Separating ABPs and some Structured Formulas in the Non-Commutative Setting

Prerona Chatterjee
Tata Institute of Fundamental Research, Mumbai

July 21, 2021

Algebraic Circuits and Formulas

The Non-Commutative Setting

$$
f(x, y)=(x+y)^{2}=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y)^{2}=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y)^{2}=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

$$
\mathrm{VP}_{\mathrm{nc}} \supseteq \mathrm{VF}_{\mathrm{nc}}
$$

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$?

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$.

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$. So, $\mathrm{VF}_{\mathrm{nc}} \neq \mathrm{VP} P_{\mathrm{nc}}$.

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$. So, $\mathrm{VF}_{\mathrm{nc}} \neq \mathrm{VP} P_{\mathrm{nc}}$.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$. So, $\mathrm{VF}_{\mathrm{nc}} \neq \mathrm{VP} P_{\mathrm{nc}}$.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

$$
\mathrm{VBP}_{\mathrm{nc}}
$$

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$. So, $\mathrm{VF}_{\mathrm{nc}} \neq \mathrm{VP} \mathrm{Pc}_{\mathrm{nc}}$.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

$$
\mathrm{VF}_{\mathrm{nc}} \subseteq \mathrm{VBP}_{\mathrm{nc}} \subseteq \mathrm{VP}_{\mathrm{nc}}
$$

Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside $\mathrm{VP}_{\mathrm{nc}}$? What about $\mathrm{VF}_{\mathrm{nc}}$?

Circuits [Str73, BS83]: $\Omega(n \log d)$ for an n-variate, degree d polynomial.
Formulas [Nis91]: $2^{\Omega(n)}$ for a 2-variate, degree n polynomial in $\mathrm{VP}_{\mathrm{nc}}$. So, $\mathrm{VF}_{\mathrm{nc}} \neq \mathrm{VP} \mathrm{Pc}_{\mathrm{nc}}$.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

$$
\mathrm{VF}_{\mathrm{nc}} \subseteq \mathrm{VBP}_{\mathrm{nc}} \subseteq \mathrm{VP}_{\mathrm{nc}}
$$

So Nisan actually showed that $\mathrm{VBP}_{\mathrm{nc}} \neq \mathrm{VP}_{\mathrm{nc}}$.

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$. X_{1}

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

$$
\begin{array}{ll}
X_{1} & X_{2}
\end{array}
$$

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

$$
X_{1}=\left\{x_{1}\right\} \quad X_{2}=\left\{x_{2}\right\}
$$

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

$$
X_{1}=\left\{x_{1}\right\} \quad X_{2}=\left\{x_{2}\right\} \quad x_{1} x_{1} x_{2}
$$

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

$$
X_{1}=\left\{x_{1}\right\} \quad X_{2}=\left\{x_{2}\right\} \quad x_{1} x_{1} x_{2} \quad x_{2}
$$

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

$$
X_{1}=\left\{x_{1}\right\} \quad X_{2}=\left\{x_{2}\right\} \quad x_{1} x_{1} x_{2} \quad x_{2} \quad x_{1} x_{2} x_{1}
$$

The ABP vs Formula Question

The Question [Nis91]: Is $\mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}}$?

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

The ABP vs Formula Question

$$
\text { The Question [Nis91]: } \quad \text { Is } \mathrm{VF}_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}} \text { ? }
$$

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

The ABP vs Formula Question

$$
\text { The Question [Nis91]: } \quad \text { Is } V F_{\mathrm{nc}}=\mathrm{VBP}_{\mathrm{nc}} \text { ? }
$$

Note: Every monomial in a non-commutative polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be thought of as a word over the underlying variables $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definitions Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of the variables into buckets.
Abecedarian Polynomials: Polynomials in which every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\Theta(\log \log n)}$.

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathrm{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\ominus(\log \log n)}$.

The Proof Idea:

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathrm{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\Theta(\log \log n)}$.

The Proof Idea:

4. Use known lower bound against homogeneous multilinear formulas [HY11].

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\Theta(\log \log n)}$.

The Proof Idea:

1. Use low degree to make the abcd-formula structured.
2. Use known lower bound against homogeneous multilinear formulas [HY11].

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\ominus(\log \log n)}$.

The Proof Idea:

1. Use low degree to make the abcd-formula structured.
2. Use the structured formula to amplify degree while keeping the structure intact.
3. Use known lower bound against homogeneous multilinear formulas [HY11].

Proof Idea

The Statement: There is an explicit n^{2}-variate, degree- d abcd-polynomial $f_{n, d}(\mathbf{x})$ such that

- abcd-ABP Upper Bound: the abcd-ABP complexity of $f_{n, d}(\mathbf{x})$ is $\Theta(n d)$;
- abcd-Formula Lower Bound: the abcd-formula complexity of $f_{n, \log n}(\mathbf{x})$ is $n^{\ominus(\log \log n)}$.

The Proof Idea:

1. Use low degree to make the abcd-formula structured.
2. Use the structured formula to amplify degree while keeping the structure intact.
3. Convert the structured abcd-formula into a homogeneous multilinear formula.
4. Use known lower bound against homogeneous multilinear formulas [HY11].

Concluding Remarks

Studying abcd-formulas might be enough: For any n-variate polynomial that is abecedarian with respect to a partition of size $O(\log n)$, if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

Concluding Remarks

Studying abcd-formulas might be enough: For any n-variate polynomial that is abecedarian with respect to a partition of size $O(\log n)$, if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

Super-polynomial separation between homogeneous formulas and ABPs [LST21]:
There is an n^{2}-variate degree- n polynomial that can be computed by a homogeneous ABP of size $\Theta\left(n^{2}\right)$ but any homogeneous formula computing it must have size $n^{\Omega(\log \log n)}$.

Concluding Remarks

Studying abcd-formulas might be enough: For any n-variate polynomial that is abecedarian with respect to a partition of size $O(\log n)$, if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

Super-polynomial separation between homogeneous formulas and ABPs [LST21]:
There is an n^{2}-variate degree- n polynomial that can be computed by a homogeneous ABP of size $\Theta\left(n^{2}\right)$ but any homogeneous formula computing it must have size $n^{\Omega(\log \log n)}$.

Question: Can ideas from [LST21] and this paper be combined to answer Nisan's question?

Thank You!

Webpage: preronac.bitbucket.io
Email: prerona.ch@gmail.com

