# Separating ABPs and some Structured Formulas in the Non-Commutative Setting

**Prerona Chatterjee** 

Tata Institute of Fundamental Research, Mumbai

July 21, 2021













## The Non-Commutative Setting

$$f(x,y) = (x+y)^2 = (x+y) \times (x+y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

## The Non-Commutative Setting

$$f(x, y) = (x + y)^{2} = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$



## The Non-Commutative Setting

$$f(x, y) = (x + y)^{2} = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$



Is there an explicit polynomial that is outside  $\mathsf{VP}_{\mathsf{nc}}?$ 

Is there an explicit polynomial that is outside  $VP_{nc}$ ?

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>.

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>. So, VF<sub>nc</sub>  $\neq$  VP<sub>nc</sub>.

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>. So, VF<sub>nc</sub>  $\neq$  VP<sub>nc</sub>.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>. So, VF<sub>nc</sub>  $\neq$  VP<sub>nc</sub>.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VBP}_{\mathsf{nc}}$ 

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>. So, VF<sub>nc</sub>  $\neq$  VP<sub>nc</sub>.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$ 

**Circuits** [Str73, BS83]:  $\Omega(n \log d)$  for an *n*-variate, degree *d* polynomial.

**Formulas** [Nis91]:  $2^{\Omega(n)}$  for a 2-variate, degree *n* polynomial in VP<sub>nc</sub>. So, VF<sub>nc</sub>  $\neq$  VP<sub>nc</sub>.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$ 

So Nisan actually showed that  $VBP_{nc} \neq VP_{nc}$ .

## The ABP vs Formula Question

The Question [Nis91]:

Is  $VF_{nc} = VBP_{nc}$ ?

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

#### Definitions

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

 $\label{eq:starset} \textbf{The Question} \ [Nis91]: \qquad \qquad \mbox{Is } VF_{nc} = VBP_{nc}?$ 

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

$$X_1 X_2$$

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

$$X_1 = \{x_1\} \qquad X_2 = \{x_2\}$$

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

$$X_1 = \{x_1\}$$
  $X_2 = \{x_2\}$   $x_1x_1x_2$ 

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

$$X_1 = \{x_1\}$$
  $X_2 = \{x_2\}$   $x_1x_1x_2$   $x_2$ 

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

$$X_1 = \{x_1\} \qquad X_2 = \{x_2\} \qquad x_1 x_1 x_2 \qquad x_2 \qquad x_1 x_2 x_1$$

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form  $X_1^*X_2^*\cdots X_m^*$ .

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

**Note**: Every monomial in a non-commutative polynomial  $f(x_1, \ldots, x_n)$  can be thought of as a word over the underlying variables  $\{x_1, \ldots, x_n\}$ .

**Definitions** Let  $\{X_1, \ldots, X_m\}$  be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form  $X_1^* X_2^* \cdots X_m^*$ . Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

#### Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

• abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

The Proof Idea:

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

The Proof Idea:

4. Use known lower bound against homogeneous multilinear formulas [HY11].

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

#### The Proof Idea:

1. Use low degree to make the abcd-formula structured.

4. Use known lower bound against homogeneous multilinear formulas [HY11].

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

#### The Proof Idea:

- 1. Use low degree to make the abcd-formula structured.
- 2. Use the structured formula to amplify degree while keeping the structure intact.
- 4. Use known lower bound against homogeneous multilinear formulas [HY11].

- abcd-ABP Upper Bound: the abcd-ABP complexity of  $f_{n,d}(\mathbf{x})$  is  $\Theta(nd)$ ;
- abcd-Formula Lower Bound: the abcd-formula complexity of  $f_{n,\log n}(\mathbf{x})$  is  $n^{\Theta(\log \log n)}$ .

#### The Proof Idea:

- 1. Use low degree to make the abcd-formula structured.
- 2. Use the structured formula to amplify degree while keeping the structure intact.
- 3. Convert the structured abcd-formula into a homogeneous multilinear formula.
- 4. Use known lower bound against homogeneous multilinear formulas [HY11].

**Studying abcd-formulas might be enough**: For any *n*-variate polynomial that is abecedarian with respect to a partition of size  $O(\log n)$ , if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

**Studying abcd-formulas might be enough**: For any *n*-variate polynomial that is abecedarian with respect to a partition of size  $O(\log n)$ , if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

**Super-polynomial separation between homogeneous formulas and ABPs** [LST21]: There is an  $n^2$ -variate degree-*n* polynomial that can be computed by a homogeneous ABP of size  $\Theta(n^2)$  but any homogeneous formula computing it must have size  $n^{\Omega(\log \log n)}$ . **Studying abcd-formulas might be enough**: For any *n*-variate polynomial that is abecedarian with respect to a partition of size  $O(\log n)$ , if it can be computed efficiently by formulas, then they can also be computed efficiently by abcd-formulas.

**Super-polynomial separation between homogeneous formulas and ABPs** [LST21]: There is an  $n^2$ -variate degree-*n* polynomial that can be computed by a homogeneous ABP of size  $\Theta(n^2)$  but any homogeneous formula computing it must have size  $n^{\Omega(\log \log n)}$ .

Question: Can ideas from [LST21] and this paper be combined to answer Nisan's question?

# Thank You !

Webpage: preronac.bitbucket.io Email: prerona.ch@gmail.com