New Lower Bounds against Homogeneous
 Non-Commutative Circuits

Prerona Chatterjee [joint work with Pavel Hrubeš (Institute of Mathematics, CAS)]
Tel Aviv University

July, 19, 2023

Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

Objects of Study

Polynomials over n variables of degree d.

Algebraic Circuits

Objects of Study

Polynomials over n variables of degree d.

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Algebraic Circuits

Objects of Study

Polynomials over n variables of degree d.

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?
[Nisan]
$\mathrm{VBP}_{\mathrm{nc}} \subsetneq \mathrm{VP}_{\mathrm{nc}}$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

$$
\begin{array}{cc}
\text { [Nisan] } & \text { [Tavenas-Limaye-Srinivasan] } \\
\mathrm{VBP}_{\mathrm{nc}} \subsetneq \mathrm{VP}_{\mathrm{nc}} & \mathrm{VF}_{\mathrm{nc}, \text {, hom }} \subsetneq \mathrm{VBP}_{\mathrm{nc}, \text { hom. }} .
\end{array}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?
[Nisan]
$\mathrm{VBP}_{\mathrm{nc}} \subsetneq \mathrm{VP}_{\mathrm{nc}}$
[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}_{\mathrm{nc}, \text { hom }} .
$$

[Carmossino-Impagliazzo-Lovett-Mihajlin]

$$
\Omega\left(n^{\frac{\omega}{2}+\varepsilon}\right) \text { for } f_{n, c} \Longrightarrow \Omega\left(2^{n}\right) \text { for } f_{n, n}^{\prime} .
$$

Our Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Our Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Our Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

Our Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Our Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.
Further, there is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes $\operatorname{OSym}_{n, n / 2}(\mathbf{x})$.
f : Hom. non-commutative polynomial of degree d.

Our Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Our Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1}$

Our Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1} \Longrightarrow f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1}$.

Our Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1} \Longrightarrow f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1}$.

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

Our Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1} \Longrightarrow f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1}$.

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

Main Observation: For any f that is computable by a homogeneous non-commutative circuit of size s,

$$
\mu(f) \leq s+1 .
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right)
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

Idea: Use induction

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

Idea: Use induction

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

Idea: Use induction

$$
\left\{g^{(0)}, \ldots, g^{\left(d_{1}-1\right)}, g^{\left(d_{1}\right)}, g^{\left(d_{1}+1\right)}, \ldots, g^{\left(d_{1}+d_{2}\right)}\right\}
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{gathered}
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
\mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{gathered}
$$

Idea: Use induction

$$
\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})
$$

$$
\left\{g^{(0)}, \ldots, g^{\left(d_{1}-1\right)}, g^{\left(d_{1}\right)}, g^{\left(d_{1}+1\right)}, \ldots, g^{\left(d_{1}+d_{2}\right)}\right\}
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

Idea: Use induction

$$
\left\{g^{(0)}, \ldots, g^{\left(d_{1}-1\right)}, g^{\left(d_{1}\right)}, g^{\left(d_{1}+1\right)}, \ldots, g^{\left(d_{1}+d_{2}\right)}\right\}
$$

$$
\left\{\varepsilon_{1}^{(0)}, \ldots, g_{1}^{\left(d_{1}\right)}\right\}\left\{\varepsilon_{2}^{(0)}, \ldots, g_{2}^{\left(d_{2}\right)}\right\}
$$

$$
\begin{gathered}
f=x_{1} \cdots x_{n} \\
\Downarrow \\
\mu(f)=n+1 .
\end{gathered}
$$

A simple proof of an obvious fact

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\begin{aligned}
& \mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) . \\
& \mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1
\end{aligned}
$$

Idea: Use induction

$$
\left\{g^{(0)}, \ldots, g^{\left(d_{1}-1\right)}, g^{\left(d_{1}\right)}, g^{\left(d_{1}+1\right)}, \ldots, g^{\left(d_{1}+d_{2}\right)}\right\}
$$

$$
\left\{g_{1}^{(0)}, \ldots, g_{1}^{\left(d_{1}\right)}\right\} \quad\left\{g_{2}^{(0)}, \ldots, g_{2}^{\left(d_{2}\right)}\right\}
$$

$$
\begin{gathered}
f=x_{1} \cdots x_{n} \\
\Downarrow \\
\mu(f)=n+1
\end{gathered}
$$

Therefore, $\mu\left(\mathcal{C}_{f}\right) \geq n$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

In this case, if \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu_{\ell}(\mathcal{C}) \leq O(s \log d)$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

In this case, if \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu_{\ell}(\mathcal{C}) \leq O(s \log d)$.
Therefore all we need is a monomial, f, over $\left\{x_{0}, x_{1}\right\}$ of degree d such that $\mu_{\ell}(f) \geq \Omega(d)$.

A monomial with high measure

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

A monomial with high measure

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.

A monomial with high measure

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

A monomial with high measure

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

How can non-homogeneity possibly help in computing a monomial?

A monomial with high measure

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

- A similar result is true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Note: $f=x_{1} B_{d}\left(x_{0}^{(1)}, x_{1}^{(1)}\right)+\cdots+x_{n} B_{d}\left(x_{0}^{(n)}, x_{1}^{(n)}\right)$ already (almost) has the required property.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Therefore we have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Step 2: Write each of $\left\{\partial_{i} f\right\}_{i}$ using $\partial_{v} f^{\prime}$ and $\left\{\partial_{i} f^{\prime}\right\}_{i}$.

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Step 2: Write each of $\left\{\partial_{i} f\right\}_{i}$ using $\partial_{v} f^{\prime}$ and $\left\{\partial_{i} f^{\prime}\right\}_{i}$. Add (the ≤ 10 extra) edges accordingly.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.
Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right) . \quad$ Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.
Lemma: If there is a w-homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a \mathbf{w}-homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{X_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{X_{n}} f\right\}$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.
Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.
Lemma: If there is a w-homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a \mathbf{w}-homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{X_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{X_{n}} f\right\}$.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Chain rules can be defined formally as well.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous NC circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{1, \chi_{1}} f, \ldots, \partial_{1, \chi_{n}} f\right\}$.

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

Upper Bounds

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

- There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

- There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.
- This shows that our lower bound is tight in the homogeneous setting.

Upper Bounds

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

- There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.
- This shows that our lower bound is tight in the homogeneous setting.
- There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

Upper Bounds

$$
f=\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

- There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.
- This shows that our lower bound is tight in the homogeneous setting.
- There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.
- This shows a super-linear separation between homogenous and non-homogeneous non-commutative circuits.

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n \quad, D \quad, s^{\prime} \quad\right)
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n \quad, D \quad, s^{\prime} \quad=n^{c}\right)
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D \quad, s^{\prime} \quad=n^{c}\right)
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime} \quad=n^{c}\right)
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

Our Result on $(N, d)+[$ CILM $]$
$s=N d$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

Our Result on $(N, d)+[$ CILM $]$

$$
s=N d \Longrightarrow N^{\varepsilon}=d
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

Our Result on $(N, d)+[$ CILM $]$

$$
s=N d \Longrightarrow N^{\varepsilon}=d \Longrightarrow s^{\prime}=d
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

$$
\begin{array}{lc}
\underline{\text { Our Result on }(N, d)+[\text { CILM }]} & \text { Our result on }(n, D) \\
s=N d \Longrightarrow N^{\varepsilon}=d \Longrightarrow s^{\prime}=d & n D
\end{array}
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

$$
\begin{array}{ll}
\underline{\text { Our Result on }(N, d)+[\text { CILM }]} & \underline{\text { Our result on }(n, D)} \\
s=N d \Longrightarrow N^{\varepsilon}=d \Longrightarrow s^{\prime}=d & \frac{c n}{\varepsilon} d=n D
\end{array}
$$

[CILM] and how our result fits in

Results of [Carmossino-Impagliazzo-Lovett-Mihajlin]

- Super-linear lower bound for an N-variate, constant degree polynomial implies exponential lower bound for a related polynomial.
- Super-linear lower bounds $\left(N^{\omega / 2+\varepsilon}\right)$ for N-variate, degree-poly (N) polynomial implies arbitrarily good polynomial lower bounds $\left(n^{c}\right)$ for a related n-variate polynomial.

$$
\left(N, d, s=N^{1+\varepsilon}\right) \longrightarrow\left(n=N^{\varepsilon / c}, D=c d / \varepsilon, s^{\prime}=N^{\varepsilon}=n^{c}\right)
$$

$$
\begin{array}{lll}
\underline{\text { Our Result on }(N, d)+[\text { CILM }]} & < & \underline{\text { Our result on }(n, D)} \\
s=N d \Longrightarrow N^{\varepsilon}=d \Longrightarrow s^{\prime}=d & < & \frac{c n}{\varepsilon} d=n D
\end{array}
$$

Open Questions

- Can we show an $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?

Open Questions

- Can we show an $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show an $\Omega(n d)$ lower bound for a constant variate polynomial?

Open Questions

- Can we show an $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show an $\Omega(n d)$ lower bound for a constant variate polynomial?

Conjecture: If

$$
f=x_{1} x_{0}^{d-1} f_{1}+x_{0} x_{1} x_{0}^{d-2} f_{2}+\cdots+x_{0}^{d-1} x_{1} f_{d}
$$

can be computed by a non-commutative circuit of size s, then $\left\{f_{1}, \ldots, f_{d}\right\}$ can be simultaneously computed by a non-commutative circuit of size $O(s+d)$.

Open Questions

- Can we show an $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show an $\Omega(n d)$ lower bound for a constant variate polynomial?

Conjecture: If

$$
f=x_{1} x_{0}^{d-1} f_{1}+x_{0} x_{1} x_{0}^{d-2} f_{2}+\cdots+x_{0}^{d-1} x_{1} f_{d}
$$

can be computed by a non-commutative circuit of size s, then $\left\{f_{1}, \ldots, f_{d}\right\}$ can be simultaneously computed by a non-commutative circuit of size $O(s+d)$.

If true, then the answer to the second question is "yes".

Thank you!

