHSYM_{n/2,n/2}(x)$.
- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(x)$.
- Use the lower bound against homogeneous multilinear formulas for $\mathrm{ESYM}_{n,n/2}(x)$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(x)$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(x)$.
- There is a small homogeneous abecedarian formula computing $\operatorname{CHSYM}_{n/2,\log n}(x)$.

If there is a homogeneous structured abecedarian formula of size s computing $h_{n/2,d}(x)$ and a homogeneous abecedarian formula of size s' computing $\text{CHSYM}_{n/2,d'}(x)$, then there is a homogeneous abecedarian formula computing $\text{CHSYM}_{n/2,d\cdot d'}(x)$ of size $s \cdot s'$.

- There is a small homogeneous abecedarian formula computing $CHSYM_{n/2,n/2}(x)$.
- There is a small homogeneous multilinear formula computing $\mathrm{ESYM}_{n,n/2}(x)$.
- Use the lower bound against homogeneous multilinear formulas for $\mathrm{ESYM}_{n,n/2}(x)$ [HY11].

1. Let \mathcal{F} be a formula computing an abecedarian polynomial.

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert ${\mathcal F}$ into an abecedarian circuit ${\mathcal C}.$

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 3. Unravel C to get a syntactiaclly abecedarian formula \mathcal{F}' computing the same polynomial.

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 3. Unravel C to get a syntactiaclly abecedarian formula \mathcal{F}' computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to *multilinearise* formulas. This is why the transformation is efficient only when the number of buckets in the partition is small.

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

- 1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.
- 2. $abcd VF_{nc} \subseteq abcd VBP_{nc} \subsetneq abcd VP_{nc}$.
- 1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.
- 2. $\mathsf{abcd} \mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{abcd} \mathsf{VBP}_{\mathsf{nc}} \subsetneq \mathsf{abcd} \mathsf{VP}_{\mathsf{nc}}$.
- 3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies that there is an abcd-formula computing f of size $s^{O(\log d)}$.

- 1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.
- 2. $\mathsf{abcd} \mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{abcd} \mathsf{VBP}_{\mathsf{nc}} \subsetneq \mathsf{abcd} \mathsf{VP}_{\mathsf{nc}}$.
- 3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies that there is an abcd-formula computing f of size $s^{O(\log d)}$.
- n^{ω(1)} lower bound against homogeneous formulas for linked_CHSYM_{n,log n}(x) or even IMM_{n,log n}(x) implies that VF_{nc} ≠ VBP_{nc}.

- 1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.
- 2. $\mathsf{abcd} \mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{abcd} \mathsf{VBP}_{\mathsf{nc}} \subsetneq \mathsf{abcd} \mathsf{VP}_{\mathsf{nc}}$.
- 3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies that there is an abcd-formula computing f of size $s^{O(\log d)}$.
- 4. $n^{\omega(1)}$ lower bound against homogeneous formulas for linked_CHSYM_{n,log n}(x) or even IMM_{n,log n}(x) implies that VF_{nc} \neq VBP_{nc}.

Thank you!