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A typical non-lockdown workday
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A typical non-lockdown workday

* Top view of city roadmap.
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* @Given: Travel time on each
road is a linear function of
time.

* Find: Shortest path from s
tot at starttime x = 10.




Edge weights: linear vs quadratic

* Earlier work: Computing with linear edge weights is “easy” or efficient.

*  Our work: Computing with quadratic edge weights is “hard” or intractable.
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Edge weights: linear vs quadratic
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Two settings: classical, pre-processing

Finding the shortest path in real time: given a graph and a time x,
find the shortest path to reach t, when departing from s at time x.

In most practical scenarios, the layout of the road does not change
on a day-to-day basis. Thus, we can pre-process the graph and store
all the relevant information beforehand.

Storage and retrieval of shortest paths: store all possible shortest
paths, and quickly retrieve the shortest path at a given start time x.



Earlier work

Theorem [Foschini, Hershberger, Suri, 2011] (Classical setting) If the

edge weights are monotonically increasing linear functions, then the
shortest path can be computed in polynomial time.

Theorem [Foschini, Hershberger, Suri, 2011] (Pre-processing setting) If

the edge weights are monotonically increasing linear functions, then
the shortest path can be retrieved in polylogarithmic time.



Why monotonically increasing?
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Our results

Classical setting

* Theorem If the edge weights are linear functions, then the shortest
path can be computed in polynomial time.

 Theorem If the edge weights are quadratic functions, then the shortest
path cannot be computed in polynomial time, assuming P=NP.




Our results

Pre-processing setting

Theorem If the edge weights are linear functions, then the shortest
path can always be retrieved in polylogarithmic time.

Theorem If the edge weights are quadratic functions, then there are
graphs in which the shortest path cannot be retrieved in sublinear time.
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