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VP: Class of efficiently computable polynomials.

VNP: Class of explicit polynomials.

|VP # VNP | <= [P # NP|

What about classes beyond VNP?
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Is there a more algebraic definition?

f(x, b)
VPROJ = polynomials efficiently computable by
algebraic circuits with projection gates.
[Poizat]: VPROJ = VPSPACE.
f(x,z)
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Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

f(x,0) + f(x,1) f(x,0) x f(x,1) f = Qs Q. Clx.2]

sum, TQAC = polynomials efficiently computable by
totally quantified algebraic circuits.

F(x,2) F(x, 2) [Malod]: TQAC = VPSPACE.
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In Summary

e There are various definitions of VPSPACE, all of which happen to be equivalent.

e There is no restriction on the degree, but we focus on VPSPACE,,.

[Koiran-Perifel]: VP # VPSPACE, = VP = VNP or P/ poly # PSPACE/ poly.

It would be interesting to study classes beyond VNP in the algebraic world.

e Connections with the boolean world?

e Connections to algebraic pseudorandomness.

Can we prove lower bounds in the monotone setting?
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Our Results

Polynomials have bounded degree throughout

[This Work]

[Yehudayoff] A

mVP ———>—mVNP -->- mVPquant — > rT]\/I:)sum,prod - > mVPproj

® mVPguane = MVNP if and only if all homogeneous components of polynomials in mVPqyant
are contained in mVPgyant. In particular, hom(mVPguant) € mVNP.

® MVPguant = MVPgum prod if and only if mVPgane is closed under compositions.
® MVPguant # MVPpr;.
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Monotone VPSPACE

Properties of mVP,,;
e The Permanent Family is contained in mVP;.
o mVP; is closed under taking compositions.

@ e Homogeneous components of polynomials in mVP,; are also
contained in mVP ;.

: Defining mVPSPACE

@ @ ...... @ A polynomial family {f,}, is contained in mVPSPACE if f, is
computable by an algebraic circuit with projection gates of size

poly(n). The degree of f, need not be bounded by poly(n).
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Open Questions |

o If f € mVPguant, then

fx)= > Ar(w=h) gi(x,w=h)

be{0,1}v

where gr € mVP but A¢ can potentially have large size and degree.
Is there a polynomial B(w) of small degree and small size such that

Af(b) = B(b) for every b € {0,1}"!?

e VPH=Q:1Q2---Qn C(x,2z) for constantly many alternations?
Can we show that VP = VNP implies that VPH = VP?
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7-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose f(x,y) is a bivariate polynomial that can be written as 3, I1;(q Tii(x, y), where
each T;; has sparsity at most p. Then the Newton polygon of f has poly(s, r, p) vertices.

Transparent Polynomials [Hrubes - Yehudayoff]
Polynomials that can be projected to bivariates in such a way that all of their monomials
become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such
polynomial be in VP?

[HY]: There is no transparent polynomial with super-poly support in mVP.

[This work]: There is no transparent polynomial with super-poly support in mVPgum prod-

Can we extend this to mVP,.,;?
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