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The Non-Commutative Setting

f (x , y) = (x + y)2 = (x + y)× (x + y) = x2 + xy + yx + y2 6= x2 + 2xy + y2
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Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside VPnc?

What about VFnc?

Circuits [Str73, BS83]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nis91]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc 6= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc 6= VPnc.
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The ABP vs Formula Question

The Question [Nis91]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

X1

= {x1} X2 = {x2}

x1x1x2 x2 x1x2x1

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.
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Proof Idea

The Statement: There is an explicit n2-variate, degree-d abcd-polynomial fn,d(x) such that

• abcd-ABP Upper Bound: the abcd-ABP complexity of fn,d(x) is Θ(nd);

• abcd-Formula Lower Bound: the abcd-formula complexity of fn,log n(x) is nΘ(log log n).

The Proof Idea:

1. Use low degree to make the abcd-formula structured.

2. Use the structured formula to amplify degree while keeping the structure intact.

3. Convert the structured abcd-formula into a homogeneous multilinear formula.

4. Use known lower bound against homogeneous multilinear formulas [HY11].
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Concluding Remarks

Studying abcd-formulas might be enough: For any n-variate polynomial that is abecedarian

with respect to a partition of size O(log n), if it can be computed efficiently by formulas, then

they can also be computed efficiently by abcd-formulas.

Super-polynomial separation between homogeneous formulas and ABPs [LST21]:

There is an n2-variate degree-n polynomial that can be computed by a homogeneous ABP of

size Θ(n2) but any homogeneous formula computing it must have size nΩ(log log n).

Question: Can ideas from [LST21] and this paper be combined to answer Nisan’s question?
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Thank You !

Webpage: preronac.bitbucket.io

Email: prerona.ch@gmail.com
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