
Separating ABPs and some Structured Formulas in the

Non-Commutative Setting

Prerona Chatterjee
Tata Institute of Fundamental Research, Mumbai

July 20, 2021

Algebraic Circuits and Formulas

+

× ×

+ + +

x1 x2 x3

α1 α2

C

VP
VP ⊇ VF +

× ×

+ + + +

x1 x2 x2 x3 x1 x2 x1 x3

α1 α2

F
VF

1

Algebraic Circuits and Formulas

+

× ×

+ + +

x1 x2 x3

α1 α2

C

VP
VP ⊇ VF

+

× ×

+ + + +

x1 x2 x2 x3 x1 x2 x1 x3

α1 α2

F

VF

1

Algebraic Circuits and Formulas

+

× ×

+ + +

x1 x2 x3

α1 α2

C
VP

VP ⊇ VF

+

× ×

+ + + +

x1 x2 x2 x3 x1 x2 x1 x3

α1 α2

F

VF

1

Algebraic Circuits and Formulas

+

× ×

+ + +

x1 x2 x3

α1 α2

C
VP

VP ⊇ VF

+

× ×

+ + + +

x1 x2 x2 x3 x1 x2 x1 x3

α1 α2

F
VF

1

Algebraic Circuits and Formulas

+

× ×

+ + +

x1 x2 x3

α1 α2

C
VP

VP ⊇ VF +

× ×

+ + + +

x1 x2 x2 x3 x1 x2 x1 x3

α1 α2

F
VF

1

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc.

So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆ VBPnc ⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆ VBPnc ⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.

2

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Algebraic Branching Programs

s

t

• Label on each edge: Homogeneous linear forms in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d , f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

3

Nisan’s Characterisation
M

on
om

ia
ls

of
d

eg
re

e
i

Monomials of degree d − i

m2

m1

coeffm1·m2 (f)

f is a polynomial of degree d .

For every 1 ≤ i ≤ d , consider the matrix

Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d ,

The number of vertices in the i-th layer of

the smallest ABP computing f is equal to

the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

4

Nisan’s Characterisation
M

on
om

ia
ls

of
d

eg
re

e
i

Monomials of degree d − i

m2

m1

coeffm1·m2 (f)

f is a polynomial of degree d .

For every 1 ≤ i ≤ d , consider the matrix

Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d ,

The number of vertices in the i-th layer of

the smallest ABP computing f is equal to

the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

4

Nisan’s Characterisation
M

on
om

ia
ls

of
d

eg
re

e
i

Monomials of degree d − i

m2

m1

coeffm1·m2 (f)

f is a polynomial of degree d .

For every 1 ≤ i ≤ d , consider the matrix

Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d ,

The number of vertices in the i-th layer of

the smallest ABP computing f is equal to

the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

4

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions

Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

The ABP vs Formulas Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗1 X
∗
2 · · ·X ∗m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

5

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Variables can be partitioned into buckets such that every variable in position i is from bucket i .

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Variables can be partitioned into buckets such that every variable in position i is from bucket i .

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Permn(x) =
∑
σ∈Sn

x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

ESYMn,d(x) =
∑

1≤i1<...<id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

f (x)
Order the monomials−−−−−−−−−−−−→

in ascending order
f (nc)(x)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

6

Abecedarian Polynomials

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

Note:

ESYM
(ord)
n,d =

∑
1≤i1<...<id≤n

x
(1)
i1
· · · x (d)

id

is abecedarian w.r.t. both

{
Xk =

{
x

(k)
i

}
i∈[n]

}
k∈[d]

as well as

{
Xi =

{
x

(k)
i

}
k∈[d]

}
i∈[n]

.

6

Abecedarian Polynomials

Abecedarian Polynomials: Non-commutative polynomials in which variables in every monomial

arranged in non-decreasing order of bucket indices.

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes

them naturally compute abecedarian polynomials.

6

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n).

A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

What was known and what we show

Is VFnc = VBPnc?

[LLS19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:

1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian with

respect to a partition of size n such that

• fn,d(x) can be computed by an abecedarian ABP of polynomial size;

• any abecedarian formula computing fn,log n(x) must have size that is super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a partition of size O(log n)

that can be computed by an ABP of size poly(n). A super-polynomial lower bound against

abecedarian formulas for f would imply that VFnc 6= VBPnc.

7

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian

formula without much blow-up in size, irrespective of the size of the partition?

2. Is there a polynomial f which is abecedarian with respect to a partition of small size such

that f witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian

formula without much blow-up in size, irrespective of the size of the partition?

2. Is there a polynomial f which is abecedarian with respect to a partition of small size such

that f witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian

formula without much blow-up in size, irrespective of the size of the partition?

2. Is there a polynomial f which is abecedarian with respect to a partition of small size such

that f witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian

formula without much blow-up in size, irrespective of the size of the partition?

2. Is there a polynomial f which is abecedarian with respect to a partition of small size such

that f witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8

The Explicit Statement for the Separation

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

9

The Explicit Statement for the Separation

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.

• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

9

The Explicit Statement for the Separation

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

9

The Explicit Statement for the Separation

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

9

The Explicit Statement for the Separation

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

9

The Abecedarian ABP Upper Bound

hn,d(x) = linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

s1

...

...

...

sn

0

· · ·

· · ·

· · ·

· · ·

...

i

...

...

...

k

...

i

...

j

...

k + 1

· · ·

· · ·

· · ·

· · ·

t1

...

...

...

tn

d

xi,i

xi,j

1

1

1

1

10

The Abecedarian ABP Upper Bound

hn,d(x) = linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

s1

...

...

...

sn

0

· · ·

· · ·

· · ·

· · ·

...

i

...

...

...

k

...

i

...

j

...

k + 1

· · ·

· · ·

· · ·

· · ·

t1

...

...

...

tn

d

xi,i

xi,j

1

1

1

1

10

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

If there is a homogeneous structured abecedarian formula of size s computing hn/2,d(x) and a

homogeneous abecedarian formula of size s ′ computing CHSYMn/2,d′(x), then there is a

homogeneous abecedarian formula computing CHSYMn/2,d·d′(x) of size s · s ′.

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

11

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.

3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

12

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.

3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

12

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.

3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

12

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.

3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

12

Other Observations

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

2. abcd− VFnc ⊆ abcd− VBPnc (abcd− VPnc.

3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies

that there is an abcd-formula computing f of size sO(log d).

4. nω(1) lower bound against homogeneous formulas for linked CHSYMn,log n(x) or even

IMMn,log n(x) implies that VFnc 6= VBPnc.

Thank you!

13

Other Observations

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

2. abcd− VFnc ⊆ abcd− VBPnc (abcd− VPnc.

3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies

that there is an abcd-formula computing f of size sO(log d).

4. nω(1) lower bound against homogeneous formulas for linked CHSYMn,log n(x) or even

IMMn,log n(x) implies that VFnc 6= VBPnc.

Thank you!

13

Other Observations

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

2. abcd− VFnc ⊆ abcd− VBPnc (abcd− VPnc.

3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies

that there is an abcd-formula computing f of size sO(log d).

4. nω(1) lower bound against homogeneous formulas for linked CHSYMn,log n(x) or even

IMMn,log n(x) implies that VFnc 6= VBPnc.

Thank you!

13

Other Observations

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

2. abcd− VFnc ⊆ abcd− VBPnc (abcd− VPnc.

3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies

that there is an abcd-formula computing f of size sO(log d).

4. nω(1) lower bound against homogeneous formulas for linked CHSYMn,log n(x) or even

IMMn,log n(x) implies that VFnc 6= VBPnc.

Thank you!

13

Other Observations

1. Circuits and ABPs computing abecedarian polynomials can be made abecedarian.

2. abcd− VFnc ⊆ abcd− VBPnc (abcd− VPnc.

3. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s implies

that there is an abcd-formula computing f of size sO(log d).

4. nω(1) lower bound against homogeneous formulas for linked CHSYMn,log n(x) or even

IMMn,log n(x) implies that VFnc 6= VBPnc.

Thank you!

13

