Monotone Classes Beyond VNP

Prerona Chatterjee [with Kshitij Gajjar (IIT Jodhpur) and Anamay Tengse (Reichman University)] Tel Aviv University

December 18, 2023

1

$\uparrow \qquad \alpha_1(x_1+x_2)(x_3+\alpha)+(x_1+x_2)(\alpha_2x_2+\alpha)$

VP: Class of efficiently computable polynomials.

VNP: Class of explicit polynomials.

VP: Class of efficiently computable polynomials.

VNP: Class of explicit polynomials.

$$VP \neq VNP$$

VP: Class of efficiently computable polynomials.

VNP: Class of explicit polynomials.

$$\boxed{\mathsf{VP}\neq\mathsf{VNP}}\iff \boxed{\mathsf{P}\neq\mathsf{NP}}$$

$\uparrow \qquad \alpha_1(x_1+x_2)(x_3+\alpha)+(x_1+x_2)(\alpha_2x_2+\alpha)$

VP: Class of efficiently computable polynomials.

VNP: Class of explicit polynomials.

$$\boxed{\mathsf{VP}\neq\mathsf{VNP}}\iff \boxed{\mathsf{P}\neq\mathsf{NP}}$$

What about classes beyond VNP?

 $coeff(n, \mathbf{e}, i) \equiv i$ -th bit of the coefficient of $\mathbf{x}^{\mathbf{e}}$ in f_n

 $coeff(n, \mathbf{e}, i) \equiv i$ -th bit of the coefficient of $\mathbf{x}^{\mathbf{e}}$ in f_n

Note: deg(f_n) can be as large as $2^{poly(n)}$.

 $coeff(n, \mathbf{e}, i) \equiv i$ -th bit of the coefficient of $\mathbf{x}^{\mathbf{e}}$ in f_n

Note: deg(f_n) can be as large as $2^{poly(n)}$.

VPSPACE_b: Polynomials in VPSPACE that have degree bounded by poly(n).

 $coeff(n, \mathbf{e}, i) \equiv i$ -th bit of the coefficient of $\mathbf{x}^{\mathbf{e}}$ in f_n

Note: deg(f_n) can be as large as $2^{poly(n)}$.

VPSPACE_b: Polynomials in VPSPACE that have degree bounded by poly(n).

[Koiran-Perifel]: $VP \neq VPSPACE_b \implies VP \neq VNP$ or P/poly \neq PSPACE/poly.

 $VPROJ \equiv$ polynomials efficiently computable by algebraic circuits with projection gates.

 $VPROJ \equiv$ polynomials efficiently computable by algebraic circuits with projection gates.

[Poizat]: VPROJ = VPSPACE.

Ok, but PSPACE is the same as TQBF.

$$f = \mathbf{Q}_{z_1}\mathbf{Q}_{z_2}\cdots\mathbf{Q}_{z_m} \ \mathcal{C}[\mathbf{x},\mathbf{z}].$$

$$f = \mathbf{Q}_{z_1} \mathbf{Q}_{z_2} \cdots \mathbf{Q}_{z_m} \ \mathcal{C}[\mathbf{x}, \mathbf{z}]$$

 $TQAC \equiv$ polynomials efficiently computable by totally quantified algebraic circuits.

$$f = \mathbf{Q}_{z_1} \mathbf{Q}_{z_2} \cdots \mathbf{Q}_{z_m} \ \mathcal{C}[\mathbf{x}, \mathbf{z}]$$

 $TQAC \equiv$ polynomials efficiently computable by totally quantified algebraic circuits.

[Malod]: TQAC = VPSPACE.

• There are various definitions of VPSPACE, all of which happen to be equivalent.

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

It would be interesting to study classes beyond VNP in the algebraic world.

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

It would be interesting to study classes beyond VNP in the algebraic world.

• Connections with the boolean world?

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

It would be interesting to study classes beyond VNP in the algebraic world.

- Connections with the boolean world?
- Connections to algebraic pseudorandomness.

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE_b.

It would be interesting to study classes beyond VNP in the algebraic world.

- Connections with the boolean world?
- Connections to algebraic pseudorandomness.

Can we prove lower bounds in the monotone setting?

Monotone VPSPACE?

X

٠

$$[Yehudayoff] = mVP_{quant} - - - mVP_{sum,prod} - - - mVP_{proj}$$

$$\frac{[Yehudayoff]}{mVP} \rightarrow \frac{mVP}{roj} \rightarrow \frac{mVP}{roj} \rightarrow \frac{mVP}{roj} \rightarrow \frac{mVP}{roj}$$

• $mVP_{quant} = mVNP$ if and only if all homogeneous components of polynomials in mVP_{quant} are contained in mVP_{quant} .

$$[Yehudayoff] \\ mVP \rightarrow mVP - - - mVP_{quant} - - - mVP_{sum,prod} - - - mVP_{proj} \\ ?$$

• $mVP_{quant} = mVNP$ if and only if all homogeneous components of polynomials in mVP_{quant} are contained in mVP_{quant} . In particular, $hom(mVP_{quant}) \subseteq mVNP$.

$$\frac{[Yehudayoff]}{mVP} \rightarrow \frac{mVP_{quant}}{mVP} \rightarrow \frac{mVP_{quant}}{r} \rightarrow \frac{mVP_{sum,prod}}{r} \rightarrow \frac{mVP_{proj}}{r}$$

- mVP_{quant} = mVNP if and only if all homogeneous components of polynomials in mVP_{quant} are contained in mVP_{quant}. In particular, hom(mVP_{quant}) ⊆ mVNP.
- $mVP_{quant} = mVP_{sum, prod}$ if and only if mVP_{quant} is closed under compositions.

$$[Yehudayoff] \\ mVP \longrightarrow mVP -- \gg - mVP_{quant} -- \gg - mVP_{sum,prod} -- \gg - mVP_{proj}$$

- mVP_{quant} = mVNP if and only if all homogeneous components of polynomials in mVP_{quant} are contained in mVP_{quant}. In particular, hom(mVP_{quant}) ⊆ mVNP.
- $mVP_{quant} = mVP_{sum,prod}$ if and only if mVP_{quant} is closed under compositions.
- $\bullet \ mVP_{quant} \neq mVP_{proj}.$

Properties of mVP_{proj}

• The Permanent Family is contained in mVP_{proj}.

Properties of mVPproj

- The Permanent Family is contained in mVP_{proj}.
- mVP_{proj} is closed under taking compositions.

Properties of mVPproj

- The Permanent Family is contained in mVP_{proj}.
- $\bullet\ mVP_{proj}$ is closed under taking compositions.
- Homogeneous components of polynomials in mVP_{proj} are also contained in mVP_{proj}.

Monotone VPSPACE

Properties of mVP_{proj}

- The Permanent Family is contained in mVP_{proj}.
- $\bullet\ mVP_{proj}$ is closed under taking compositions.
- Homogeneous components of polynomials in mVP_{proj} are also contained in mVP_{proj}.

Defining mVPSPACE

A polynomial family $\{f_n\}_n$ is contained in mVPSPACE if f_n is computable by an algebraic circuit with projection gates of size poly(n).

Monotone VPSPACE

Properties of mVPproj

- The Permanent Family is contained in mVP_{proj}.
- $\bullet\ mVP_{proj}$ is closed under taking compositions.
- Homogeneous components of polynomials in mVP_{proj} are also contained in mVP_{proj}.

Defining mVPSPACE

A polynomial family $\{f_n\}_n$ is contained in mVPSPACE if f_n is computable by an algebraic circuit with projection gates of size poly(n). The degree of f_n need not be bounded by poly(n).

$$P(\mathbf{x},\mathbf{y}) := \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

$$P_0(\mathbf{x},\mathbf{y}) := \left(\sum_{j=1}^n y_{1,j} x_{1,j}\right) \left(\sum_{j=1}^n y_{2,j} x_{2,j}\right) \cdots \left(\sum_{j=1}^n y_{n,j} x_{n,j}\right).$$

$$P(\mathbf{x},\mathbf{y}) := \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

$$P_{0}(\mathbf{x}, \mathbf{y}) := \left(\sum_{j=1}^{n} y_{1,j} x_{1,j}\right) \left(\sum_{j=1}^{n} y_{2,j} x_{2,j}\right) \cdots \left(\sum_{j=1}^{n} y_{n,j} x_{n,j}\right).$$
$$P_{1}(\mathbf{x}, \mathbf{y}) := \left(x_{1,1} + \sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(\sum_{j=2}^{n} y_{n,j} x_{n,j}\right) + \cdots + \left(\sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(x_{n,1} + \sum_{j=2}^{n} y_{n,j} x_{n,j}\right)$$

$$P(\mathbf{x},\mathbf{y}) := \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

$$P_{0}(\mathbf{x}, \mathbf{y}) := \left(\sum_{j=1}^{n} y_{1,j} x_{1,j}\right) \left(\sum_{j=1}^{n} y_{2,j} x_{2,j}\right) \cdots \left(\sum_{j=1}^{n} y_{n,j} x_{n,j}\right).$$
$$P_{1}(\mathbf{x}, \mathbf{y}) := \left(x_{1,1} + \sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(\sum_{j=2}^{n} y_{n,j} x_{n,j}\right) + \cdots + \left(\sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(x_{n,1} + \sum_{j=2}^{n} y_{n,j} x_{n,j}\right)$$

:

$$P(\mathbf{x},\mathbf{y}) := \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

9

$$P_{0}(\mathbf{x}, \mathbf{y}) := \left(\sum_{j=1}^{n} y_{1,j} x_{1,j}\right) \left(\sum_{j=1}^{n} y_{2,j} x_{2,j}\right) \cdots \left(\sum_{j=1}^{n} y_{n,j} x_{n,j}\right).$$
$$P_{1}(\mathbf{x}, \mathbf{y}) := \left(x_{1,1} + \sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(\sum_{j=2}^{n} y_{n,j} x_{n,j}\right) + \cdots + \left(\sum_{j=2}^{n} y_{1,j} x_{1,j}\right) \cdots \left(x_{n,1} + \sum_{j=2}^{n} y_{n,j} x_{n,j}\right)$$

$$P_n(\mathbf{x}, \mathbf{y}) := x_{1,n} \sum_{\sigma \in S_{n-1}} x_{2,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} x_{n,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{1,\sigma(1)} \cdots x_{n-1,\sigma(n-1)} + \cdots + x_{n,n} \sum_{\sigma \in S_{n-1}} x_{n,\sigma(n-1)} + \cdots + x_{n-1} + \cdots + x_{$$

.

$$P(\mathbf{x},\mathbf{y}) := \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

Open Questions I

• If $f \in mVP_{quant}$, then

$$f(\mathbf{x}) = \sum_{\mathbf{b} \in \{0,1\}^{|\mathbf{w}|}} A_f(\mathbf{w} = \mathbf{b}) \cdot g_f(\mathbf{x}, \mathbf{w} = \mathbf{b})$$

where $g_f \in mVP$ but A_f can potentially have large size and degree.

Open Questions I

• If $f \in mVP_{quant}$, then

$$f(\mathbf{x}) = \sum_{\mathbf{b} \in \{0,1\}^{|\mathbf{w}|}} A_f(\mathbf{w} = \mathbf{b}) \cdot g_f(\mathbf{x}, \mathbf{w} = \mathbf{b})$$

where $g_f \in mVP$ but A_f can potentially have large size and degree. Is there a polynomial $B(\mathbf{w})$ of small degree and small size such that

 $A_f(\mathbf{b}) = B(\mathbf{b})$ for every $\mathbf{b} \in \{0,1\}^{|\mathbf{w}|}$?

Open Questions I

• If $f \in mVP_{quant}$, then

$$f(\mathbf{x}) = \sum_{\mathbf{b} \in \{0,1\}^{|\mathbf{w}|}} A_f(\mathbf{w} = \mathbf{b}) \cdot g_f(\mathbf{x}, \mathbf{w} = \mathbf{b})$$

where $g_f \in mVP$ but A_f can potentially have large size and degree. Is there a polynomial $B(\mathbf{w})$ of small degree and small size such that

 $A_f(\mathbf{b}) = B(\mathbf{b})$ for every $\mathbf{b} \in \{0,1\}^{|\mathbf{w}|}$?

• $VPH = Q_1 Q_2 \cdots Q_m$ $C(\mathbf{x}, \mathbf{z})$ for constantly many alternations? Can we show that VP = VNP implies that VPH = VP?

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?

[HY]: There is no transparent polynomial with super-poly support in mVP.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?

[HY]: There is no transparent polynomial with super-poly support in mVP. [This work]: There is no transparent polynomial with super-poly support in mVP_{sum prod}.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?

[HY]: There is no transparent polynomial with super-poly support in mVP. [This work]: There is no transparent polynomial with super-poly support in mVP_{sum,prod}.

Can we extend this to mVP_{proj} ?

Thank you!