Monotone Classes Beyond VNP

Prerona Chatterjee [with Kshitij Gajjar (IIT Jodhpur) and Anamay Tengse (Reichman University)]
Tel Aviv University
December 18, 2023

Algebraic Classes

VP: Class of efficiently computable polynomials.
VNP: Class of explicit polynomials.

$$
\mathrm{VP} \neq \mathrm{VNP} \Longleftarrow \mathrm{P} \neq \mathrm{NP}
$$

What about classes beyond VNP?

The Class VPSPACE

[Koiran-Perifel]: $\left\{f_{n}\right\}_{n}$ is in VPSPACE ${ }^{0}$ if the following language is in PSPACE/ poly.

$$
\operatorname{coeff}(n, \mathbf{e}, i) \equiv i \text {-th bit of the coefficient of } \mathbf{x}^{\mathbf{e}} \text { in } f_{n}
$$

The Class VPSPACE

[Koiran-Perifel]: $\left\{f_{n}\right\}_{n}$ is in VPSPACE ${ }^{0}$ if the following language is in PSPACE/ poly.

$$
\operatorname{coeff}(n, \mathbf{e}, i) \equiv i \text {-th bit of the coefficient of } \mathbf{x}^{\mathbf{e}} \text { in } f_{n}
$$

Note: $\operatorname{deg}\left(f_{n}\right)$ can be as large as $2^{\operatorname{poly}(n)}$.

The Class VPSPACE

[Koiran-Perifel]: $\left\{f_{n}\right\}_{n}$ is in VPSPACE ${ }^{0}$ if the following language is in PSPACE/ poly.

$$
\operatorname{coeff}(n, \mathbf{e}, i) \equiv i \text {-th bit of the coefficient of } \mathbf{x}^{\mathbf{e}} \text { in } f_{n}
$$

Note: $\operatorname{deg}\left(f_{n}\right)$ can be as large as $2^{\text {poly }(n)}$.

VPSPACE $_{b}$: Polynomials in VPSPACE that have degree bounded by poly (n).

The Class VPSPACE

[Koiran-Perifel]: $\left\{f_{n}\right\}_{n}$ is in VPSPACE ${ }^{0}$ if the following language is in PSPACE/ poly.

$$
\operatorname{coeff}(n, \mathbf{e}, i) \equiv i \text {-th bit of the coefficient of } \mathbf{x}^{\mathbf{e}} \text { in } f_{n}
$$

Note: $\operatorname{deg}\left(f_{n}\right)$ can be as large as $2^{\operatorname{poly}(n)}$.

VPSPACE $_{b}$: Polynomials in VPSPACE that have degree bounded by poly (n).

$$
\left[\text { Koiran-Perifel]: VP } \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP} \text { or } \mathrm{P} / \text { poly } \neq \mathrm{PSPACE} /\right. \text { poly. }
$$

Algebraic Circuits with Projection Gates

Is there a more algebraic definition?

Algebraic Circuits with Projection Gates

Is there a more algebraic definition?

Algebraic Circuits with Projection Gates

Is there a more algebraic definition?

VPROJ \equiv polynomials efficiently computable by algebraic circuits with projection gates.

Algebraic Circuits with Projection Gates

Is there a more algebraic definition?

VPROJ \equiv polynomials efficiently computable by algebraic circuits with projection gates.
[Poizat]: VPROJ $=$ VPSPACE.

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF.

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

$$
f(\mathbf{x}, 0)+f(\mathbf{x}, 1)
$$

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

$$
f(\mathbf{x}, 0)+f(\mathbf{x}, 1) \quad f(\mathbf{x}, 0) \times f(\mathbf{x}, 1)
$$

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

$$
f(\mathbf{x}, 0)+f(\mathbf{x}, 1) \quad f(\mathbf{x}, 0) \times f(\mathbf{x}, 1)
$$

$$
f=Q_{z_{1}} Q_{z_{2}} \cdots Q_{z_{m}} \mathcal{C}[\mathbf{x}, \mathbf{z}] .
$$

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

$$
f(\mathbf{x}, 0)+f(\mathbf{x}, 1) \quad f(\mathbf{x}, 0) \times f(\mathbf{x}, 1)
$$

$$
f=Q_{z_{1}} Q_{z_{2}} \cdots Q_{z_{m}} \mathcal{C}[\mathbf{x}, \mathbf{z}] .
$$

TQAC \equiv polynomials efficiently computable by totally quantified algebraic circuits.

Quantified Algebraic Circuits

Ok, but PSPACE is the same as TQBF. Is something analogous true in the algebraic setting?

$$
f(\mathbf{x}, 0)+f(\mathbf{x}, 1) \quad f(\mathbf{x}, 0) \times f(\mathbf{x}, 1)
$$

$$
f=Q_{z_{1}} Q_{z_{2}} \cdots Q_{z_{m}} \mathcal{C}[\mathbf{x}, \mathbf{z}] .
$$

TQAC \equiv polynomials efficiently computable by totally quantified algebraic circuits.
[Malod]: TQAC $=$ VPSPACE.

- There are various definitions of VPSPACE, all of which happen to be equivalent.

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on $\mathrm{VPSPACE}_{b}$.

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on $\mathrm{VPSPACE}_{b}$.
[Koiran-Perifel]: VP $\neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$ or $\mathrm{P} /$ poly $\neq \mathrm{PSPACE} /$ poly.

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on $\mathrm{VPSPACE}_{b}$.

$$
\text { [Koiran-Perifel]: VP } \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP} \text { or } \mathrm{P} / \text { poly } \neq \mathrm{PSPACE} / \text { poly. }
$$

It would be interesting to study classes beyond VNP in the algebraic world.

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on $\mathrm{VPSPACE}_{b}$.

$$
\text { [Koiran-Perifel]: VP } \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP} \text { or } \mathrm{P} / \text { poly } \neq \mathrm{PSPACE} / \text { poly. }
$$

It would be interesting to study classes beyond VNP in the algebraic world.

- Connections with the boolean world?

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE ${ }_{b}$.

$$
\text { [Koiran-Perifel]: VP } \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP} \text { or } \mathrm{P} / \text { poly } \neq \mathrm{PSPACE} / \text { poly. }
$$

It would be interesting to study classes beyond VNP in the algebraic world.

- Connections with the boolean world?
- Connections to algebraic pseudorandomness.

In Summary

- There are various definitions of VPSPACE, all of which happen to be equivalent.
- There is no restriction on the degree, but we focus on VPSPACE ${ }_{b}$.

$$
\text { [Koiran-Perifel]: VP } \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{VP} \neq \mathrm{VNP} \text { or } \mathrm{P} / \text { poly } \neq \mathrm{PSPACE} / \text { poly. }
$$

It would be interesting to study classes beyond VNP in the algebraic world.

- Connections with the boolean world?
- Connections to algebraic pseudorandomness.

Can we prove lower bounds in the monotone setting?

Monotone VPSPACE?

Monotone VPSPACE?

Our Results

Polynomials have bounded degree throughout

Our Results

Polynomials have bounded degree throughout

- $\mathrm{mVP}_{\text {quant }}=\mathrm{mVNP}$ if and only if all homogeneous components of polynomials in $\mathrm{mVP}_{\text {quant }}$ are contained in mVP quant.

Our Results

Polynomials have bounded degree throughout

- $\mathrm{mVP}_{\text {quant }}=\mathrm{mVNP}$ if and only if all homogeneous components of polynomials in $\mathrm{mVP}_{\text {quant }}$ are contained in $m V P_{\text {quant }}$. In particular, hom $\left(m V P_{\text {quant }}\right) \subseteq m V N P$.

Our Results

Polynomials have bounded degree throughout

- $\mathrm{mVP}_{\text {quant }}=\mathrm{mVNP}$ if and only if all homogeneous components of polynomials in $\mathrm{mVP}_{\text {quant }}$ are contained in $m V P_{\text {quant }}$. In particular, hom $\left(m V P_{\text {quant }}\right) \subseteq m V N P$.
- $m V P_{\text {quant }}=m V P_{\text {sum, prod }}$ if and only if $m V P_{\text {quant }}$ is closed under compositions.

Our Results

Polynomials have bounded degree throughout

- $\mathrm{mVP}_{\text {quant }}=\mathrm{mVNP}$ if and only if all homogeneous components of polynomials in $\mathrm{mVP}_{\text {quant }}$ are contained in $m V P_{\text {quant }}$. In particular, hom $\left(m V P_{\text {quant }}\right) \subseteq m V N P$.
- $m V P_{\text {quant }}=m V P_{\text {sum, prod }}$ if and only if $m V P_{\text {quant }}$ is closed under compositions.
- $\mathrm{mVP}_{\text {quant }} \neq \mathrm{mVP}_{\text {proj }}$.

Monotone VPSPACE

Properties of $m V P_{\text {proj }}$

- The Permanent Family is contained in $m V P_{\text {proj }}$.

Monotone VPSPACE

Properties of $m V P_{\text {proj }}$

- The Permanent Family is contained in $m V P_{\text {proj }}$.
- $m V P_{\text {proj }}$ is closed under taking compositions.

Monotone VPSPACE

Properties of $m V P_{\text {proj }}$

- The Permanent Family is contained in $m V P_{\text {proj }}$.
- $\mathrm{mVP}_{\text {proj }}$ is closed under taking compositions.
- Homogeneous components of polynomials in $m V P_{\text {proj }}$ are also contained in $\mathrm{mVP}_{\text {proj }}$.

Monotone VPSPACE

Properties of $m V P_{\text {proj }}$

- The Permanent Family is contained in $m V P_{\text {proj }}$.
- $\mathrm{mVP}_{\text {proj }}$ is closed under taking compositions.
- Homogeneous components of polynomials in $m V P_{\text {proj }}$ are also contained in $\mathrm{mVP}_{\text {proj }}$.

Defining mVPSPACE

A polynomial family $\left\{f_{n}\right\}_{n}$ is contained in mVPSPACE if f_{n} is computable by an algebraic circuit with projection gates of size poly (n).

Monotone VPSPACE

Properties of $m V P_{\text {proj }}$

- The Permanent Family is contained in $m V P_{\text {proj }}$.
- $\mathrm{mVP}_{\text {proj }}$ is closed under taking compositions.
- Homogeneous components of polynomials in $m V P_{\text {proj }}$ are also contained in $\mathrm{mVP}_{\text {proj }}$.

Defining mVPSPACE

A polynomial family $\left\{f_{n}\right\}_{n}$ is contained in mVPSPACE if f_{n} is computable by an algebraic circuit with projection gates of size $\operatorname{poly}(n)$. The degree of f_{n} need not be bounded by poly (n).

$$
P(\mathbf{x}, \mathbf{y}):=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} .
$$

Upper Bound for Permanent

$$
P_{0}(\mathbf{x}, \mathbf{y}):=\left(\sum_{j=1}^{n} y_{1, j} x_{1, j}\right)\left(\sum_{j=1}^{n} y_{2, j} x_{2, j}\right) \ldots\left(\sum_{j=1}^{n} y_{n, j} x_{n, j}\right) .
$$

$$
P(\mathbf{x}, \mathbf{y}):=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}
$$

Upper Bound for Permanent

$$
\begin{gathered}
P_{0}(\mathbf{x}, \mathbf{y}):=\left(\sum_{j=1}^{n} y_{1, j} x_{1, j}\right)\left(\sum_{j=1}^{n} y_{2, j} x_{2, j}\right) \cdots\left(\sum_{j=1}^{n} y_{n, j} x_{n, j}\right) . \\
P_{1}(\mathbf{x}, \mathbf{y}):=\left(x_{1,1}+\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(\sum_{j=2}^{n} y_{n, j} x_{n, j}\right)+\cdots+\left(\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(x_{n, 1}+\sum_{j=2}^{n} y_{n, j} x_{n, j}\right) .
\end{gathered}
$$

$$
P(\mathbf{x}, \mathbf{y}):=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}
$$

Upper Bound for Permanent

$$
\begin{gathered}
P_{0}(\mathbf{x}, \mathbf{y}):=\left(\sum_{j=1}^{n} y_{1, j} x_{1, j}\right)\left(\sum_{j=1}^{n} y_{2, j} x_{2, j}\right) \cdots\left(\sum_{j=1}^{n} y_{n, j} x_{n, j}\right) . \\
P_{1}(\mathbf{x}, \mathbf{y}):=\left(x_{1,1}+\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(\sum_{j=2}^{n} y_{n, j} x_{n, j}\right)+\cdots+\left(\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(x_{n, 1}+\sum_{j=2}^{n} y_{n, j} x_{n, j}\right) .
\end{gathered}
$$

$$
P(\mathbf{x}, \mathbf{y}):=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}
$$

Upper Bound for Permanent

$$
\begin{gathered}
P_{0}(\mathbf{x}, \mathbf{y}):=\left(\sum_{j=1}^{n} y_{1, j} x_{1, j}\right)\left(\sum_{j=1}^{n} y_{2, j} x_{2, j}\right) \cdots\left(\sum_{j=1}^{n} y_{n, j} x_{n, j}\right) . \\
P_{1}(\mathbf{x}, \mathbf{y}):=\left(x_{1,1}+\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(\sum_{j=2}^{n} y_{n, j} x_{n, j}\right)+\cdots+\left(\sum_{j=2}^{n} y_{1, j} x_{1, j}\right) \cdots\left(x_{n, 1}+\sum_{j=2}^{n} y_{n, j} x_{n, j}\right) . \\
\vdots \\
P_{n}(\mathbf{x}, \mathbf{y}):=x_{1, n} \sum_{\sigma \in S_{n-1}} x_{2, \sigma(1)} \cdots x_{n-1, \sigma(n-1)} x_{n, \sigma(n-1)}+\cdots+x_{n, n} \sum_{\sigma \in S_{n-1}} x_{1, \sigma(1)} \cdots x_{n-1, \sigma(n-1)} . \\
P(\mathbf{x}, \mathbf{y}):=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} .
\end{gathered}
$$

Open Questions I

- If $f \in \mathrm{mVP}_{\text {quant }}$, then

$$
f(\mathbf{x})=\sum_{\mathbf{b} \in\{0,1\}|\mathbf{w}|} A_{f}(\mathbf{w}=\mathbf{b}) \cdot g_{f}(\mathbf{x}, \mathbf{w}=\mathbf{b})
$$

where $g_{f} \in \mathrm{mVP}$ but A_{f} can potentially have large size and degree.

Open Questions I

- If $f \in \mathrm{mVP}_{\text {quant }}$, then

$$
f(\mathbf{x})=\sum_{\mathbf{b} \in\{0,1\}|\mathbf{w}|} A_{f}(\mathbf{w}=\mathbf{b}) \cdot g_{f}(\mathbf{x}, \mathbf{w}=\mathbf{b})
$$

where $g_{f} \in \mathrm{mVP}$ but A_{f} can potentially have large size and degree. Is there a polynomial $B(\mathbf{w})$ of small degree and small size such that

$$
A_{f}(\mathbf{b})=B(\mathbf{b}) \text { for every } \mathbf{b} \in\{0,1\}^{|\mathbf{w}|} \text { ? }
$$

Open Questions I

- If $f \in \mathrm{mVP}_{\text {quant }}$, then

$$
f(\mathbf{x})=\sum_{\mathbf{b} \in\{0,1\}|\mathbf{w}|} A_{f}(\mathbf{w}=\mathbf{b}) \cdot g_{f}(\mathbf{x}, \mathbf{w}=\mathbf{b})
$$

where $g_{f} \in \mathrm{mVP}$ but A_{f} can potentially have large size and degree.
Is there a polynomial $B(\mathbf{w})$ of small degree and small size such that

$$
A_{f}(\mathbf{b})=B(\mathbf{b}) \text { for every } \mathbf{b} \in\{0,1\}^{|\mathbf{w}|} ?
$$

- $\mathrm{VPH}=\mathrm{Q}_{1} \mathrm{Q}_{2} \cdots \mathrm{Q}_{m} \quad \mathcal{C}(\mathbf{x}, \mathbf{z})$ for constantly many alternations?

Can we show that VP $=$ VNP implies that VPH $=\mathrm{VP}$?

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p . Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]
Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]
Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support.

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]
Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]
Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?
[HY]: There is no transparent polynomial with super-poly support in mVP.

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?
[HY]: There is no transparent polynomial with super-poly support in mVP.
[This work]: There is no transparent polynomial with super-poly support in $m V P_{\text {sum,prod }}$.

Open Questions II

τ-conjecture for Newton polytopes [Koiran-Portier-Tavenas-Thomassé]
Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p . Then the Newton polygon of f has poly (s, r, p) vertices.

Transparent Polynomials [Hrubeš - Yehudayoff]

Polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon.

They give examples of transparent polynomials with exponential support. Can any such polynomial be in VP?
[HY]: There is no transparent polynomial with super-poly support in mVP.
[This work]: There is no transparent polynomial with super-poly support in $m V P_{\text {sum,prod }}$.
Can we extend this to $m V P_{\text {proj }}$?

Thank you!

