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Abstract

In a landmark result, Grochow and Pitassi [GP18] established a close connection between
propositional proof systems (such as Frege or Extended Frege) and the algebraic proof sys-
tem IPS. In particular, they showed that the ability of propositional systems to reason about
polynomial identities—and, more specifically, the expressibility power of polynomial identity
witnesses within propositional proof systems—plays a central role. The strongest uncondi-
tional result in this direction is due to Li, Tzameret, and Wang [LTW18], who proved that Frege
and the noncommutative IPS are quasi-polynomially equivalent, by giving a Frege simulation of
noncommutative polynomial identity witnesses.

In this paper, we extend this line of work by showing such a quasi-polynomial equivalence
holds even beyond the noncommutative setting. Specifically, our result applies when the com-
muting graph of the variables (a graph with one vertex for each variable, and an edge between
two vertices if and only if the corresponding variables do not commute) is a disjoint union of
two cliques of unbounded size and O(1) isolated vertices, a structure motivated by the clas-
sical work of Cartier and Foata [CF69]. This is a step towards bridging the gap between our
understanding of noncommutative IPS and commutative IPS.

To extend the result beyond the noncommutative setting, we must overcome several ad-
ditional technical obstacles. Beyond the techniques of [LTW18, GP18], our approach relies
on tools from skew field theory [Coh95a] and on algorithms for computing noncommutative
rank [FR04, IKQS15, IQS18]. This may be of independent interest in algebraic proof complexity.
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1 Introduction

The Ideal Proof System (IPS), introduced by Grochow and Pitassi [GP18], reformulates proposi-
tional unsatisfiability as an algebraic ideal membership problem: a refutation is a single algebraic
circuit certifying that the constant polynomial 1 belongs to the ideal generated by the polynomial
translation of a CNF together with the Boolean axioms. This formulation enables a direct connec-
tion between propositional proof complexity and algebraic circuit complexity, since lower bounds
on IPS refutations imply corresponding lower bounds for algebraic circuits.

A central obstacle in relating IPS to a standard propositional proof systems is verification. For
the original commutative IPS, correctness of a certificate is known only via Polynomial Identity Test-
ing (PIT), and hence is inherently randomized. Grochow and Pitassi isolated a small collection of
propositional PIT axioms expressing the correctness of a Boolean circuit for PIT and showed that,
if a propositional proof system admits short proofs of these axioms, then it can simulate commu-
tative IPS. Subsequent work shows that this dependence is unavoidable: commutative IPS can be
p-simulated by a Cook–Reckhow proof system [CR79] if and only if PIT lies in NP [Gro23]. Con-
sequently, understanding which PIT axioms can be efficiently proved inside propositional proof systems
becomes a central question for connecting propositional and algebraic proof systems.

Informally, these PIT axioms can be viewed as directly reflecting the definition of an IPS certifi-
cate (Definition 2.3). Indeed, an IPS refutation is a polynomial P(X, Z) satisfying the two identities
P(X, 0) = 0 and P(X, f1, . . . , fm) = 1. The PIT axioms assert, in propositional form, the soundness
of these two instantiations of the same proof polynomial, together with basic closure properties of
polynomial identity.

Commutative IPS. We first recall the original (commutative) Ideal Proof System introduced by
Grochow and Pitassi [GP18], which will serve as the main algebraic proof system underlying our
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discussion on the PIT axioms and their provability in propositional proof systems.

Let F be a field and let f1, . . . , fm ∈ F[X] be a set of unsatisfiable polynomials, where
the Boolean axioms x2

i − xi are included among the fi. A commutative IPS certificate
is a polynomial P(X, Z) ∈ F[X, Z] such that

P(X, 0) = 0 and P(X, f1(X), . . . , fm(X)) = 1.

The size of a refutation is the size of an algebraic circuit1 computing P(X, Z).

While the commutative IPS provides a uniform algebraic formalization of propositional un-
satisfiability, its interaction with propositional proof systems is mediated through the provability
of PIT axioms, and hence through the ability of propositional systems to reason about polynomial
identity testing. A strikingly different situation arises in the noncommutative setting, where de-
terministic polynomial identity testing is available. This leads to a much tighter and unconditional
connection with Frege proofs, as shown by Li, Tzameret, and Wang [LTW18].

Noncommutative IPS. The noncommutative IPS (NC-IPS) of Li, Tzameret, and Wang [LTW18]
provides a crucial bridge after the above discussion on the role and provability of PIT axioms in
propositional proof systems.

Let F be a field and let f1, . . . , fm ∈ F ⟨x1, . . . , xn⟩ be noncommutative unsatisfiable
polynomials which include the boolean axioms (xi(1− xi) for all i ∈ [n]) and the com-
mutator axioms (xixj − xjxi for all i < j).

An NC-IPS certificate is a noncommutative polynomial P(X, Z) ∈ F ⟨X, Z⟩ such that

P(x1, . . . , xn, 0) = 0 and P(X, f1, . . . , fm) = 1.

The size of an NC-IPS refutation is the size of a noncommutative formula computing
the polynomial P(X, Z).

By working with noncommutative formulas and commutator axioms, and by exploiting the
deterministic PIT algorithm of Raz and Shpilka [RS05] for noncommutative formulas, Li, Tza-
meret, and Wang [LTW18] obtain an essentially tight, unconditional characterization of Frege:
Frege and noncommutative IPS are quasi-polynomially equivalent.

From this perspective, it follows that strong propositional proof systems can reason about a
nontrivial form of PIT without additional assumptions. This motivates a systematic comparison
between the PIT axioms required for simulating commutative IPS and the deterministic PIT prin-
ciples available in the noncommutative setting.

1or sometimes algebraic formula. See Definition 2.1 for the definitions of algebraic circuits and formulas.
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In particular, understanding which PIT axioms can be proved inside propositional proof sys-
tems provides a natural route to connect commutative and noncommutative algebraic proof sys-
tems. A natural quest is therefore to search for intermediate proof systems that act as a bridge
between NC-IPS and commutative IPS, for which suitable PIT axioms can be efficiently proved
within propositional proof systems.

1.1 Our Contribution

Partially Commutative IPS. Inspired by the previous discussions, we define a family of proof
systems, called Partially Commutative IPS,

{
PCp,q- IPS

}
q≤p. It bridges noncommutative IPS and

Commutative IPS in the following sense: PC1,1- IPS ≡ NC-IPS and PCn,0- IPS ≡ IPS.
We begin by looking at the notion of a partially commutative polynomial.

Let X1, X2 be two sets of variables such that X =
{

x1,1, . . . , x1,n
}

and X2 =

{x2,1, . . . , x2,n} and let F be a field.

A partially commutative monomial m ∈ F ⟨X1 ⊔ X2⟩ is uniquely determined by its re-
strictions to X1 and to X2: m|X1 = mX1 ∈ F⟨X1⟩ and m|X2 = mX2 ∈ F⟨X2⟩, where mX1

and mX2 are noncommutative monomials. All variables in X1 commute with all vari-
ables in X2. Hence, for m, m′ ∈ F⟨X1 ⊔X2⟩, we have m = m′ if and only if m|X1 = m′|X1

and m|X2 = m′|X2 . This induces an equivalence relation ∼ on the set of monomials.2

A partially commutative polynomial f ∈ F ⟨X1 ⊔ X2⟩ is an F-linear combination of the
partially commutative monomials over X1 and X2.3 A partially commutative polyno-
mial over p buckets, say f ∈ F

〈
X1 ⊔ · · · ⊔ Xp

〉
, can be defined analogously.

This is a very well-studied model with connections to the problem of multiplicity equivalence
testing of multi-tape automata [HK91, Wor13]. The study of one-way multi-tape finite automata
was initiated in the seminal paper of Rabin and Scott [RS59]. The multiplicity equivalence testing
problem for multi-tape automata is reduced to the identity testing problem over the partially
commutative ring and a deterministic polynomial-time algorithm is designed only very recently
(over Q) for the number of tapes O(1) [ACM24].

In particular, the bucketing structure of the variables defines a commuting graph, a structure
motivated by the classical work of Cartier and Foata [CF69].

The commuting graph has one vertex for each variable in the polynomial and an edge
exists between two vertices if and only if the corresponding variables do not commute.

2For example, consider two monomials m1 = x1,1x2,1x1,2x2,2 and m2 = x2,1x1,1x2,2x1,2. These two monomials are
the same with m1|X1 = m2|X1 = x1,1x1,2 and m1|X2 = m2|X2 = x2,1x2,2.

3It is sometimes useful to think of polynomials in F ⟨X1 ⊔ X2⟩ as a noncommutative polynomial in F ⟨X2⟩ ⟨X1⟩. That
is, f can be uniquely written as f = ∑mi∈F⟨X1⟩ mi · fi where fi ∈ F ⟨X2⟩.
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Note that a commutative polynomial f ∈ F(X) can be thought of as a partially commutative
polynomial in F ⟨X1 ⊔ · · · ⊔ Xn⟩ where |Xi| = 1. Thus a natural generalization of both IPS and
NC-IPS is the proof system PCp,q- IPS, which we define in such a way that PC1,1- IPS ≡ NC-IPS
and PCn,0- IPS ≡ IPS if the total number of variables is n.

In particular, the input set of equations to a PCp,q- IPS proof are partially commutative poly-
nomials in F

〈
X1 ⊔ · · · ⊔ Xp

〉
where

∣∣Xq+1
∣∣ = · · · = ∣∣Xp

∣∣ = 1. A formal definition of PCp,q- IPS is
given below.

Definition 1.1. (Partially commutative IPS (PCp,q- IPS))) Let F be a field and X = X1 ⊔ · · · ⊔ Xp be a
set of partially commutative variables4 such that

∣∣Xq+1
∣∣ = ∣∣Xq+2

∣∣ = · · · = ∣∣Xp
∣∣ = 1. Further, for every

i ≤ q, let Xi =
{

xi,j : j ∈ [n]
}

without loss of generality and, for every q < i ≤ p, let Xi =
{

yi−q
}

.
Assume that f1 = f2 = · · · = fm = 0 is a set of partially commutative polynomial equations from

F ⟨X⟩ and suppose that the following set of equations (axioms) are included in fis.

• Boolean axioms: xi,j(xi,j − 1) for every i ∈ [q], j ∈ [n]; y2
i − yi for every i ∈ [p− q].

• Commutator axioms: xi,jxi,j′ − xi,j′xi,j for every j ̸= j′ ∈ [n] and i ∈ [q].

A partially commutative IPS proof (PCp,q- IPS) of unsatisfiability of the system { fi} is a partially commu-
tative polynomial P(X, z1, . . . , zm) ∈ F ⟨X, Z⟩ such that,

1. The Z variables are noncommuting with every X variable.

2. P(X, 0) = 0.

3. P(X, f1, . . . , fm) = 1.

4. The Z variables are the place holder variables. Once they are substituted by partially commutative
polynomials fi, the multiplication respects the partial commutativity. ♢

Our Result We show that this proof system is sound and complete in Subsection 3.1. We also
discuss its verifiability in Subsection 3.2 and the fact that it can efficiently simulate the Frege proof
system, in particular Schoenfield’s system (Definition 2.3), in Subsection 3.3.

Moreover, the converse is also true up to a quasi-polynomial blow-up in a certain restricted
setting. In particular, it extends the work of Li, Tzameret and Wang [LTW18], which showed a
quasi-polynomial Frege simulation for PC1,1- IPS.

Theorem 1.2. Any size-s PCk,2- IPS refutation over GF(2) of an unsatisfiable CNF can be simulated by a
Frege proof of size s(k log s)O(1)

.

Note that the result implies a quasi-polynomial Frege simulation for PCk,2- IPS when k =

logO(1) s. Also note that the commuting graph in this setting is the disjoint union of two cliques of
size n and k− 2 isolated vertices.

4For every i, the variables within Xi are noncommuting, but for every i ̸= j, variables from Xi and Xj commute.
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A natural question is whether the result can be extended to the case where the commuting
graph is the disjoint union of O(1) cliques of unbounded size. We leave this question open, and
we refer to Subsection 1.3 for further remarks along this line.

1.2 Proof Overview

Throughout, the field F is fixed to be GF(2). The proof of Theorem 1.2 proceeds in two steps.
By the general methodology outlined in [GP18, LTW18], to simulate a PCk,2- IPS refutation of an
unsatisfiable CNF by a Frege proof, it suffices to give a Frege proof of the corresponding partially
commutative formula identities over GF(2), via the reflection principle for PCk,2- IPS (see Sub-
section 4.2). Given such Frege proofs of identities, the remaining simulation is a direct syntactic
extension of the arguments of [LTW18, GP18] to the partially commutative setting.

The novel technical contribution of this work is, therefore, a new witness theorem for partially
commutative identities, namely Lemma 4.21, proved in Section 5. Although these results are
semantically analogous to the noncommutative witness lemma proven in the work of Li, Tzameret
and Wang [LTW18], our proof requires several new ideas since the underlying ring is partially
commutative rather than fully noncommutative. Indeed, the definition of IPS itself suggests that
any such simulation should have a similar general structure.

We now give a proof sketch of Theorem 1.2 assuming the witness identities (that is, the contents
of Section 4), and then a proof sketch of our main contribution — a witness lemma for partially
commutative identities in certain restricted settings — proved in Section 5.

1.2.1 Proof Overview for the Frege Simulation

Our goal is to prove Theorem 1.2 (see Theorem 4.3 for a more formal statement), namely that every
size-s PCk,2- IPS refutation of an unsatisfiable CNF Φ := κ1 ∧ κ2 ∧ . . . ∧ κm can be simulated by a
quasi-polynomial size (for k = O(1)) Frege refutation.

Using the standard arithmetization technique (defined formally in Subsection 4.1), from Φ, we
obtain a system of partially commutative polynomials PΦ := {PΦ,1, . . . , PΦ,m} that are unsatisfi-
able. Let F(X, Z) be a PCk,2- IPS refutation of the partially commutative system PΦ over F. Here
X = X1 ⊔ X2 ⊔ · · · ⊔ Xk with |X1| = |X2| = n, |Xi| = 1 for 3 ≤ i ≤ k and Z is a set of place-
holder variables. By the definition of PCk,2- IPS, F satisfies the algebraic identities F(X, 0) = 0
and F(X, PΦ) = 1. Applying the standard Booleanization map (Definition 4.1), these identities
become the Boolean tautologies ¬F̃(X, 0) and F̃(X, P̃Φ). By the reflection principle (Lemma 4.4,
from [LTW18]), it suffices to give polynomial (or quasi-polynomial) size Frege proofs of ¬F̃(X, 0)
and F̃(X, P̃Φ) in order to derive a Frege refutation of Φ.

Since both of these formulas are Booleanizations of the identities of partially commutative for-
mulas that compute the zero polynomial, it is enough to show that whenever a partially commu-
tative formula G computes the identically zero polynomial, the Boolean formula ¬G̃ has a quasi-
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polynomial size Frege proof. We now briefly explain how this is shown.
We first homogenize the given partially commutative formula F and reduce the task of proving

¬F̃ in Frege to proving certain Booleanized identities for a layered partially commutative ABP A′F
computing the same polynomial (by Lemma 4.6 and the construction of A′F in Subsection 4.5). Us-
ing the refined tracking map and the refined operator D′, every partial ABP computation A′F[v, t]
is represented by a degree–refined induced formula F∗v of controlled size (by Lemma 4.15 and
Lemma 4.16). The computation of A′F can be reasoned about locally inside Frege via the layer-wise
identities

F∗v = ∑
(v,u)∈E(A′F)

A′F[v, u] · F∗u

provided by Lemma 4.18 and Claim 4.28. These identities allow Frege to propagate zeroness from
one layer of the ABP to the next. We now discuss how this is done.

Conceptually, we want to show that Frege can certify that the ABP A′F computes the zero
polynomial by propagating local identities layer by layer. This is achieved by using the partially
commutative ABP identity witnesses (Lemma 4.21), which yield certain relations (Equation 4.24
and Equation 4.25) consisting matrices in F[y1, . . . yk−2] ⟨X1 ⊔ X2⟩w×w 5 such that the degree of y-
variables in each entry of these matrices are polynomially bounded. We call these matrices witness
matrices. These relations form a backward-propagating chain of identities in the partially com-
mutative ring, each linear in the vector of partial-ABP polynomials (with partially commutative
coefficients), and together they certify that the polynomial computed by A′F is identically zero.

We call the relations obtained in Equation 4.25 as transition identities. These reside in the par-
tially commutative algebra F[y] ⟨X1 ⊔ X2⟩, and so we can reduce each such identity to a polyno-
mially bounded collection of fully noncommutative identities over F[y] ⟨X2⟩ by extracting coef-
ficients with respect to the leftmost X1-variables (Claim 4.28). Each resulting noncommutative
identity over X2 is simulated in Frege using the [LTW18, Lemma 4.9], and the entry-wise identities
are combined to obtain the Booleanisation of Equation 4.25 (Equation 4.27) inside Frege.

Finally, Frege derives the polynomial identity, layer by layer, using the Booleanization of the
vanishing identities (Equation 4.24), namely Equation 4.26, as the base case and the local equiva-
lences, namely Equation 4.27, as propagation rules. This allows us to prove ¬F̃ within Frege.

The overall proof size is quasi-polynomial (s(k log s)O(1)
), since the number of layers and witness

identities is polynomial in |A′F|, each induced formula F∗v has size at most sO(log3 s) by Lemma 4.16
and entries of the witness matrices has formula complexity s(k log s)O(1)

by Lemma 4.21.

1.2.2 Proof Overview for the Construction of Witness Identities

We now give an overview of that fact that we can construct the witness matrices with entries in
F(y1, . . . yk−2) ⟨X1 ⊔ X2⟩6 (Lemma 5.1). Additionally, the degree of y-variables in both the numer-

5Recall that Xi = {yi−2} for every i ∈ [3, k].
6GF(2)(y1, y2, . . . , yk−2) is the (commutative) function field over the polynomial ring GF(2)[y1, y2, . . . , yk−2].

8



ator and the denominator of each entry is polynomially bounded. Note that "clearing the denom-
inators" from the entries of these matrices shows that we can construct the witness matrices with
entries in F[y1, . . . yk−2] ⟨X1 ⊔ X2⟩ having the required property (Lemma 4.21). For the remainder
of this section, we denote F(y1, . . . , yk−2) by F′.

In order to explain the technicalities of our proof, we first give a brief overview of the proof of
the witness lemma shown in [LTW18].

Let A be a noncommutative ABP of depth d computing the identically zero polynomial and
let the width of layer i be wi, with nodes {ui,1, . . . , ui,wi}. Also, let s, t be the source and sink nodes
in A. For i ∈ [d], define Ai =

[
A[ud−i,1, t], . . . , A[ud−i,wd−i , t]

]⊤. Assuming A is homogeneous,
each entry of Ai computes a homogeneous polynomial of degree i. We use A[ℓ1, ℓ2] to denote the
polynomials computed between the nodes ℓ1, ℓ2.

In this setting, [LTW18] constructs matrices {λ1, . . . , λd | λi ∈ Fwi×wi} and {T1, . . . , Td | Ti ∈
F ⟨X⟩wi×wi+1} witnessing the zeroness of the polynomial computed by A. They do so using an
inductive argument based on Gaussian elimination over F.

Formally, let M be the transition matrix from layer i to i + 1. Note that it can be uniquely
expressed as M = ∑n

j=1 xj Mj. From the inductive hypothesis, λi · Ad−i = 0 and Ad−i =

M · Ad−i−1. So, ∑n
j=1 xj(λi Mj) · Ad−i−1 = 0, and hence, by homogeneity and noncommutativity,

(λi Mj) · Ad−i−1 = 0 for j ∈ [n].
Let V = SpanF{Rows(λi Mj) | j ∈ [n]} ⊆ Fwi+1 . Every vector in V is orthogonal to

Ad−i−1. Choosing a basis matrix of V, say B, by Gaussian elimination on the stacked matrix(
λi M1; . . . ; λi Mn

)
, we obtain matrices Tj such that λi Mj = TjB for all j ∈ [n]. Now if we de-

fine Ti+1 := ∑n
j=1 xjTj, the required properties are satisfied. Since all matrices λi+1 and T1, . . . , Tn

have entries in F, this is sufficient for [LTW18] for the expressiveness in Frege.

Now we return to our situation. If we apply the same idea, the first important point is the λi

matrices are not just defined over the field F, rather they are matrices in F′ ⟨X2⟩wi×wi . Similarly
the coefficient matrices Mj ∈ F′ ⟨X2⟩wi×wi+1 . The vector of polynomials

{
Rows(λi Mj)

}
j∈[n] span

a left module over the free skew field F′⦓X2⦔7. So, if we want to construct the Tj matrices using
Gaussian elimination, the entries of Tj will be inside the F′⦓X2⦔, potentially involving nested
inverses. An expression involving nested inverses need not have a canonical expression as a ratio
of two noncommutative polynomials. A standard example is given by the following expression:
(z + xy−1x)−1 − z−1. We do not know how to explicitly express such matrices Tj in Frege.

We now explain the key idea presented in Section 5. The proof proceeds by induction on
r = 0, 1, . . . , d− 1 and constructs matrices λ′r and T′r+1 satisfying

λ′d−i · Ai = 0 ∀ i = 1, 2 . . . , d, λ′i ∈ F′ ⟨X2⟩wi×wi . (1.3)

7F′⦓X2⦔ is the universal skew field containing the noncommutative polynomial ring F′ ⟨X2⟩.
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λ′d−i · Ai = T′d−i+1 · λ′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d Ti ∈ F′ ⟨X2 ⊔ X1⟩wi×wi+1 . (1.4)

The base case r = 0 is trivial since Ad = 0.
For the inductive step, assume λ′r · Ad−r = 0. Since the ABP is homogenized over the X1

variables, applying the procedure described above for the noncommutative case, we obtain that

(λ′r Mj) · Ad−r−1 = 0 for every j ∈ [n]. As before, we construct the stacked matrix T =


λ′r M1

...
λ′r Mn

 .

Notice that, the next-layer vector Ad−r−1 is in the right kernel of T. At this stage, instead of
using Gaussian elimination; we apply the matrix factorization theory developed by Cohn [Coh95b]
to recover a factorization of T as C · B, such that the ABP complexity of the entries of C and B
are small. However, Cohn’s theory is not fully constructive for the purpose of proof complexity,
and we need a more explicit version of it. This is achieved in Lemma 5.8 — our main technical
contribution.

The first idea is to linearize the matrix T in a co-rank preserving manner. This is usually
achieved by a technique called Higman’s linearization [Coh95b]. We give a computationally
efficient version of it for the matrix of noncommutative ABPs (Lemma 5.14). Let the resulting
matrix be L. One of the key steps is to use concepts from matrix decomposability theorem of Fortin-
Reutenauer [FR04]. In particular, up to a invertible linear transformation we can express L in the
following form [

L11 0
L21 L22

]
.

The rest of the factor extraction procedure follows from a case analysis on the structure of L and it
involves Cohn’s factorization theorem (Lemma 5.7). The matrix C has the following form

C :=


C1

C2
...

Cn

 such that λ′r Mj = CjB for all j.

We set λ′r+1 := B and T′r+1 := ∑n
j=1 x1,jCj. By construction this gives the transition identity

λ′r · Ad−r = T′r+1 · λ′r+1 · Ad−r−1.

To derive the next vanishing condition, we distinguish two cases. If ncrank(T) < wr+1, then
the stacked coefficient matrix C = (C⊤1 , . . . , C⊤n )⊤ has full noncommutative column rank, hence a
left inverse over the free skew field, which implies λ′r+1 · Ad−r−1 = 0. If ncrank(T) = wr+1, then T
has full column rank and the identity T · Ad−r−1 = 0, together with the X1-homogeneity of Ad−r−1,
forces Ad−r−1 = 0, and hence also λ′r+1 · Ad−r−1 = 0.

A crucial technical aspect is the constructive version of Cohn’s factorization which is done in

10



Lemma 5.7. The proof involves computing a shrunk subspace of the linear matrix L, which is
given by a basis. Note that for a linear matrix L = ∑n

i=1 Lixi a subspace V is shrunk if

dim

(
Span

〈
n⋃

i=1

LiV

〉)
< dim(V).

Here, the linear matrix is defined over the variables xi, while the coefficients lie in the function
field F′.

The main algebraic tool is the computation of the second Wong sequences, which were orig-
inally used in the context of the noncommutative rank of linear matrices [IKQS15, IQS17]. We
use these results to argue that the degrees of y1, . . . , yk−2 in the rational expressions of the basis
elements are polynomially bounded. As a result, the matrix factorization can be made explicit in
Frege.

1.3 Further Remarks

The main contribution of this paper is a quasi-polynomial simulation of PCk,2- IPS by the Frege
proof system for k = (log s)O(1). This advances the program of relating commutative and non-
commutative IPS with respect to Frege simulability and sheds further light on the strength of
Frege. Our proof proceeds by giving a Frege simulation of identity witnesses for partially com-
mutative formulas whose commuting graph is a disjoint union of two cliques of unbounded size
and (k− 2) singleton vertices.

A natural question is whether this simulation can be extended to commuting graphs that
are disjoint unions of O(1) cliques of unbounded size. It would suffice to simulate, in Frege,
the identity witness for formulas respecting such a bucketing structure. Arvind, Chatterjee, and
Mukhopadhyay [ACM24] give a deterministic polynomial-time algorithm for testing whether a
formula (and more generally, an ABP) over X1 ⊔ · · · ⊔ Xk is identically zero, for constant k and
over the field Q. However, their result is based on solving the more general singularity testing
problem for linear matrices over Q⟨X1 ⊔ · · · ⊔ Xk⟩, and it is currently unclear how to adapt this
approach to a proof-complexity setting.

A further obstacle is the construction of skew fields containing partially commutative rings.
The algorithm of [ACM24] relies on a skew-field construction over Q⟨X1 ⊔ · · · ⊔ Xk⟩, which is
presently known only in characteristic zero for k ≥ 3 [KVV20]. Since our approach also relies
on rank arguments, extending our result to k ≥ 3 buckets would require a skew field containing
F⟨X1, . . . , Xk⟩ over fields of positive characteristic, in particular over GF(2). The existence of such
a construction remains open.

By contrast, for two buckets a skew field containing F⟨X1, X2⟩ exists over arbitrary field
([Coh97]). Nevertheless, this does not currently yield a simulation for PCk,3- IPS, as the matrix
factorization results developed in Section 5 do not appear to extend to the ring F⟨X1, X2⟩.
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Organization.

The remainder of the paper is organized as follows. Section 2 introduces computational models
and the ideal proof system. Section 3 defines the partially commutative ideal proof system, es-
tablishes soundness and completeness, and explains how it simulates Frege. Section 4 presents a
detailed proof of the main theorem, assuming Lemma 4.21. Finally, Section 5 develops our main
technical contribution, namely the construction of identity witnesses for partially commutative
formulas with two unbounded buckets.

2 Preliminaries

Notation. For any i, j ∈ N with i ≤ j, we denote the set {i, . . . , j} by [i, j]. In addition, for any
n ∈N, we denote the set {1, . . . , n} by [n].

2.1 Computational Models

Definition 2.1 (Algebraic Circuits and Formulas). An algebraic circuit C is a directed acyclic graph
with a unique output gate (root) of out-degree 0, and input gates of in-degree 0 (leaves) labeled by variables
x1, . . . , xn or constants from F. The internal gates are labeled by + or ×.

Each gate v computes a polynomial fv defined recursively: if v is an input, then fv = label(v) ∈
{x1, . . . , xn} ∪ F; if v = u op w for op ∈ {+,×}, then fv = fu op fw. The polynomial computed at the
output gate is the polynomial computed by the circuit.

If the underlying graph is restricted to be a tree, then the model is that of an algebraic formula. The size
of an algebraic circuit or formula is the number of wires in it. ♢

Definition 2.2 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered
directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , ℓ, with directed edges only between
adjacent layers (i to i + 1). There is a source vertex of in-degree 0 in layer 0, and one out-degree-0 sink
vertex in layer k. Each edge is labeled by an affine F-linear form where F is the underlying field. The
polynomial computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of
affine linear forms labeling the path edges.

The size of an ABP is the number of vertices in it. ♢

Partially Commutative ABPs Let A be a partially commutative ABP computing a polynomial
Â ∈ F ⟨X1 ⊔ X2⟩. Moreover, let us assume that A is homogenized with respect to the bucket
X1. That is, every edge of the ABP is labeled by a homogeneous linear form over the X1 bucket,

∑n
j=1 x1,j · f j with coefficients f j ∈ F ⟨X2⟩. Further, let the number of layers in A be d and the width

of A be w. Thus degX1
(Â) = d. Finally, let the nodes in layer i be {ui,1, ui,2, . . . , ui,wi} and s, t be the

source and sink nodes respectively.
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We then define the following vector of ABPs:

Ai := [A[ud−i,1, t], A[ud−i,2, t], · · · , A[ud−i,wd−i , t]]

where A[ud−i,j, t] is the partial ABP between ud−i,j and t for every j ∈ [wd−i].
Observe that each ABP in Ai computes a partially commutative polynomial which is homoge-

neous over X1 and has X1-degree i.
Similar notation is used if the ABP A is computing a partially commutative polynomial

F
〈

X1 ⊔ · · · ⊔ Xp
〉

for an arbitrary number p.

2.2 The Ideal Proof Systems

We start with the definition of the Ideal proof system (IPS) defined in [GP18].

Definition 2.3 (Ideal Proof Systems [FSTW21, GP18, LTW18]). Let f1, . . . , fm ∈ F[X] be a set of
polynomials such that

{
f1, . . . , fm, x2

1 − x1, . . . , x2
n − xn

}
has no common solution8. A proof of the

unsatisfiability of this set of polynomial equations, in the Ideal Proof System (IPS), is a polynomial
P(X, y1, . . . , ym, z1, . . . , zn) ∈ F[X, Y, Z] such that the following holds:

• P(X, 0, 0) = 0;

• P(X, f1, . . . , fm, x2
1 − x1, . . . , x2

n − xn) = 1.

The size of an IPS proof is the minimal size of a circuit (formula or ABP ) computing P(X, Y, Z).
If f1, . . . , fm ∈ F ⟨X⟩ are, instead, a set of noncommutative polynomials such that { f1, . . . , fm} ∪{

x2
i − xi : i ∈ [n]

}
∪
{

xixj − xjxi : i, j ∈ [n]
}

has no common solutions, then a proof of the unsatisfi-
ability of this set of polynomial equations, in the noncommutative Ideal Proof System (NC-IPS), is a
polynomial P(X, y1, . . . , ym, z1, . . . , zn, w1, . . . wn2) ∈ F ⟨X, Y, Z, W⟩ such that the following holds:

• P(X, 0, 0) = 0;

• P(X, f1, . . . , fm, x2
1 − x1, . . . , x2

n − xn, x1x2 − x2x1, . . . , xn−1xn − xnxn−1) = 1.

The size of an NC-IPS proof is the minimal size of a noncommutative formula computing P(X, Y, Z, W).
♢

Remark 2.4. Suppose we are given a system of equations, say { f1 = 0, . . . , fm = 0 : fi ∈ F[x1, . . . , xn]},
in the commutative setting. We say that the system is unsatisfiable if there is no a ∈ Fn such that fi(a) = 0
for every i ∈ [m]. However, when we consider the variable set X to be noncommuting, we need to look for
a common solution in the matrix algebra over F, denoted by Fd×d for some d > 1. In particular, elements
from F are thought of as 1 × 1 dimensional matrices. Hence, given a set of noncommutative equations
{ f1 = 0, . . . , fm = 0 : fi ∈ F ⟨x1, . . . , xn⟩}, we say that they are unsatisfiable if there does not exist any
d,
{

A = (A1, . . . , An) : Ai ∈ Fd×d} such that fi(A) = 0d×d for every i ∈ [m]. ♢
8That is, there does not exist x̄ ∈ {0, 1}n such that for every i ∈ [m], fi(x̄) = 0.
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Example 2.5 (Evaluation in Matrix algebra). xy− yx + 2 evaluates to(
a1 a2

a3 a4

)
·
(

b1 b2

b3 b4

)
−
(

b1 b2

b3 b4·

)
·
(

a1 a2

a3 a4

)
+ 2I2×2

when we substitute x =

(
a1 a2

a3 a4

)
, y =

(
b1 b2

b3 b4

)
∈ F2×2. ♢

2.3 The Frege Proof System

Definition 2.6 (Boolean Formula). A Boolean formula Φ over variables x1, . . . , xn is a finite rooted tree
with a fan-in of at most 2 in which:

• Each leaf is labeled by either a variable xi or a Boolean constant {0, 1}.

• Each internal node is labeled by one of the Boolean connectives {∨,∧,¬}.

• A node labeled by ¬ has exactly one child (unary connective).

• Nodes labeled by ∨ or ∧ have exactly two children (binary connectives).

The formula computes the Boolean function obtained by evaluating the tree in the natural way: each gate
applies its connective to the values computed by its child/ children. The size of the formula is the number of
nodes in it, denoted as |Φ|. ♢

We now define the Frege proof system.

Definition 2.7. (Frege derivation rule, [LTW18, Definition 2.2], [CR79]) Let x be a set of boolean vari-
ables. A Frege rule is a sequence of propositional formulas A0(x), . . . , Ak(x), for k ≥ 0, written as
A1(x),...,Ak(x)

A0(x) . When k = 0, the Frege rule is called axiom scheme.
A formula F0 is said to be derived by the rules from F1, . . . , Fk if there are formulas B1, . . . , Bn such that

for every i ∈ [0, 1, , . . . , k], Ai(B1/x1, . . . , Bn/xn) = Fi
9. The rule is said to be sound if any assignment

satisfying A1(x), . . . , Ak(x) also satisfies A0(x). ♢

A proof system is sound if it admits proofs only of tautologies. It is said to be implicationally
complete if, for all sets of formulas T, if T semantically imply F, then there is a derivation of F in
the proof system from the axioms T.

Definition 2.8. (Frege Proof, [LTW18, Definition 2.3], [CR79]) Given a set of Frege rules, a Frege proof
of a boolean formula A is a sequence of boolean formulas such that every formula is either an axiom or
derived by one of the rules from previous formulas and terminates at A. The size of the proof is the sum of
the sizes of all formulas in the proof. Given a set of sound Frege rules P, we say P is a Frege proof system if
it is implicationally complete. ♢

9we define Ai(B1/x1, . . . , Bn/xn) by the formula Ai where xi is substituted by Bi.
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It is known from the work of Reckhow [Rec76], that all Frege proof systems are polynomially
equivalent to each other. We now describe the instantiation of the Frege proof system that we will
work with in this paper, known as the Schoenfield’s system. For propositional formulas A, B, C,
we abbreviate ¬A ∨ B as A→ B.

The system has only three axiom schemes and they are as follows.

1. A→ (B→ A).

2. (¬A ∨ ¬B)→ ((¬A→ B)→ A).

3. (A→ (B→ C))→ ((A→ B)→ (A→ C)).

3 Partially Commutative Proof Systems

In this section we first define partially commutative polynomials and the partially commutative
proof system (PCp,q- IPS). We then prove that it is sound and complete, discuss its verifiability and
show that it simulates the Frege proof system.

Definition 3.1 (Partially Commutative Polynomial). Let X1, X2 be two sets of variables such that X ={
x1,1, . . . , x1,n

}
and X2 = {x2,1, . . . , x2,n} and let F be a field. A partially commutative monomial m ∈

F ⟨X1 ⊔ X2⟩ is uniquely determined by its restrictions to X1 and to X2: m|X1 = mX1 ∈ F⟨X1⟩ and
m|X2 = mX2 ∈ F⟨X2⟩, where mX1 and mX2 are noncommutative monomials. All variables in X1 commute
with all variables in X2. Hence, for m, m′ ∈ F⟨X1 ⊔ X2⟩, we have m = m′ if and only if m|X1 = m′|X1

and m|X2 = m′|X2 . This induces an equivalence relation ∼ on the set of monomials.10

A partially commutative polynomial f ∈ F ⟨X1 ⊔ X2⟩ is an F-linear combination of the partially
commutative monomials over X1 and X2.11 A partially commutative polynomial over p buckets, say
f ∈ F

〈
X1 ⊔ · · · ⊔ Xp

〉
, can be defined analogously. ♢

Note that a commutative polynomial f ∈ F(X) can be thought of as a partially commutative
polynomial in F ⟨X1, . . . , Xn⟩ where |Xi| = 1. As mentioned in the inroduction, inspired by this,
we define a generalization of both IPS and NC-IPS. In particular, we define PCp,q- IPS where
PC1,1- IPS ≡ NC-IPS and PCn,0- IPS ≡ IPS if the total number of variables is n.

We recall the definition here.

Definition 1.1. (Partially commutative IPS (PCp,q- IPS))) Let F be a field and X = X1 ⊔ · · · ⊔ Xp be a
set of partially commutative variables12 such that

∣∣Xq+1
∣∣ = ∣∣Xq+2

∣∣ = · · · = ∣∣Xp
∣∣ = 1. Further, for every

i ≤ q, let Xi =
{

xi,j : j ∈ [n]
}

without loss of generality and, for every q < i ≤ p, let Xi =
{

yi−q
}

.
Assume that f1 = f2 = · · · = fm = 0 is a set of partially commutative polynomial equations from

F ⟨X⟩ and suppose that the following set of equations (axioms) are included in fis.
10For example, consider two monomials m1 = x1,1x2,1x1,2x2,2 and m2 = x2,1x1,1x2,2x1,2. These two monomials are

the same with m1|X1 = m2|X1 = x1,1x1,2 and m1|X2 = m2|X2 = x2,1x2,2.
11It is sometimes useful to think of polynomials in F ⟨X1 ⊔ X2⟩ as a noncommutative polynomial in F ⟨X2⟩ ⟨X1⟩. That

is, f can be uniquely written as f = ∑mi∈F⟨X1⟩ mi · fi where fi ∈ F ⟨X1⟩.
12For every i, the variables within Xi are noncommuting, but for every i ̸= j, variables from Xi and Xj commute.

15



• Boolean axioms: xi,j(xi,j − 1) for every i ∈ [q], j ∈ [n]; y2
i − yi for every i ∈ [p− q].

• Commutator axioms: xi,jxi,j′ − xi,j′xi,j for every j ̸= j′ ∈ [n] and i ∈ [q].

A partially commutative IPS proof (PCp,q- IPS) of unsatisfiability of the system { fi} is a partially commu-
tative polynomial P(X, z1, . . . , zm) ∈ F ⟨X, Z⟩ such that,

1. The Z variables are noncommuting with every X variable.

2. P(X, 0) = 0.

3. P(X, f1, . . . , fm) = 1.

4. The Z variables are the place holder variables. Once they are substituted by partially commutative
polynomials fi, the multiplication respects the partial commutativity. ♢

Remark 3.2. In Definition 1.1, if P ⟨X, Z⟩ is computed by a model C (can be a circuit, ABP or formula), we
denote the proof system by C-PCp,q- IPS. If C is circuits or formulas, then each product gate has designated
left and right children; the leaves are labeled either by X variables or the set of placeholder variables Z that
satisfy the conditions (2) and (3) from Definition 1.1. In the case of ABPs, the order of multiplication
is maintained layer-wise. The size of a C-PCp,q- IPS proof is the minimal size of a C (circuit or ABP or
formula) that computes the proof polynomial P(X, Z). ♢

Remark 3.3. Analogous to the noncommutative setting, if we consider the partially commutative ring
F ⟨X1 ⊔ X2⟩ with |X1| = |X2| = n and the set of equations { f1 = 0, . . . , fm = 0 : fi ∈ F ⟨X1 ⊔ X2⟩},
a common solution is a set of d × d matrices (say A = {A1, . . . , An} and B = {B1, . . . , Bn}) for some
d > 1, such that the matrices from A and B commute with each other and that fi(A, B) = 0.

For the partially commutative ring F
〈

X1 ⊔ X2 ⊔ · · · ⊔ Xp
〉

where, for some 0 ≤ q ≤ p,
|Xi| = n for every i ∈ [q] and |Xi| = 1 for every i ∈ [q + 1, p], we think of it as the ring
F[Xq+1, . . . , Xp]

〈
X1 ⊔ · · · ⊔ Xq

〉
. So a set of equations { f1 = 0, . . . , fm = 0} in this setting have

a common solution if there exist
{

aq+1, . . . , ap
}
∈ F and a set of d × d matrices (say A1 =

{A1,1, . . . , A1,n} , . . . , Aq =
{

Aq,1, . . . , Aq,n
}

) for some d > 1, such that the matrices from Ai and Aj

commute with each other for every i, j and that fi(A1, . . . , Aq, aq+1, . . . , ap) = 0. ♢

3.1 Soundness and Completeness

Lemma 3.4. For every p, q, the proof system PCp,q- IPS is sound and complete for CNFs.

Proof. Soundness follows from the definition of the system. Assume we have a polynomial P(X, Z)
that satisfies the properties (1) : P(X, 0) = 0 and (2) : P(X, f1, . . . , fm) = 1. If the set of equations
{ fi} has a common solution A =

(
A1,1, . . . , Aq,n, aq+1, . . . ap

)
, where each Ai,j ∈ Fd×d for some

d ≥ 1 when i ≤ q and each ai ∈ F for i > q, then substituting the variables with A we obtain a
contradiction since

(1) =⇒ P(A, 0) = 0d×d ̸= Id×d = P(A, 0) ⇐= (2)
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To prove completeness, we first claim the following.

Claim 3.5. Let
{

f1 = 0, . . . , fm = 0 : fi ∈ F
〈

X1 ⊔ · · · ⊔ Xp
〉}

(with
∣∣Xj
∣∣ = n for every j ∈ [q] and∣∣Xj

∣∣ = 1 for every j ∈ [q + 1, p]) be a set of equations that include the boolean axioms and the com-
mutator axioms. Then the given system has a common solution in F(n×q)+(p−q) if and only if there exist
aq+1, . . . ap ∈ F and d ≥ 1, set of matrices

{
A1,1, . . . , Aq,n

}
⊆ Fd×d which satisfy the given system.

The proof of the above claim can be found in Subsection A.1, but here we use the statement to
prove completeness.

Consider the system of unsatisfiable equations { f1 = 0, . . . , fm = 0 | fi ∈ F ⟨X⟩} that includes
the boolean and commutator axioms. Here X = X1 ⊔ X2 ⊔ · · · ⊔ Xp where, for some 0 ≤ q ≤ p,
|Xi| = n for every i ∈ [q] and |Xi| = 1 for every i ∈ [q + 1, p]. We want to demonstrate the
existence of the proof polynomial P(X, Z) ∈ F ⟨X, Z⟩.

Moreover, assume that the axioms of the system other than the boolean and commutator ax-
ioms are obtained by a suitable arithmetization of an unsatisfiable CNF (as described below).

T(xij) = (1− xi,j) T(yi) = (1− yi) T(¬xij) = xi,j T(¬yi) = yi T(A∨ B) = T(A) · T(B).

For the partially commutative setting, we fix an order of variables in each bucket and multiply
them accordingly.

Now, for every t ∈ [q], let It be the two sided ideal generated by the commutators{
xt,jxt,j′ − xt,j′xt,j | j′ ̸= j ∈ [n]

}
and let π : F

〈
X1 ⊔ · · · ⊔ Xp

〉
→ F[X1 ⊔ · · · ⊔ Xp] be the surjec-

tive homomorphism that maps f ∈ F
〈

X1 ⊔ · · · ⊔ Xp
〉

to f (mod ⊔q
t=1 It) ∈ F[X1 ⊔ · · · ⊔ Xp]. We

denote π( fi) by f ′i .
By Claim 3.5, we know that partially commutative unsatisfiability in matrix algebra over F

implies commutative unsatisfiability over F. Since the boolean axioms are included in { fi}, the only
possible solutions in F must be boolean. However, the system does not have solutions due to
unsatisfiability in matrix algebra over F. Thus, we conclude that the system has no solution in F

as well. So, by Hilbert’s Nullstellensatz, there are polynomials g′1, . . . , g′m ∈ F[X1 ⊔ · · · ⊔ Xp] such
that ∑m

i=1 g′i · f ′i = 1. Let gi ∈ F
〈

X1 ⊔ · · · ⊔ Xp
〉

be the polynomial such that π(gi) = g′i . Then,

π(1−∑
i

gi · fi) = 1−∑
i

π(gi) · π( fi) = 1−∑
i

g′i · f ′i = 0

But 1 − ∑i gi · fi ∈ ⊔
q
t=1It =⇒ 1 − ∑i gi · fi = ∑k

t=1 ∑i,j ht,i,j(xt,ixt,j − xt,jxt,i)ĥt,i,j for some{
ht,i,j, ĥt,i,j

}
. So, for zi, zt,i,j ∈ Z, we can define

P(X, Z) := ∑
i

gi · zi +
k

∑
t=1

∑
i,j

ht,i,j · zt,i,j · ĥt,i,j,
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to be the proof polynomial since it clearly satisfies condition (2) and (3) from Definition 1.1.

3.2 Verifiability

From the definition of IPS, verifying a C-IPS refutation amounts to solving the C-PIT problem.
For PCp,q- IPS, refutations can be verified in randomized polynomial time when q = O(1), and
in randomized quasi-polynomial time when q = (log s)O(1), where s is the refutation size. This
follows from the randomized identity testing algorithm for formulas (and more generally, ABPs)
over Q⟨X1, . . . , Xq⟩ due to Worrell [Wor13].

Arvind, Chatterjee, and Mukhopadhyay [ACM24] recently gave a deterministic identity test-
ing algorithm for formulas (and ABPs) over Q⟨X1, . . . , Xq⟩. This implies the following: when p
is constant, for any q ≤ p, PCp,q- IPS is a sound and complete refutation system for unsatisfiable
propositional formulas (represented as partially commutative formulas), and refutations can be
verified in deterministic polynomial time over F = Q.

Note that, the algorithm given in [ACM24] does not work over finite field in general as dis-
cussed in Subsection 1.3. Nevertheless, when p = O(1) and q = 2, the algorithm of [ACM24]
can be applied over an arbitrary field F13. Hence PCp,2- IPS refutations admit deterministic
polynomial-time verification in this case.

3.3 PCp,q- IPS simulates the Frege proof system

The commutative IPS and the noncommutative IPS simulate the Frege proof system [GP18,
LTW18] and since PCp,q- IPS is a generalization of both, it should simulate Frege. We prove that
this is indeed the case, for the sake of completeness.

We start with the standard translation between propositional formulas and algebraic formulas.

Definition 3.6. Given a propositional formula T defined over ∧,∨,¬, and variables X = {x1, . . . , xN},
we define

Tr′(xi) := xi, Tr′(false) := 1, Tr′(true) := 0

and by induction on the size of the formula,

Tr′(¬Ti) := 1−Tr′(Ti); Tr′(T1∨T2) := Tr′(T1)Tr′(T2); Tr′(T1∧T2) := 1− (1−Tr′(T1))(1−Tr′(T2)).

If T is a propositional tautology then the polynomial computed by Tr′(T) is 0 over every boolean evaluation,

i.e. T̂r′(T)(a) = 0 for every a ∈ {0, 1}N . ♢

We now prove the following theorem.

Theorem 3.7. If a propositional tautology T has a size s Frege proof, then for every p ≥ q ≥ 0, Tr′(T)
has a PCp,q- IPS-proof of size poly(s).

13Personal communication with the authors of [ACM24].
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In particular, we show how PCp,q- IPS simulates Schoenfield’s system (Definition 2.3) in poly-
nomial size.

Lemma 3.8. (PCp,q- IPS simulates Schoenfield-Frege: analogue of [LTW18, Lemma 3.3]) Let F be
a field. Further, let X = X1 ⊔ · · · ⊔ Xp be partially commutative variables where, for some 0 ≤ q ≤ p,
|Xi| = n for every i ∈ [q] and |Xi| = 1 for every i ∈ [q + 1, p]. Here the variables inside each Xi are
noncommuting and variables from different buckets commute.

Let π be a tree-like Frege (Schoenfield) proof of a propositional formula T, defined over X, from as-
sumptions {F1, . . . , Fm}, and let the proof-lines be ℓ1, ℓ2, . . . , ℓs. Let Tr′(·) be the algebraic translation from
Boolean formulas to F ⟨X⟩ as in Definition 3.6. For each i ∈ [N] define the partially commutative algebraic
translation Li := Tr′(ℓi) ∈ F ⟨X⟩ and let F :=

(
Tr′(F1), . . . , Tr′(Fm)

)
.

Finally, let B be the set of all Boolean axioms: x(x − 1) for every x ∈ X and let C be the set of all
partial commutator axioms: xy− yx for every x, y ∈ Xi, i ∈ [p]. Then for every i ∈ [s], there exists a
partially commutative algebraic formula Φi(X, Y, Z, W) ∈ F ⟨X, Y, Z, W⟩, where Y = (y1, . . . , ym) and
Z, W are placeholder vectors for the Boolean and commutator axioms, such that:

1. Φi(X, 0, 0, 0) = 0.

2. Φi(X, F, B, C) = Li.

3. |Φi| ≤
(

∑ℓ∈Ai
|Lℓ|

)4
, where Ai ⊆ [s] is the set of Frege proof-lines involved in deriving ℓi in the

tree-like proof π (i.e., the indices of the sub-tree rooted at ℓi).

In particular, Φs is a PCp,q- IPS proof of Tr′(T) from assumptions {Tr′(F1), . . . , Tr′(Fm)}, and its size is
poly(|π|).

Proof. We follow the inductive construction of Lemma 3.3 in [LTW18]. The only modification
is that whenever [LTW18] uses commutator axioms to swap adjacent variables, in the partially
commutative setting it suffices to use commutators within the same bucket, since variables from
different buckets commute by definition. A complete proof is given in Subsection A.2.

4 Frege Quasi-Polynomially Simulates PCk,2- IPS for any constant k

In this section, we prove our main theorem (Theorem 1.2). In particular, we show that the existence
of a size s PCk,2- IPS refutation over GF(2) of an unsatisfiable CNF Φ = κ1 ∧ κ2 ∧ . . . ∧ κm implies
the existence of a Frege refutation of size s(k log s)O(1)

for Φ.
We begin by giving a more formal version of our main theorem (Subsection 4.1) and then re-

duce the problem, using the Reflection Principle, to simulating the proof of certain polynomial
identities in Frege given that the polynomials are being computed by arithmetic formulas (Sub-
section 4.2). In Subsection 4.3 we show that it is enough to consider the formulas computing these
polynomials to be homogeneous and over Subsection 4.4, Subsection 4.5.2 we show that we can
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instead work with homogeneous ABPs. It might be useful to notice that these steps do not require
q = 2 to quasi-polynomially simulate PCp,q- IPS via Frege for any p = logO(1) s).

Finally in Subsection 4.7, we give the required Frege simulation assuming the existence of
certain witness identities (described in Subsection 4.6). We can construct witness identities that
allow a quasi-polynomial Frege simulation only when q = 2.

4.1 Formal Statement of our Main Theorem

Let k be an arbitrarily fixed constant. Given a boolean formula Ψ over boolean variables X =

{x1, . . . , xN} with internal gates ∧,∨,¬, we define the corresponding partially commutative for-
mula Tr(Ψ) in the following inductive way:

1. Partition the variables into X = X1 ⊔ · · · ⊔ Xk where |X1| = ⌈(N − k + 2)/2⌉, |X2| = ⌊(N −
k + 2)/2⌋ and |Xi| = 1 for every i ∈ {3, . . . , k}. We treat X as algebraic variables now.

2. Tr(xi) := 1− xi and Tr(¬xi) := xi for every xi ∈ X.

3. Tr(False) := 0, Tr(True) := 1, Tr(ψ1 ∨ ψ2 ∨ . . . ∨ ψt) := ∏i Tr(ψi). The product maintains the
partial commutativity of the variables across the sets X1, X2.

4. Given a CNF Φ = κ1 ∧ κ2 ∧ . . .∧ κm, we denote the set of partially commutative polynomials
{Tr(κ1), . . . , Tr(κm)} by PΦ with Tr(κj) := PΦ,j.

Let F be a PCk,2- IPS proof over GF(2) that witnesses the unsatisfiability of PΦ =

{PΦ,1, . . . , PΦ,m} and let PΦ be the set that includes the boolean and commutator axioms to PΦ. Then,
by Definition 1.1, F satisfies the conditions: F(X, 0) = 0 and F(X, PΦ) = 1.

Note. For the remainder of this paper, in order to increase readability, we assume without loss
of generality that |X1| = |X2| = n.

Definition 4.1. Let X = X1 ⊔ · · · ⊔ Xk be partially commutative variables where |X1| = n = |X2| and
|Xi| = 1 for every i ∈ {3, . . . , k}. Let F be a partially commutative formula computing a polynomial in
F ⟨X⟩ over GF(2). We define the boolean formula F̃ from F by changing the + gate to ⊕, the × gate to ∧
and treating the algebraic variables X as boolean variables. ♢

Observe that over the boolean cube {0, 1}N , both formulas F and F̃ evaluate the same value.
Now define the set P̃Φ :=

{
P̃Φ,1, . . . , P̃Φ,m

}
. From the PCk,2- IPS proof F, we obtain the following

two tautologies using Definition 4.1:

¬F̃(X, 0) F̃(X, P̃Φ) (4.2)

The formal statement of Theorem 1.2 is then the following.

Theorem 4.3. Let Φ = κ1 ∧ · · · ∧ κm be an unsatisfiable CNF and PΦ = {Tr(κ1), . . . , Tr(κm)} be the
corresponding partially commutative system that has no common boolean root. If there is a PCk,2- IPS
refutation for PΦ of size s over GF(2) then there is a Frege proof for ¬Φ of size sO(k log s)O(1)

.
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4.2 The Reflection Principle

In order to prove Theorem 4.3, we use the reflection principle.

Lemma 4.4. ([LTW18, Lemma 4.3]) There is a polynomial size Frege proof of ¬Φ assuming ¬F̃(X, 0)
and F̃(X, P̃Φ) has a polynomial size Frege proof.

Even though the work of Li, Tzameret and Wang [LTW18] prove this when PΦ is a noncom-
mutative formula, the same proof applies here as well, since there is no distinction between the
two settings once we have written a proof of ¬F̃(X, 0) and F̃(X, P̃Φ) within Frege. Therefore, our
goal is to obtain a Frege Proof of Equation 4.2.

In particular, using Lemma 4.4, Theorem 4.3 is a direct corollary of the following theorem.

Theorem 4.5. Let X = X1 ⊔ · · · ⊔ Xk be partially commutative variables where |X1| = n = |X2| and
|Xi| = 1 for every i ∈ {3, . . . , k}. Further, let F be a partially commutative formula of size s over GF(2),
with variable set X, that computes the 0 polynomial. For any k, there exists a constant c > 0 such that the
boolean formula ¬F̃(X) has a Frege proof of size s(k log s)c

.

The remainder of the section is dedicated to the proof of Theorem 4.5.
Following the notation of [LTW18], for Boolean formulas F̃ and G̃, we write F̃ ⊢ G̃ to de-

note that there exists a Frege proof of G̃ from the axiom F̃ of size polynomial in |G̃|. That is, G̃
can be derived from F̃ by purely syntactic manipulations using standard Frege inference rules
and Boolean equivalences, including associativity and distributivity, as well as identities such as
False⊕ F̃ ≡ F̃, True ∨ F̃ ≡ True, True⊕ F̃ ≡ ¬F̃, False ∧ F̃ ≡ False, True ∧ F̃ ≡ F̃, and similar
Boolean equivalences.

Similarly, for two vectors of formulas F and G, we write F ⊢ G to denote that, for each index,
the corresponding entry of G can be derived from the corresponding entry of F by a Frege proof
of size polynomial in the size of that entry.

4.3 Homogenization of Partially Commutative Formulas

Let F be a partially commutative formula over GF(2) with the variable set X = X1 ⊔ . . . ⊔ Xk.
Given a partially commutative monomial m = ∏i∈[k] mi with mi being noncommutative in Xi

for every i ∈ [k], define the degree signature of m to be d(m) := (d1, . . . , dk) if the degree of mi

is di for every i ∈ [k]. A partially commutative polynomial f is homogeneous if every monomial
of f has the same degree signature. Thus any partially commutative polynomial computed by a
formula F, say F̂, can be uniquely written as

F̂ = ∑
d3,...,dk≤1

∑ di≤d

F̂(d1,...,dk)
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where the degree of F̂ is d and F̂(d1,...,dk) is the homogeneous component of F̂ with degree signature
(d1, . . . , dk).

Lemma 4.6. Let F be a partially commutative formula of size s and depth O(log s) computing a polynomial
in F ⟨X1 ⊔ . . . ⊔ Xk⟩ where F = GF(2). Moreover, let F(d1,...,dk) be the homogeneous component of the
polynomial computed by F with degree signature (d1, . . . , dk). Then there exists a sO(log s) size Frege proof
of

F̃(X)←→
⊕

(d1,...,dk)

F̃(d1,...,dk). (4.7)

This is analogous to [LTW18, Lemma 4.6] and the proof follows along the same lines. A full
proof is present in Subsection B.1, when k = 2, for the sake of completeness.

To show within Frege that the homogeneous partially commutative formula F is identically
0, we first convert F into a layered homogeneous ABP AF that computes the same polynomial.
Following [LTW18], we establish equations that witness AF computes the zero polynomial.

Since Frege operates on formulas rather than ABPs, we translate this argument back to for-
mulas by associating each partial ABP in AF with a unique induced formula in F that computes
the same polynomial. Let F̃ be the Boolean formula obtained from the homogeneous partially
commutative formula F over GF(2) via Definition 4.1.

4.4 Translation Between Formulas and ABPs

We first eliminate Boolean constants from F̃ using the following lemma from [LTW18]. That is, we
transform F̃ into a constant-free formula by applying standard Boolean equivalences. Although
the lemma is stated for noncommutative formulas in [LTW18], it applies verbatim to partially
commutative formulas.

Lemma 4.8. ([LTW18, Lemma 4.10]) Let F be a non-constant partially commutative homogeneous for-
mula over GF(2) computing the zero polynomial. Then there exists a constant-free partially commutative
formula F′ of size poly(|F|) computing the same zero polynomial, such that F̃ ⊢ F̃′.

Next, given a partially commutative homogeneous constant-free formula F, we construct
the corresponding homogeneous partially commutative ABP AF following the construction of
[Nis91]. The construction proceeds inductively as follows.

• If u = v + w is a node of F and the ABPs Av and Aw have already been constructed, then
Au is obtained by taking the parallel composition of Av and Aw, merging their source nodes
into a single source and their sink nodes into a single sink. The resulting ABP computes the
sum of the polynomials computed by Av and Aw.

• If u = v× w, then Au is obtained by sequentially composing Av and Aw: the sink of Av is
identified with the source of Aw, and the source of Av and the sink of Aw serve as the source
and sink of Au, respectively.
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Tracking computation in F corresponding to computation done AF

The arguments are the same as that of [LTW18], but we recall them here as well for completeness.
Firstly, we need the following two notions defined in their work.

Definition 4.9 (Induced formula [LTW18]). Given a formula F, let F′ be a sub-formula of F. Assume
{u1, . . . , us} are nodes in F′ and {α1, . . . , αs} are elements of F. Then F′(u1 = α1, . . . , uk = αs) is called
the induced formula from F. ♢

Definition 4.10 (v-part [LTW18]). Let F be a formula and AF be the corresponding ABP for F with source
and sink nodes s, t, respectively. For any node v ∈ AF, the v-part of F is an induced formula computing the
polynomial AF[v, t]. Although a formula may admit multiple v-parts in general, for homogeneous formulas
and their corresponding homogeneous ABPs, we define a canonical v-part for every node v ∈ AF, denoted
by F∗v . ♢

We now consider a map g : {nodes of AF} → {nodes of F} ∪ {∅} where g(u) = v if the
polynomial computed by F at v is the polynomial computed between u and t in AF.

The definition is by induction, and can be found in Subsection B.2.

Definition of the function D. We then define a function D that takes as input a sub-formula Fu

and a node v ∈ F, and outputs an induced sub-formula of F. Although D is defined for all nodes
of F, we only apply it to nodes in the image of g. Note that constants introduced in D do not
appear in the original constant-free formula F.

For every node u ∈ F, define D(Fu, u) := Fu. If u is not a node of F, then D(F, u) is undefined.
The function D is defined inductively from the leaves upwards.

Let G, H be homogeneous sub-formulas of F. For a +-node,

D(G + H, u) =

D(G, u) + 0, u ∈ G,

0 + D(H, u), u ∈ H.
(4.11)

For a ×-node,

D(G× H, u) =

D(G, u)× H, u ∈ G,

1× D(H, u), u ∈ H.
(4.12)

Definition of the v-part. Finally, for a node v ∈ AF, define F∗v := D(F, g(v)). Let r be the root of
F. Since g(s) = r, where s is the source node of AF, we have F∗s = D(F, r) = F, which computes
the same polynomial F̂ as the original homogeneous formula F.

Following the notation that has been defined, [LTW18] shows,

F∗v ⊢ ∑
u: u has an incoming edge from v

AF[v, u] · F∗u .
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That is, we can prove the following tautology within Frege:

F∗v ↔ ∑
u: u has an incoming edge from v

AF[v, u] · F∗u .

Thus it is enough to argue about the partially commutative ABP AF, which is what we do now.

4.5 Refined Translation Between Formulas and ABPs

To handle partial commutativity, we represent polynomials as sums of monomials over a fixed
bucket, with coefficients given by polynomials over the remaining buckets. We need this view-
point to be incorporated directly into the underlying computational model (ABPs or formulas).
So, we first transform the homogeneous partially commutative ABP AF over the variable set X[k]

into an equivalent ABP A′F that computes the same polynomial such that each edge label of A′F is a
homogeneous linear form in the X1 variables with noncommutative polynomials in the remaining
variables as coefficients. It is not hard to see that each of these coefficients are computable by a
noncommutative ABP of polynomial size.

Lemma 4.13. [ACM24, Lemma 12] Let f ∈ F ⟨X1 ⊔ . . . ⊔ Xk⟩ be a partially commutative polynomial of
degree d computed by an ABP of size s. Then for any 1 ≤ i ≤ k, we can efficiently homogenize the ABP
over the variable set Xi, and the coefficients ∈ F ⟨X1 ⊔ . . . Xi−1 ⊔ Xi+1 ⊔ · · · ⊔ Xk⟩ can also be computed
by partially commutative ABPs of size O(sd).

We now construct, in Frege, these ABPs that compute the coefficients and show that the com-
putation can be tracked in the original formula. We then give a quasi-polynomial upper bound on
the size of these induced formulas, in order to ensure that we have a similar bound on the final
Frege simulation. Finally, we observe that these induced formulas satisfy certain identities. These
will later help us to construct identity witnesses which will allow us to give the Frege simulation.

4.5.1 Refined ABP Construction

Recall that F is a partially commutative homogeneous constant-free formula over the variable set
X = X1 ⊔ . . . ⊔ Xk, and AF is the corresponding homogeneous partially commutative ABP of size
s and depth d computing the same polynomial Thus every edge label in AF from ui,j to ui+1,ℓ is of
the form

Lj,ℓ =
k

∑
a=1

L(a)
j,ℓ (Xa),

where each L(i)
j,ℓ is a homogeneous noncommutative linear forms. Without loss of generality, let us

assume that we want to homogenize with respect to X1.
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Construction of A′F. We construct the ABP A′F exactly as described earlier. For each node ui,j of
AF, we introduce nodes

u(0)
i,j , u(1)

i,j , . . . , u(d)
i,j

in A′F, where the superscript tracks the accumulated X1-degree.

Base Case: Let us assume that i = 1. If s
Li−→ u1,i in AF with Li = ∑k

a=1 L(a)
i (Xa), then A′F contains

s
L(1)

i−−→ u(1)
1,i ; s

L(a)
i−−→ u(0)

1,i for every a ∈ {2, . . . , k} .

Inductive Step: If ui,j
Lj,ℓ−→ ui+1,ℓ in AF, then for all p ∈ {0, . . . , d} the ABP A′F contains

u(p)
i,j

L(1)
j,ℓ−−→ u(p+1)

i+1,ℓ (p < d); u(p)
i,j

L(a)
j,ℓ−−→ u(p)

i+1,ℓ for every a ∈ {2, . . . , k} .

For a node ui,j of AF, we write (AF[s, ui,j])
(p) to denote the X1-degree-p homogeneous compo-

nent of the polynomial computed by AF[s, ui,j]. The following claim is now easy to verify.

Claim 4.14. For every node ui,j of AF and every p ∈ {0, . . . , d},

A′F[s, u(p)
i,j ] =

(
AF[s, ui,j]

)(p) ,

where (·)(p) denotes the X1-degree-p homogeneous component.

By defining the sink nodes of A′F to be t(0), . . . , t(d), we have that A′F computes the same poly-
nomial as AF and has size O(sd).

4.5.2 Refined ABP Tracking

We again assume without loss of generality that homogenization has been done with respect to
X1 in the ABP A′F. Recall the map g : {nodes of AF} → {nodes of F} ∪ {∅}. We define a refined
map

g′ : {nodes of A′F} → {nodes of F} ∪ {∅}

by g′(u(p)
i,j ) := g(ui,j). That is, g′ ignores the superscript (p) and records only the corresponding

location in the formula F.

Definition of the refined operator D′. Let g′ be the tracking map from the nodes of A′F to the
nodes of F. For a node u of F and a parameter p ∈ {0, . . . , d}, we define an induced formula

F∗(p)
u := D′(F, u, p),

where D′ extracts the X1-degree-p component of the induced polynomial corresponding to u.
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For a node v = u(p)
i,j ∈ A′F, the induced formula associated with v is F∗v := F∗(p)

g′(v). The operator
D′ is defined inductively on the structure of the formula F and the degree parameter p.

Leaves. If Fu = x, then

D′(x, u, p) =


x, x ∈ X1 and p = 1,

x, x ∈ X[k] \ X1 and p = 0,

0, otherwise.

Addition. If Fu = G + H, then

D′(G + H, u, p) =

D′(G, u, p) + 0, u ∈ G,

0 + D′(H, u, p), u ∈ H.

Multiplication. If Fu = G · H, then

D′(G · H, u, p) =


p

∑
q=0

D′(G, u, q) · F∗(p−q)
root(H)

, u ∈ G,

D′(H, u, p), u ∈ H.

Here F∗(p−q)
root(H)

denotes the induced formula obtained by applying D′ to the root of H with parameter
p− q.

The above recursion is well-founded since it is defined on strict sub-formulas of F and proceeds
lexicographically on the formula depth and the degree parameter. Further, for every node v =

u(p) ∈ A′F, the induced formula F∗v computes exactly the polynomial computed by the partial
ABP A′F[v, t], which is the X1-degree-p homogeneous component of the polynomial computed by
AF[g′(v), t]. We formalise this below.

Lemma 4.15. (Well-definedness of the refined operator D′) Let F be a partially commutative homoge-
neous constant-free formula over the variable set X = X1 ⊔ . . . ⊔ Xk, and let d be the number of layers of
the ABP AF (hence the maximum possible X1-degree in the constructions). Let D′ be defined inductively
on sub-formulas of F and on a parameter p ∈ {0, 1, . . . , d} as in the construction of Subsection 4.5.2.

Then for every sub-formula Fu of F, every node u of Fu, and every p ∈ {0, . . . , d}, the expression
D′(Fu, u, p) is well-defined. Moreover, for every triple (Fu, u, p) for which D′(Fu, u, p) is defined, the
output is an induced formula of Fu (obtained from Fu by substituting some sub-formulas by constants 0, 1
and by replacing some sub-formulas by their degree-refined induced parts).

The proof is by induction and can be found in Subsection B.3
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4.5.3 Size of the degree-refined induced formulas.

We now give a quasi-polynomial upper bound on the size of these induced formulas. This will
help us ensure that we have a similar bound on the final Frege simulation.

Lemma 4.16. Let F be a partially commutative homogeneous constant-free formula obtained from an orig-
inal size-s formula by balancing and homogenization, such that

|F| = sO(log s) and depth(F) = O(log |F|).

Let AF be the homogeneous partially commutative ABP corresponding to F, and let A′F be the refined ABP
constructed above, with depth (number of layers) d. Then:

1. |A′F| = sO(log s).

2. For every node u of F and every p ∈ {0, . . . , d}, the induced formula F∗(p)
u has size at most sO(log3 s).

Consequently, for every node v ∈ A′F, the induced formula F∗v also has size at most |F∗v | ≤ sO(log3 s).

Proof. Size of A′F. By the standard construction due to Nisan [Nis91], the ABP AF has size |AF| =
O(|F|) and depth d ≤ |AF| ≤ O(|F|). The refinement from AF to A′F replaces each node by (d + 1)
copies and replaces each edge by at most 2(d + 1) edges, hence

|A′F| = O(|AF| · d) ≤ O(|F| · |F|) = O(|F|2).

Since |F| = sO(log s), we obtain |A′F| = sO(log s).
Size of F∗(p)

u . Let prod-depth(Fu) denote the number of ×-gates on a longest root-to-leaf path
in the subformula Fu. By the definition of the refined operator D′, the only source of blow-up is at
a multiplication gate, where for fixed p we introduce a sum of at most (p + 1) ≤ (d + 1) product
terms. A standard structural induction on Fu (as in the proof of Lemma 4.15) yields the bound

|F∗(p)
u | ≤ (d + 1)prod-depth(Fu) · |Fu|. (4.17)

Since prod-depth(Fu) ≤ depth(F) for every u, we have

|F∗(p)
u | ≤ (d + 1)depth(F) · |F| ≤ (|F|+ 1)O(log |F|) · |F| = |F|O(log |F|).

Now |F| = sO(log s) implies log |F| = O(log2 s), and therefore

|F|O(log |F|) =
(

sO(log s)
)O(log2 s)

= sO(log3 s).

This proves |F∗(p)
u | ≤ sO(log3 s) for every u and p.

Finally, for a node v = u(p)
i,j ∈ A′F, by definition F∗v = F∗(p)

g′(v), and hence the same bound holds
for |F∗v |.
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4.5.4 Local ABP identities in A′F.

Recall that for the original ABP AF, the induced formulas satisfy the identity

F∗v = ∑
u: (v,u) is an edge in AF

AF[v, u] · F∗u .

We now show that an analogous identity holds for the refined ABP A′F. These will help us to
construct identity witnesses in the next sub-section.

We fix a sink node t of A′F (e.g. t = t(d)), and for every node v we write A′F[v, t] for the polyno-
mial computed by the partial ABP from v to t.

Lemma 4.18 (Local identity for A′F). For every node v ∈ A′F, the induced formula F∗v satisfies

F∗v = ∑
u: (v,u) is an edge in A′F

A′F[v, u] · F∗u .

Proof. By correctness, the induced formula F∗v computes exactly the polynomial computed by the
partial ABP A′F[v, t]. Every path from v to t in A′F begins by traversing a unique outgoing edge
(v, u), and the contribution of all such paths is given by A′F[v, u] · A′F[u, t]. Summing over all
outgoing edges yields

A′F[v, t] = ∑
u: (v,u) is an edge in A′F

A′F[v, u] · A′F[u, t].

Replacing A′F[u, t] by the polynomial computed by F∗u gives the desired identity.

Explicit form of the identity. If v = u(p)
i,j is a node of A′F, then its outgoing edges are of the form

u(p)
i,j

L(1)
j,ℓ−−→ u(p+1)

i+1,ℓ (p < d); u(p)
i,j

L(a)
j,ℓ−−→ u(p)

i+1,ℓ for every a ∈ {2, . . . , k} .

Accordingly, the identity of Lemma 4.18 can be written as

F∗
u(p)

i,j
= ∑

ℓ

(
L(1)

j,ℓ · F
∗
u(p+1)

i+1,ℓ

+
k

∑
a=2

L(a)
j,ℓ · F

∗
u(p)

i+1,ℓ

)
.

This identity is the degree-refined analogue of the corresponding identity for AF, and it follows
directly from the construction of A′F and the definition of the refined operator D′.

Remark (Role of the local identities). Similar to [LTW18], for any node v ∈ A′F, we can prove
the following within Frege,
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F∗v ⊢ ∑
u: u has an incoming edge from v

A′F[v, u] · F∗u . (4.19)

Although the degree-refined induced formulas F∗v = D′(F, g′(v), p) may incur a quasi-
polynomial size blow-up due to the degree-convolution at ×-gates, the local identity of
Lemma 4.18 allows us to reason about A′F layer-by-layer: each line

F∗v = ∑
(v,u)∈E(A′F)

A′F[v, u] · F∗u

is a short Frege-derivable equivalence, and therefore the Frege proof length is bounded by a
polynomial in |A′F| and in maxv |F∗v |. Moreover, balancing the sums in Lemma 4.18 yields
depth(F∗v ) ≤ O(log2 |F|), since each ×-gate introduces a sum of at most (d + 1) terms (which
can be balanced to depth O(log(d + 1))) and prod-depth(F) ≤ depth(F) = O(log |F|).

4.6 Identity Witnesses

We now define the identity witnesses that will help us give the Frege simulation.
We have been given a partially commutative X1-homogeneous ABP A that computes a poly-

nomial Â ∈ F ⟨X⟩. Here X = X1 ⊔ . . . ⊔ Xk, where |X1| = n = |X2| and |Xi| = 1 for every
i ∈ {3, . . . , k}. Note that we can assume A is X1-homogeneous because of our discussion in Sub-
section 4.5. Further observe that F ⟨X⟩ is contained in F[y1, . . . , yk−2] ⟨X1 ⊔ X2⟩ in our setting, if we
assume Xi = {yi−2} for every i ∈ {3, . . . , k}. So we can assume that A is a partially commutative
ABP computing a polynomial in F[y] ⟨X1 ⊔ X2⟩.

For the remainder the section, we will be using this view.

4.6.1 ABP identity witnesses over F[y]

Let X = X1 ⊔ X2 be partially commutative variables and ȳ := {y1, . . . , yk−2}
Assume that A is a partially commutative ABP of size s computing a polynomial in

F[y] ⟨X1 ⊔ X2⟩ of depth d, which is homogeneous over X1 and computes the identically zero poly-
nomial. Let the number of layers in A be d. So degX1

(Â) ≤ d. Further, let the i-th layer of A have
wi nodes, say {ui,1, ui,2, . . . , ui,wi}. Also let s, t be the source and sink nodes, respectively.

Define w = maxi∈[d] {wi} and for i ∈ [d], define the column vector

Ai =
(

A[ud−i,1, t], A[ud−i,2, t], . . . , A[ud−i,wd−i , t]
)⊤ ∈ (F[y] ⟨X1 ⊔ X2⟩)wd−i .

where, for every j ∈ [wd−i], A[ud−i,j, t] is the partial ABP with the source node ud−i,j in the (d− i)-
th layer and the sink being t. Observe that each ABP in Ai is computing a partially commutative
polynomial that is homogeneous over X1, and the X1-degree is i.
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In particular, Ad is the polynomial computed by A and hence Ad = 0.

Homogeneity and coefficient matrices. Since A is homogeneous over X1, each layer transition
can be written as

Ad−r =
n

∑
j=1

x1,j · (M(r)
j · Ad−r−1), r = 0, 1, . . . , d− 1, (4.20)

where M(r)
j ∈ F[y] ⟨X2⟩wr×wr+1 are the coefficient matrices (depending on r), and multiplication is

matrix-vector multiplication over F[y] ⟨X2⟩.

Lemma 4.21. (ABP identity witnesses over F[y]) Let A, Ai for every i ∈ [d], be as described in
Subsection 4.6.1. Further suppose that A computes the zero polynomial. Then there exist matrices
λ′′0 , λ′′1 , . . . , λ′′d−1 and T′′1 , T′′2 , . . . , T′′d−1 with

λ′′r ∈ F[ȳ] ⟨X2⟩wr×wr , T′′r+1 ∈ F[ȳ] ⟨X1 ⊔ X2⟩wr×wr+1 ,

such that the following identities hold.

λ′′d−i · Ai = 0 ∀ i = 1, 2, . . . , d. (4.22)

λ′′d−i · Ai = T′′d−i+1 · λ′′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d. (4.23)

Here, λ′0 is a polynomial of degree poly(s, d), and the degree of the coefficients of each entry in the witness
matrices λ′′i , and T′′j is at most poly(s, d). Moreover, the entries of λ′′i , T′′j are computable by poly(s)-size
ABP.

Even though the witness equations look similar to those in the work of Li, Tzameret and Wang
[LTW18], there is a major difference between the proofs of their existence. We explain this in detail
in Section 5. In this section, we first complete the proof of Theorem 4.5 assuming Lemma 4.21.

4.7 The Frege Simulation

Let us first recall Theorem 4.5.

Theorem 4.5. Let X = X1 ⊔ · · · ⊔ Xk be partially commutative variables where |X1| = n = |X2| and
|Xi| = 1 for every i ∈ {3, . . . , k}. Further, let F be a partially commutative formula of size s over GF(2),
with variable set X, that computes the 0 polynomial. For any k, there exists a constant c > 0 such that the
boolean formula ¬F̃(X) has a Frege proof of size s(k log s)c

.

Proof. Let F be a partially commutative homogeneous formula over X computing the zero poly-
nomial over GF(2) and let A := A′F be the corresponding partially commutative ABP that is ho-
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mogeneous over X1 and computes the same polynomial. Note that this can be assumed because
of our discussions in Subsection 4.4 and Subsection 4.5.

Assume A has depth d and layer widths w0, . . . , wd. We also think of the polynomial being
computed by AF to be in GF(2)[y1, . . . , yk−2] ⟨X1 ⊔ X2⟩ as discussed in Subsection 4.6. Here we are
assuming that Xi = {yi−2} for every i ∈ {3, . . . , k}.

For i ∈ [d], recall the column vector of layer-to-sink polynomials

Ai =
(

A[ud−i,1, t], A[ud−i,2, t], . . . , A[ud−i,wd−i , t]
)⊤ ∈ (GF(2)[y] ⟨X1 ⊔ X2⟩)wd−i .

In particular, Ad is a scalar and is equal to the polynomial computed by A, and since F ≡ 0, we
have Ad = 0. By Lemma 4.21, there exist witness matrices λ′′0 , λ′′1 , . . . , λ′′d−1 and T′′1 , T′′2 , . . . , T′′d−1

with
λ′′r ∈ GF(2)[y] ⟨X2⟩wr×wr , T′′r+1 ∈ GF(2)[y] ⟨X1 ⊔ X2⟩wr×wr+1 ,

such that the following algebraic identities hold.

λ′′d−i · Ai = 0 ∀ i = 1, 2, . . . , d, (4.24)

λ′′d−i · Ai = T′′d−i+1 · λ′′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d. (4.25)

Further, the y-degree of each entry in the witness matrices λ′′i and T′′j is at most poly(s, d).

Booleanization. Following Definition 4.1, for every algebraic object P over GF(2) we write P̃ for
its Booleanization (i.e. + becomes ⊕ and · becomes ∧). In particular, Ãi is the vector of Boolean
formulas obtained by Booleanizing each entry of Ai. Over GF(2), an algebraic identity P = 0
translates into the Boolean tautology ¬P̃.
From Equation 4.24, we obtain that for every i ∈ [d], the Boolean tautologies

∧
p∈[wd−i ]

¬ ⊕
t∈[wd−i ]

(
λ̃′′d−i[p, t] ∧ Ãi[t]

) . (4.26)

Similarly, Equation 4.25 yields, for every i ∈ {2, . . . , d} and every p ∈ [wd−i], the Boolean equiva-
lences

⊕
t∈[wd−i ]

(
λ̃′′d−i[p, t] ∧ Ãi[t]

)
←→

⊕
t∈[wd−i+1]

T̃′′d−i+1[p, t] ∧
( ⊕

q∈[wd−i+1]

λ̃′′d−i+1[t, q] ∧ Ãi−1[q]
) .

(4.27)

Key Frege reflection step. Although Equation 4.27 is semantically true as the Booleanization of the
algebraic identity Equation 4.25, we must also argue that it has a short Frege proof. The subtlety
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is that Equation 4.25 is an identity in the partially commutative algebra GF(2)[y] ⟨X1 ⊔ X2⟩, while
the Frege simulation in [LTW18] is stated for noncommutative ABPs over GF(2). Note that the
Frege simulation of [LTW18] can be extended to work for noncommutative ABPs over GF(2)[y]
as long as the y-degree is polynomially bounded on each edge. This is because the change simply
translates to replacing edges by a "small gadget" in the formulas on each line of the Frege proof..

Since we have a bound on the y-degree of each entry of the witness matrices by Lemma 4.21,
it is enough to reduce Equation 4.25 to a polynomial-sized collection of noncommutative ABP
identities over GF(2)[y] ⟨X2⟩ by extracting coefficients only with respect to the leftmost linear X1-
variables (not X1-monomials). Formally, we have the following claim.

Claim 4.28. (Frege derives the local witness equivalences) For every i ∈ {2, . . . , d} and every p ∈
[wd−i], the equivalence Equation 4.27 has a Frege proof of size quasi-polynomial in |A| (equivalently, quasi-
polynomial in |F|).

We first finish the proof of Theorem 4.5 assuming it.

Base case: i = 1. We would like to write a Frege proof for the following equation.

∧
p∈[wd−1]

¬ ⊕
t∈[wd−1]

(
λ̃′′d−1[p, t] ∧ Ã1[t]

) .

Fix p ∈ [wd−1]. Since A is homogeneous over X1, each entry of A1 is a homogeneous linear form
in the X1-variables with coefficients in GF(2)[y] ⟨X2⟩: for each t ∈ [wd−1],

A1[t] =
n

∑
j=1

x1,j · ft,j, ft,j ∈ GF(2)[y] ⟨X2⟩ .

Therefore, the identity ∑t λ′′d−1[p, t] · A1[t] = 0 is equivalent to Equation 4.29, namely:

wd−1

∑
t=1

λ′′d−1[p, t] · A1[t] = 0⇐⇒ ∀j ∈ [n],
wd−1

∑
t=1

λ′′d−1[p, t] · ft,j = 0. (4.29)

Each polynomial ∑t λ′′d−1[p, t] · ft,j is computed by a noncommutative ABP (over GF(2) with vari-
able set X2) of size poly(|A|), and hence by [LTW18] each corresponding Boolean tautology

¬
⊕

t∈[wd−1]

(
λ̃′′d−1[p, t] ∧ f̃t,j

)
has a quasi-polynomial size Frege proof. Thus Frege derives Equation 4.26 for i = 1.
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Inductive step: Let us assume that there is a Frege derivation of Equation 4.26 for i − 1. Fix
p ∈ [wd−i]. Then, for every t ∈ [wd−i+1], we have

¬
⊕

q∈[wd−i+1]

(
λ̃′′d−i+1[t, q] ∧ Ãi−1[q]

)
,

so the right-hand side of Equation 4.27 is false. By Claim 4.28, Frege has a short proof of the
equivalence Equation 4.27, and therefore Frege derives that the left-hand side of Equation 4.27 is
also false. That is,

¬
⊕

t∈[wd−i ]

(
λ̃′′d−i[p, t] ∧ Ãi[t]

)
.

Since p was arbitrary, this yields Equation 4.26 for i.
Iterating through i = 2, 3, . . . , d, yields Equation 4.26 for i = d. Since λ′0 is not identically 0

over GF(2) from the construction given in Equation 5.41, and w0 = 1, Equation 4.26 for i = d
simplifies to ¬Ãd, i.e. ¬Ã. Finally, since A = A′F computes the same polynomial as F, we obtain a
Frege proof of ¬F̃.

Remark (induced formulas viewpoint). Note that, if v = ud−i,t is the t-th node in layer (d− i),
then Ai[t] = A[v, t]. By the definition of the induced-formula tracking in A′F, the formula F∗v
computes the same polynomial as Ai[t]. Thus, the Frege reasoning can be phrased either in terms
of Ai[t] or in terms of F∗v .

Frege proof size bound via induced formulas. We now bound the size of the resulting Frege
derivation in terms of the induced formulas F∗v tracked in A′F and the complexity of the entries of
witness matrices.

Recall that for every node v ∈ A′F, the induced formula F∗v computes the same polynomial as
the sub-ABP polynomial A′F[v, t], and by Lemma 4.16 we have

|F∗v | ≤ sO(log3 s) for all v ∈ A′F, (4.30)

where s is the original formula size before balancing/homogenization and |A′F| = sO(log s).

Formula complexity of the witness matrices. It remains to account for the formula complexity
of the entries of the witness matrices λ′′i and T′′j appearing in (4.24)–(4.25).

By the construction given in the proof of Lemma 4.21 and the denominator–clearing procedure
of Equation 5.41, every entry of λ′′i and T′′j is computed by an ABP over GF(2)[ȳ] of size at most
poly(s′), where the coefficients appearing in the edge labels are k variate polynomials of degree
poly(s′, d). Here k is the number of ȳ–variables, d is the depth of the underlying ABP and s′ =
sO(log s) is the size of the ABP A′F. Each such coefficient polynomials in F[ȳ] has at most d′O(k)
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many monomials where d′ is the maximum degree. If we take the coefficients’ size complexity
into the account of the ABP size, then the ABP complexity increases to at most (s′d′)O(k). Since
d′ = poly(s′) the ABP complexity is s′O(k) = sO(k log s).

By the standard conversion from ABPs to formulas (see, e.g., the classical Brent–Spira transfor-
mation), any ABP of size S can be converted into an algebraic formula of size SO(log S). Applying
this to the above ABPs, every entry of λ′′i and T′′j admits an algebraic formula of size

|λ′′i [p, q]|, |T′′j [p, q]| ≤
(
(s′)O(k))O(k log s′)

= sO(k3 log3 s) for all entries. (4.31)

In the Booleanized identities (4.26) and (4.27), the only formulas that appear are Booleaniza-
tions of: (i) entries of the vectors Ai (equivalently, of the induced formulas F∗v ), and (ii) entries of
the witness matrices λ′′i and T′′j .

By Equation 4.30, every induced formula F∗v has size at most sO(log3 s). By Equation 4.31, every
entry of λ′′i and T′′j has algebraic formula size at most sO(k3 log3 s). After Booleanization, the size of
the corresponding propositional formulas increases by at most a polynomial factor.

Therefore, every propositional formula occurring in the Frege derivation has size at most

sO(log3 s) · sO(k3 log3 s) = sO(k3 log6 s).

Since the number of Frege proof lines is polynomial in |A′F| and hence at most sO(log s), the total
Frege proof size is bounded by

|πFrege| ≤ sO(k3 log6 s) ∼ s(k log s)O(1)
.

This completes the proof of our main theorem assuming Lemma 4.21, which we prove in the
next section.

5 Existence of a Partially Commutative ABP Identity Witness

Our goal in this section is to prove Lemma 4.21. The first step is to prove the following version
of Lemma 4.21, where the coefficients of the witness matrices are defined over the (commutative)
function field. Throughout this section, we use F(ȳ) to denote the commutative function field
containing the polynomial ring F[ȳ]. In addition, we define the degree of a rational function in
F(ȳ) to be the maximum degree of the numerator and denominator.

Lemma 5.1. (ABP identity witnesses over F(y)) Let A be a partially commutative ABP computing a
polynomial in F[y] ⟨X1 ⊔ X2⟩ of depth d, which is homogeneous over X1. For every i ∈ [d], let Ai be
as defined in Subsection 4.6.1. Suppose that A computes the zero polynomial. Then there exist matrices
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λ′0, λ′1, . . . , λ′d−1 and T′1, T′2, . . . , T′d−1, where λ′0 := 1 and

λ′r ∈ F(ȳ) ⟨X2⟩wr×wr , T′r+1 ∈ F(ȳ) ⟨X1 ⊔ X2⟩wr×wr+1 ,

such that the following identities hold.

λ′d−i · Ai = 0 ∀ i = 1, 2, . . . , d. (5.2)

λ′d−i · Ai = T′d−i+1 · λ′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d. (5.3)

Further, the coefficients’ degree of each entry in the witness matrices λ′i and T′i is at most poly(s, d) and
the ABP size complexity of each entry in the witness matrices λ′i, T′j is at most poly(s).

The technical core of this proof is to prove a factorization lemma for a matrix of noncom-
mutative ABPs. For that, we need to use some algebraic tools that we develop in the following
subsections. Throughout this section, unless stated otherwise, X = {x1, . . . , xn} denotes a set of
noncommutative variables.

5.1 Linear Matrix Factorization

For a matrix of noncommutative polynomials, invertibility is defined over the universal skew field
of fractions of the noncommutative polynomial ring. The noncommutative rank is the size of a
largest invertible submatrix. We use the following characterization of the noncommutative rank
due to Cohn [Coh95a].

Theorem 5.4. (Noncommutative rank). Let M ∈ F⟨X⟩ℓ×m be a matrix of noncommutative polynomials
of noncommutative rank r < min{ℓ, m}. Then there exist matrices P ∈ F⟨X⟩ℓ×r and Q ∈ F⟨X⟩r×m such
that M = P ·Q.

Indeed, if M is a linear matrix, the following equivalent characterizations are known from the
work of [Coh95a, FR04, IQS17, GGdOW20].

Theorem 5.5. (Noncommutative rank of a linear matrix). Let L = ∑n
i=1 Aixi ∈ Fℓ×m ⟨X⟩ be a linear

matrix and ℓ ≥ m. Then the following are equivalent:

• The noncommutative rank of L is r.

• There exist linear matrices L1 ∈ F⟨X⟩ℓ×r and L2 ∈ F⟨X⟩r×m such that L = L1 · L2.

• L has a (ℓ− r)-shrunk subspace, i.e. there exist a subspace T ⊆ Fm and a subspace W ⊆ Fℓ such
that AiT ⊆W for every i ∈ [n] and dim(W) < dim(T).

• L is r-decomposable, i.e. there exist invertible matrices U ∈ Fℓ×ℓ and V ∈ Fm×m such that

ULV =

[
L′ 0
B C

]
, (5.6)
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where the zero block is of size i× j with i + j = ℓ+ m− r.

We need the following stronger version of Cohn’s characterization of noncommutative rank in
our proof. To the best of our knowledge, any bound on the complexity of their coefficients has not
been previously studied.

Lemma 5.7. (Linear Matrix Factorization). Suppose F′ = F(ȳ) be the field of rational functions in
ȳ over F and X = {x1, x2, . . . , xn}. Let L ∈ F′⟨X⟩ℓ×m be a noncommutative linear matrix of rank
r < min{ℓ, m} and d be the maximum degree of the coefficients of the entries of L. Then we can construct
linear matrices L1 ∈ F′⟨X⟩ℓ×r and L2 ∈ F′⟨X⟩r×m such that L = L1 · L2 in deterministic poly(ℓ, m, n)
time. Moreover, the coefficients of the entries of L1 and L2 have degree at most poly(ℓ, m, d).

We divide the proof into two parts. Given such a linear matrix L, we first use [IQS18] to con-
struct a nontrivial shrunk subspace. We then exploit this subspace to obtain a zero block [FR04],
which in turn yields a factorization of the input matrix. We add the complete details of the proof
in Subsection C.1.

5.2 Matrix Polynomial Factorization

We are now ready to prove the factorization lemma for matrix of noncommutative ABPs.

Lemma 5.8. [Factorization Lemma] Let M ∈ F[ȳ] ⟨X⟩ℓ×m be a matrix of noncommutative polynomials
with ncrank(M) = r < min {ℓ, m}. Assume each entry of M is computed by a size s noncommutative
ABP. Then we can compute a nontrivial factorization of M, namely M = G · H, such that the entries of
G ∈ F(ȳ) ⟨X⟩ℓ×r and H ∈ F(ȳ) ⟨X⟩r×m have poly(s)-size noncommutative ABPs. Moreover, if d is the
upper bound on the degree of the coefficients in each entry of M, then the degree of the coefficients in each
entry of the factors G, H is poly(ℓ, m, d).

5.2.1 Higman’s Linearization for a Matrix of Noncommutative ABPs

In this section, we bound the ABP complexity of Higman linearization for a rectangular matrix
whose entries are computed by noncommutative ABPs. Equivalently (and more conveniently for
linearization), we may assume that each entry is given as a product of linear matrices over F⟨X⟩.

ABPs as products of linear matrices. A standard way to view a noncommutative ABP of size
S is as an iterated product of linear matrices. Concretely, if a polynomial f ∈ F⟨X⟩ is computed
by an ABP of size S, then there exist integers d ≤ S, widths w1, . . . , wd+1 ≤ S, linear matrices
Aℓ ∈ F⟨X⟩wℓ×wℓ+1 and vectors u ∈ Fw1 , v ∈ Fwd+1 such that

f = u⊤A1A2 · · · Ad v. (5.9)

(Here “linear” means each entry is an affine linear form in X.)
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Thus, for a matrix M ∈ F⟨X⟩s×s′ whose entries have ABP size at most S, after possibly padding
widths (by inserting identity matrices), we may assume that

M[i, j] = A(i,j)
1 A(i,j)

2 · · · A(i,j)
d , (5.10)

where for each ℓ ∈ [d] the factor A(i,j)
ℓ is a linear matrix of dimension wℓ × wℓ+1 with wℓ ≤ S, and

the width profile (w1, . . . , wd+1) is independent of (i, j). This is the model we linearize.
Such a result was previously known only when each entry of the matrix is computed by a

noncommutative formula [GGdOW20, Proposition A.2].

A local (one-entry) Higman gadget

We first isolate the basic gadget that linearizes a single product entry while introducing only up-
per/lower triangular multipliers with diagonal entries are 1.

Lemma 5.11 (Local Higman linearization for one product block [AJ25]). Let B ∈ F⟨X⟩w1×wd+1 be a
block polynomial of the form

B = A1A2 · · · Ad,

where Aℓ ∈ F⟨X⟩wℓ×wℓ+1 is a linear matrix. Let w := ∑d
ℓ=2 wℓ. Then there exist matrices PB, QB, LB

such that (
B 0
0 Iw

)
= PB · LB ·QB, (5.12)

where:

1. PB is upper triangular and QB is lower triangular,

2. all diagonal entries of PB, QB are equal to 1,

3. LB is a linear matrix (every entry is either 0, 1, or an affine linear form in X),

4. every nonzero entry of PB, QB is either ±1 or an entry of one of the factors Aℓ. Hence, if each Aℓ is
computable by poly(S)-size ABPs, then so are the entries of PB, QB.

Moreover, LB can be taken in the companion form

LB =



0 0 0 · · · 0 A1

−Ad Iwd 0 · · · 0 0
0 −Ad−1 Iwd−1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Iw3 0
0 0 0 · · · −A2 Iw2


. (5.13)
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Proof. This is the standard Higman linearization (sometimes called “Higman’s trick”). One can
prove (5.12) by repeatedly applying the d = 2 elimination step: for any compatible linear matrices
U ∈ F⟨X⟩a×b and V ∈ F⟨X⟩b×c, set(

UV 0
0 Ib

)
=

(
Ia −U
0 Ib

)
︸ ︷︷ ︸

upper triangular

·
(

0 U
−V Ib

)
︸ ︷︷ ︸

linear

·
(

Ic 0
V Ib

)
︸ ︷︷ ︸

lower triangular

.

after a suitable block permutation to match dimensions (equivalently, embed into the bottom-right
corner). Iterating this construction for the product A1 · · · Ad yields the companion matrix (5.13),
and the accumulated left and right multipliers remain upper/lower triangular with diagonal 1.
Every nonzero off-diagonal entry introduced is a copy of some Aℓ or a constant; hence, it is ABP-
computable whenever the Aℓ are.

Global linearization for a rectangular matrix of ABP entries

We now lift the local gadget to a full s× s′ matrix M, linearizing each entry in place while keeping
the global triangular structure.

Lemma 5.14 (Higman linearization for a matrix of ABP-entries). Let M ∈ F⟨X⟩s×s′ be a rectangular
matrix such that for every (i, j) ∈ [s]× [s′]

M[i, j] = A(i,j)
1 A(i,j)

2 · · · A(i,j)
d , (5.15)

where for each ℓ ∈ [d], the factor A(i,j)
ℓ is a linear matrix of dimension wℓ × wℓ+1 (the width profile

(w1, . . . , wd+1) is independent of (i, j)). Let

w :=
d

∑
ℓ=2

wℓ, t := w · ss′.

Then there exist matrices P, L, Q over F⟨X⟩ such that

M⊕ It = P · L ·Q, (5.16)

with the following properties:

1. P is (block) upper triangular and Q is (block) lower triangular,

2. all diagonal entries of P, Q are equal to 1,

3. L is a linear matrix (all its entries are affine linear forms in X),

4. every nonzero entry of P, Q is computable by an ABP of size poly(s, s′, d, w1, . . . , wd+1).
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Proof. We linearize the entries of M one-by-one using Lemma 5.11 as a block gadget, and we do
so in an order that preserves the triangularity of the accumulated multipliers.
Order of linearization. Fix the lexicographic order so that it scans columns from right to left, and
within each column, scans the rows from bottom to top:

(s, s′), (s− 1, s′), . . . , (1, s′), (s, s′ − 1), . . . , (1, 1).

At each step, we linearize exactly one block M[i, j] while keeping previously linearized blocks
linear.
One step: linearizing a chosen block. Suppose at some stage we have a matrix M̃ of size

(s · w1 + w · τ) × (s′ · wd+1 + w · τ)

for some τ ∈ {0, 1, . . . , ss′}, obtained from M by adjoining τ slack identity blocks Iw and perform-
ing some triangular multiplications, such that:

• all already-processed positions contain linearized companion blocks,

• all not-yet-processed positions still contain their original product blocks.

Now pick the next unprocessed block position (i, j). We adjoin one more identity block Iw (in-
creasing τ to τ + 1), and we embed Lemma 5.11 into the coordinates corresponding to the block
(i, j) together with this new slack.

Formally, consider M̃⊕ Iw. By multiplying on the left and right by suitable block permutation
matrices ΠL, ΠR (which are invertible and linear), we may move the block (i, j) and the new slack
block to the bottom-right corner. In those coordinates, the bottom-right (w1 + w) × (wd+1 + w)

corner equals (
M[i, j] 0

0 Iw

)
.

Applying Lemma 5.11 to this corner yields upper/lower triangular matrices Pi,j, Qi,j with diagonal
1 and replaces this corner by a linear matrix Li,j. Undoing the permutations gives a factorization
of the form

M̃⊕ Iw = P̂i,j · M̃ new · Q̂i,j, (5.17)

where:

• P̂i,j is block upper triangular with diagonal 1,

• Q̂i,j is block lower triangular with diagonal 1,

• M̃ new is identical to M̃ except that entry (i, j) has been replaced by a linear companion block,
and the new slack coordinates are now “used”.
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Importantly, the nonzero entries of P̂i,j, Q̂i,j are either constants or entries from the linear factors

A(i,j)
ℓ , hence ABP-computable with polynomial size.

Completing all steps. Iterate (5.17) for all ss′ positions. Each step consumes one fresh slack block
Iw. After ss′ steps we obtain a matrix L in which every original product block has been linearized,
hence L is linear everywhere. Let P (resp. Q) be the product of all left (resp. right) multipliers
produced by the steps. Since a product of upper triangular matrices with diagonal 1 is again
upper triangular with diagonal 1, and similarly for lower triangular, we conclude that the final
P, Q satisfy the required triangularity conditions. Hence, the linear matrix L in the right side of
Equation 5.16 preserves the co-rank. the The final number of slack dimensions is t = w · ss′.
ABP size bound. Each step introduces only constants and entries of the linear matrices A(i,j)

ℓ

into P and Q. Therefore each entry of P, Q is computed by an ABP of size polynomial in
(s, s′, d, w1, . . . , wd+1). This proves (5.16).

Restating in pure-ABP language. If the entries of M are given directly by ABPs of size≤ S, then
by the standard conversion (5.9) we can rewrite each entry as a product of d ≤ S linear matrices
with widths ≤ S. After padding to equalize width profiles across entries, Lemma 5.14 applies and
yields t = poly(s, s′, S).

Corollary 5.18 (Higman linearization for ABP entries). Let M ∈ F⟨X⟩s×s′ be such that each entry is
computed by a noncommutative ABP of size ≤ S. Then there exists t = poly(s, s′, S) and matrices P, L, Q
such that

M⊕ It = P · L ·Q,

where P is upper triangular with diagonal 1, Q is lower triangular with diagonal 1, L is linear, and every
entry of P, Q is computable by poly(s, s′, S)-size ABPs.

An illustrative example is given in the appendix Subsection C.2 for better exposition.

5.2.2 Proof of Factorization Lemma

Now we are ready to prove the existence of small factors witnessing the low rank.

Proof of Lemma 5.8. Let M ∈ F[ȳ] ⟨X⟩ℓ×m with ncrank(M) = r < m < ℓ. We first apply Corol-
lary 5.18 to M and obtain [

M 0
0 Ik′

]
= P · L · D, (5.19)

where L ∈ F[ȳ] ⟨X⟩(ℓ+k′)×(m+k′) is a linear matrix, and P ∈ F[ȳ] ⟨X⟩(ℓ+k′)×(ℓ+k′) , D ∈
F[ȳ] ⟨X⟩(m+k′)×(m+k′) are upper triangular and lower triangular full matrices, respectively, with
all diagonal entries equal to 1. Moreover, every entry of P, L, D is computable by a size poly(s)
noncommutative ABP.
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Our goal is to compute a nontrivial rank factorization M = G · H with inner dimension r, such
that the entries of G and H have poly(s)-size ABPs.

Write the block decompositions

P =

[
P1,1 P1,2

0 P2,2

]
, L =

[
L1,1 L1,2

L2,1 L2,2

]
, D =

[
D1,1 0
D2,1 D2,2

]
.

Since P and D are invertible (they are full triangular with 1’s on the diagonal), taking noncommu-
tative rank on both sides of Equation 5.19 gives

ncrank(L) = ncrank

([
M 0
0 Ik′

])
= ncrank(M) + k′ = r + k′.

By Theorem 5.5, there exist invertible matrices U ∈ F(ȳ)(ℓ+k′)×(ℓ+k′) and V ′ ∈ F(ȳ)(m+k′)×(m+k′)

such that

U · L ·V ′ =
[

L′1,1 0
L′1,2 L′2,2

]
,

where the top-right block is the zero matrix. Let the dimensions of this 0 block be i× j, therefore,
i + j = ℓ+ k′+m− r. Efficient construction of U and V ′ follows from Lemma C.2 and Lemma C.1,
as discussed in Subsection C.1.

We rewrite Equation 5.19 by multiplying on the left by U · P−1 and on the right by D−1 ·V ′:

UP−1

[
M 0
0 Ik′

]
D−1V ′ =

[
P′1,1 P′1,2

0 P′2,2

]
︸ ︷︷ ︸

U·P−1

[
M 0
0 Ik′

] [
D′1,1 0
D′2,1 D′2,2

]
︸ ︷︷ ︸

D−1·V′

=

[
L′1,1 0
L′1,2 L′2,2

]
= L′ (say).

(5.20)

Expanding the left-hand side blockwise, Equation 5.20 implies[
P′1,1MD′1,1 + P′1,2D′2,1 P′1,2D′2,2

P′2,2D′2,1 P′2,2D′2,2

]
=

[
L′1,1 0
L′1,2 L′2,2

]
.

Note that P′1,1, P′2,2, D′1,1, D′2,2 are invertible, because P′, D′ remain block triangular with invertible
diagonal blocks.

We now analyze the location of the 0 block (of dimension i× j) in the right-hand side of Equa-
tion 5.20.

Case 1 : i ≥ ℓ, j ≥ k′. In this case, the matrix P′1,2D′2,2 has dimension ℓ× k′, and it seats inside the
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0 block on the right-hand side. Hence

P′1,2D′2,2 = 0 =⇒ P′1,2 = 0 (since D′2,2 is invertible),

and therefore also P′1,2D′2,1 = 0.
Thus, the (1, 1)-block identity becomes P′1,1MD′1,1 = L′′, where L′′ denotes the ℓ× m top-left

block of L′. Since ncrank(L′) = ncrank(L) = r + k′, the matrix L′ does not have full row rank.
Applying Lemma 5.7, we obtain a factorization L′ = L′1 · L′2 with L′1 of dimension (ℓ+ k′)× (r+ k′)
and L′2 of dimension (r + k′)× (m + k′). Taking the top-left ℓ× m block in this product yields a
nontrivial factorization L′′ = L′′1 · L′′2 with L′′1 of dimension ℓ × r and L′′2 of dimension r × m.
Therefore,

P′1,1MD′1,1 = L′′1 · L′′2 =⇒ M = (P′−1
1,1 L′′1 )︸ ︷︷ ︸

G

· (L′′2 D′−1
1,1 )︸ ︷︷ ︸

H

.

This gives the required nontrivial factorization of M.

Case 2 : i > ℓ, j < k′. Note that, assuming j < k′, we obtain i + j = ℓ + k′ + m − r =⇒ i =

ℓ + k′ + m − r − j > ℓ + k′ + (m − r) − k′ > ℓ where m − r > 0. Consider the (2, 2)-block on
the left-hand side, namely P′2,2D′2,2. This matrix is invertible and hence; has full noncommutative
rank k′. However, when i > ℓ and j < k′, the placement of the 0 block forces a 0 sub-matrix of
dimension (i− ℓ)× j inside the k′ × k′ invertible block. Here, (i− ℓ) + j = (ℓ+ k′ + m− r− ℓ) =

k′+(m− r) > k′. But an invertible k′× k′ matrix over the free skew field cannot contain a zero sub-
matrix of size p× q with p + q > k′, since that would force the rank < k′. This is a contradiction,
so Case 2 cannot occur.

Case 3 : i < ℓ. In this case, the first i rows of the block P′1,2D′2,2 must be zero (since they lie in the 0
block on the right-hand side), and since D′2,2 is invertible, the top i rows of P′1,2 must be zero.

Moreover, j = ℓ+ k′+m− r− i > k′+ (m− r) > k′ (since m > r), so the top-right block of
dimension i× (j− k′) inside P′1,2D′2,1 is also forced to be zero. Consequently, the matrix P′1,1MD′1,1

has the following block form:

P′1,1MD′1,1 =

[
M′1,1 0
M′2,1 M′2,2

]
. (5.21)

The top-right 0 block in Equation 5.21 is of dimension i × (j − k′). Since i + j = ℓ + k′ + m − r,
we have j − k′ = ℓ + m − r − i. Therefore, the number of columns of M′1,1 is m − (j − k′) =

m− (ℓ+ m− r− i) = r + i− ℓ, and M′1,1 has i rows.
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We now factor the right-hand side of Equation 5.21 as[
M′1,1 0
M′2,1 M′2,2

]
=

[
M′1,1 0
M′2,1 Ik−i

]
︸ ︷︷ ︸

G

·
[

Ir+i−k 0
0 M′2,2

]
︸ ︷︷ ︸

H

.

Note that, the G matrix has i + (ℓ− i) = ℓ rows and (r + i− ℓ) + (ℓ− i) = r columns and the H
matrix has (r + i− ℓ) + (ℓ− i) = r columns and (r + i− ℓ) + (j− k′) = (r + i− ℓ) + (ℓ+ m− r−
i) = m columns. Finally, multiplying by the invertible matrices P′−1

1,1 and D′−1
1,1 on the left and right

(respectively) yields a nontrivial factorization of M.

ABP size and the degree of the coefficients. All matrices produced above are obtained from M
using a constant number of operations: (i) Higman linearization as in Corollary 5.18, (ii) multi-
plying on the left and right by invertible (block) matrices over the base field, as in Theorem 5.5
,(iii) linear matrix factorization, and (iv) taking sub-blocks and multiplying by the inverses of the
diagonal blocks of triangular full matrices. Each of these operations preserves polynomial over-
head in ABP size; hence the entries of the resulting factors G, H are computable by poly(s)-size
noncommutative ABPs.

Let the degree of the coefficients in each entry of M is at most d. By Corollary 5.18, the Higman
linearization step produces the matrices P, L, D in Equation 5.19 such that the coefficients appear-
ing in L have degree bounded by poly(d) (and the same holds for the nonzero entries of P and D).
Next, the r-decomposability transformation in Theorem 5.5 together with the explicit construction
of the invertible matrices U, V from a shrunk subspace in Lemma C.2 gives the poly(ℓ, m, d) bound
on the degree of the coefficients. Finally, the linear factorization step applied to the resulting lin-
ear matrix is performed over F(ȳ) and satisfies the required degree control by Lemma 5.7: the
coefficients of the entries of the linear factors have degree at most poly(ℓ, m, d). Subsequent block
extraction and multiplication by the inverses of triangular diagonal blocks preserve this bound on
the degree of the coefficients. Therefore, the degree of the coefficients in each entry of the factors
G and H is at most poly(ℓ, m, d).

We have the following corollary which is required to prove Lemma 5.1 and Lemma 4.21.

Corollary 5.22. Let n · k > m and A1, . . . , An be k × m matrices, with each entry in these matrices be-
ing a noncommutative polynomial in F[ȳ] ⟨X⟩, computable by size s and length d noncommutative ABPs.
Then there exists a basis matrix Br×m whose entries are noncommutative polynomials computed by size s
ABPs and coefficient matrices C1, . . . , Cn whose entries are noncommutative polynomials computed by size
poly(s) ABPs, such that Ai = Ci · B ∀ i ∈ [n]. Moreover, if the maximum degree of the coefficients appear-
ing in A1, . . . , An is d, then the maximum degree of the coefficients appearing in Ci, B is poly(k, m, n, d).

To prove Corollary 5.22, it suffices to exhibit a witness for a noncommutative polynomial ma-
trix An×m of noncommutative rank r, where r ≤ min(n, m), which Lemma 5.8 does.

43



Proof of the Corollary 5.22. Let n · k > m and let A1, . . . , An be k×m matrices over F[ȳ]⟨X⟩, where
every entry of every Ai is computable by size-s and length-d noncommutative ABPs.

Define the stacked matrix

A :=


A1

A2
...

An

 ∈ F[ȳ]⟨X⟩(nk)×m.

Let
r := ncrank(A).

By definition, r ≤ min(nk, m), and since n · k > m we have r ≤ m.

Step 1: Apply the rank witness factorization when r < m. By Lemma 5.8, there exist matrices

A′ ∈ F(ȳ)⟨X⟩(nk)×r, A′′ ∈ F(ȳ)⟨X⟩r×m

such that
A = A′ · A′′, (5.23)

and all entries of A′ and A′′ are computable by size-poly(s) noncommutative ABPs and the degree
of the coefficients appearing in each entry of the factors is poly(s).

Step 2: Define the common basis matrix B. Set

B := A′′ ∈ F(ȳ)⟨X⟩r×m.

Then B has r rows and m columns, exactly as required.

Step 3: Extract the coefficient matrices Ci. Write A′ in n consecutive blocks of k rows each:

A′ =


C1

C2
...

Cn

 , Ci ∈ F(ȳ)⟨X⟩k×r.
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Substituting this block decomposition into Equation 5.23 gives
A1

A2
...

An

 =


C1

C2
...

Cn

 · B.

Therefore, comparing block rows, for every i ∈ [n] we have Ai = Ci · B.
On the other hand if the rank r = m, then take the basis matrix B = Im and C = Ank×r.

Additional property: full column rank of the coefficient matrix. In the above decomposition,
define the stacked coefficient matrix

C :=


C1

C2
...

Cn

 ∈ F(ȳ)⟨X⟩(nk)×r.

Then C has full noncommutative column rank, i.e.

ncrank(C) = r.

Indeed, since A = C · B and ncrank(A) = r, we must have ncrank(C) ≥ r (otherwise ncrank(A) ≤
ncrank(C) < r), while trivially ncrank(C) ≤ r because C has only r columns. Hence ncrank(C) = r.

Equivalently, C admits a left inverse over the free skew field, i.e. there exists a matrix C† (over
the free skew field F(ȳ)⦓X⦔) such that

C† · C = Ir.

ABP-size bound. By construction, each entry of B = A′′ is computable by size-poly(s) ABPs,
and each entry of each Ci (being a block of A′) is also computable by size-poly(s) ABPs, as guar-
anteed by Lemma 5.8 in the case of rank r < m. When r = m, then the basis matrix is identity
matrix, which is trivial to compute via ABP. Moreover, Lemma 5.8 provides the polynomially
bounded degree of the coefficients. This completes the proof.

5.3 Construction of witness matrices

In this section, we first give a proof of Lemma 5.1 using the machinery we developed in the previ-
ous subsection. We then use it to prove Lemma 4.21.
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Lemma 5.1. (ABP identity witnesses over F(y)) Let A be a partially commutative ABP computing a
polynomial in F[y] ⟨X1 ⊔ X2⟩ of depth d, which is homogeneous over X1. For every i ∈ [d], let Ai be
as defined in Subsection 4.6.1. Suppose that A computes the zero polynomial. Then there exist matrices
λ′0, λ′1, . . . , λ′d−1 and T′1, T′2, . . . , T′d−1, where λ′0 := 1 and

λ′r ∈ F(ȳ) ⟨X2⟩wr×wr , T′r+1 ∈ F(ȳ) ⟨X1 ⊔ X2⟩wr×wr+1 ,

such that the following identities hold.

λ′d−i · Ai = 0 ∀ i = 1, 2, . . . , d. (5.1)

λ′d−i · Ai = T′d−i+1 · λ′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d. (5.2)

Further, the coefficients’ degree of each entry in the witness matrices λ′i and T′i is at most poly(s, d) and
the ABP size complexity of each entry in the witness matrices λ′i, T′j is at most poly(s).

Proof. Let A be a partially commutative ABP over X = X1 ⊔ X2 ⊔ · · · ⊔ Xk (with |Xi| = 1 for
3 ≤ i ≤ k) of depth d and layer widths w0, . . . , wd, which is homogeneous over X1 and computes
the identically zero polynomial in F⟨X[k]⟩. We assume Xi = {yi−2} for every 3 ≤ i ≤ k. Let
ȳ := {y1, . . . , yk−2} and our ABP A is defined over the field F(ȳ).

For i ∈ [d], recall the column vector

Ai =
(

A[ud−i,1, t], A[ud−i,2, t], . . . , A[ud−i,wd−i , t]
)⊤ ∈ F⟨X[k]⟩wd−i .

In particular, Ad is the polynomial computed by A, and hence Ad = 0.

Homogeneity convention. Since A is homogeneous over X1 from our assumption, we view
each edge label of A as a homogeneous linear form in the X1-variables whose coefficients lie in
F[ȳ]⟨X2⟩. Equivalently, for every layer transition r → r + 1 there exist coefficient matrices

M1, . . . , Mn ∈ F[ȳ]⟨X2⟩wr×wr+1

such that the one-layer ABP recurrence from layer r to layer r + 1 can be written as

Ad−r =
n

∑
j=1

x1,j ·
(

Mj · Ad−r−1
)
, (5.24)

where the product is matrix-vector multiplication over F[ȳ]⟨X2⟩, and the x1,j appears as left mul-
tipliers.
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Step 0: initialize λ′0. Set
λ′0 := 1 ∈ F(ȳ)⟨X2⟩w0×w0 .

Then λ′0 · Ad = Ad = 0, which is Item (3) in the statement.

Inductive construction. We construct, for r = 0, 1, . . . , d− 2, matrices

T′r+1 ∈ F(ȳ)⟨X1 ⊔ X2⟩wr×wr+1 and λ′r+1 ∈ F(ȳ)⟨X2⟩wr+1×wr+1

such that for every r we have both:

λ′r · Ad−r = 0, (5.25)

λ′r · Ad−r = T′r+1 · λ′r+1 · Ad−r−1. (5.26)

Note that Equation 5.26 is exactly the desired transition identity, and together with Equation 5.25
it will imply the next vanishing statement λ′r+1 · Ad−r−1 = 0.

Fix r ∈ {0, . . . , d− 2} and assume the inductive hypothesis

λ′r · Ad−r = 0. (5.27)

Step 1: form the rectangular coefficient matrix over F(ȳ)⟨X2⟩. Using Equation 5.24 and left-
multiplying by λ′r, we get

λ′r · Ad−r =
n

∑
j=1

x1,j ·
(
(λ′r Mj) · Ad−r−1

)
. (5.28)

By Equation 5.27, the left-hand side is 0. Since the variables in X1 are noncommuting and appear
as leftmost multipliers in Equation 5.28, homogeneity over X1 implies that each coefficient must
vanish:

(λ′r Mj) · Ad−r−1 = 0 ∀ j ∈ [n]. (5.29)

Define the stacked rectangular matrix

T :=


λ′r ·M1

λ′r ·M2
...

λ′r ·Mn

 ∈ F(ȳ)⟨X2⟩(nwr)×wr+1 . (5.30)

Then Equation 5.29 is equivalent to
T · Ad−r−1 = 0. (5.31)
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Step 2: apply Corollary 5.22 to extract a common left factor. Apply Corollary 5.22 over the ring
F(ȳ)⟨X2⟩ to the matrices λ′r M1, . . . , λ′r Mn ∈ F(ȳ)⟨X2⟩wr×wr+1 . We obtain:

• a basis matrix B ∈ F(ȳ)⟨X2⟩w
′
r+1×wr+1 ,

• and coefficient matrices C1, . . . , Cn ∈ F(ȳ)⟨X2⟩wr×w′r+1 ,

such that for every j ∈ [n],
λ′r ·Mj = Cj · B. ∀ j ∈ [n]. (5.32)

Step 3: define λ′r+1 and T′r+1. Note that; it might be possible that; w′r+1 < wr+1. In that case add
0 rows to make the number of rows of B wr+1. Let this new matrix be B′. Similarly, add 0 columns
to each Cj to get the number of columns wr+1. Let these new matrices be C′j.

λ′r+1 := B′ ∈ F(ȳ)⟨X2⟩wr+1×wr+1 , T′r+1 :=
n

∑
j=1

x1,j · C′j ∈ F(ȳ)⟨X1 ⊔ X2⟩wr×wr+1 .

Then, combining Equation 5.24 with Equation 5.32, we obtain the propagation identity:

λ′r · Ad−r =
n

∑
j=1

x1,j ·
(
(λ′r Mj) · Ad−r−1

)
=

n

∑
j=1

x1,j ·
(
(CjB) · Ad−r−1

)
=

(
n

∑
j=1

x1,j · Cj

)
·
(

B · Ad−r−1
)

= T′r+1 · λ′r+1 · Ad−r−1. (5.33)

This proves Equation 5.26 for the current r.

Step 4: derive the next vanishing statement λ′r+1 · Ad−r−1 = 0. We now derive the next van-
ishing statement, namely λ′r+1 · Ad−r−1 = 0. We have two cases to consider here. The first case is
when the stacked matrix T, defined in Equation 5.30 has non commutative rank r < wi+1. For this
case, recall from Equation 5.29; for every j ∈ [n],

(λ′r Mj) · Ad−r−1 = 0.

In Step 2, we applied Corollary 5.22 to the family {λ′r Mj}j∈[n] (each of dimension wr × wr+1) and
obtained a factorization of the form

λ′r ·Mj = Cj · B ∀ j ∈ [n], where B ∈ F(ȳ)⟨X2⟩r×wr+1 , and Cj ∈ F(ȳ)⟨X2⟩wr×r. (5.34)

Substituting Equation 5.34 into the coefficient vanishing gives, for all j ∈ [n],

0 = (λ′r Mj) · Ad−r−1 = (CjB) · Ad−r−1 = Cj ·
(

B · Ad−r−1
)
∀ j ∈ [n].
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Hence

C ·
(

B · Ad−r−1
)
= 0 where C :=


C1

C2
...

Cn

 ∈ F(ȳ)⟨X2⟩(nwr)×r. (5.35)

The Corollary 5.22 shows that the stacked coefficient matrix C has full noncommutative col-
umn rank, r. Equivalently, C admits a left inverse over F(ȳ)⦓X2⦔; i.e., there exists a matrix C†

(over the free skew field) such that
C† · C = Ir.

Left-multiplying Equation 5.35 by C† therefore gives

B · Ad−r−1 = 0 =⇒ B′ · Ad−r−1 = 0 =⇒ λ′r+1 · Ad−r−1 = 0. (5.36)

On the other hand, suppose that the stacked matrix T defined in Equation 5.30 has full noncom-
mutative column rank, i.e. ncrank(T) = wi+1 over F(ȳ)⦓X2⦔. Then by Equation 5.29 we have
T · Ad−r+1 = 0. Each entry of Ad−r+1 is a partially commutative ABP that is homogeneous over
X1 with coefficients in F(ȳ)⟨X2⟩. Accordingly, we may write Ad−r+1 = ∑m m · vm, where the sum
ranges over homogeneous noncommutative monomials m in X1 and vm ∈ F(ȳ)⟨X2⟩wi+1×1 is the
coefficient vector of m. Substituting this expansion yields

0 = T · Ad−r+1 = ∑
m

m · (T · vm). (5.37)

Since the variables in X1 are noncommuting and all monomials m appearing above have the same
X1-degree, the representation ∑m m · (T · vm) = 0 is unique; hence each coefficient must vanish,
i.e., T · vm = 0 for all m. However, each vm is a column vector over F(ȳ)⟨X2⟩, and since T has
full noncommutative column rank over the free skew field, the equation T · vm = 0 implies a
nontrivial linear dependence among the columns of T over that skew field. This contradicts the
assumption that T has full column rank. This implies Ad−r+1 = 0, so trivially λ′r+1 · Ad−r+1 =

Iwr+1×wr+1 · Ad−r+1 = 0.

Re-indexing to match Equation 5.2–Equation 5.3. Setting i = d− r in Equation 5.33 gives

λ′d−i · Ai = T′d−i+1 · λ′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d,

which is Equation 5.2. Moreover, Equation 5.36 yields Equation 5.3, namely

λ′d−i · Ai = 0 ∀ i = 1, 2, . . . , d.
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ABP-size of entries. Each entry of λ′r Mj is computed by a size poly(s) ABPs over F(ȳ)⟨X2⟩, and
so are the entries of the stacked matrix T in Equation 5.30. Applying Corollary 5.22 preserves
the size poly(s) ABPs computability of these entries, and therefore, λ′r+1 = B and each Cj have
polynomial size ABPs. Finally,

T′r+1 =
n

∑
j=1

x1,j · Cj

is a homogeneous linear form in X1 with ABP-computable coefficients in F(ȳ)⟨X2⟩, again of size
poly(s). Therefore, Item (4) holds.

This completes the proof of Lemma 5.1.

Remark 5.38. To measure the ABP complexity in the Lemma 5.1, we are not accounting the complexity
of the coefficients. We have accounted the complexity of the coefficients in the size of Frege proof given in
Section 4. ♢

Proof of witness identities over F[ȳ]

Now we are ready to prove Lemma 4.21. We first recall the statement.

Lemma 4.21. (ABP identity witnesses over F[y]) Let A, Ai for every i ∈ [d], be as described in
Subsection 4.6.1. Further suppose that A computes the zero polynomial. Then there exist matrices
λ′′0 , λ′′1 , . . . , λ′′d−1 and T′′1 , T′′2 , . . . , T′′d−1 with

λ′′r ∈ F[ȳ] ⟨X2⟩wr×wr , T′′r+1 ∈ F[ȳ] ⟨X1 ⊔ X2⟩wr×wr+1 ,

such that the following identities hold.

λ′′d−i · Ai = 0 ∀ i = 1, 2, . . . , d. (4.21)

λ′′d−i · Ai = T′′d−i+1 · λ′′d−i+1 · Ai−1 ∀ i = 2, 3, . . . , d. (4.22)

Here, λ′0 is a polynomial of degree poly(s, d), and the degree of the coefficients of each entry in the witness
matrices λ′′i , and T′′j is at most poly(s, d). Moreover, the entries of λ′′i , T′′j are computable by poly(s)-size
ABP.

Proof. Using Lemma 5.1, we first compute matrices λ′i ∈ F(ȳ) ⟨X2⟩ for i = 1, . . . , d− 1 and T′i ∈
F(ȳ) ⟨X1 ⊔ X2⟩ for i = 1, . . . , d− 1 such that we have the following equations,

λ′d−i Āi = 0 ∀ i = 1, . . . , d,

λ′d−i Āi = T′d−i+1λ′d−i+1Āi−1 ∀ i = 1, . . . , d.
(5.39)

Moreover, all coefficients appearing in the witness matrices {λ′r, T′r+1} are rational functions in
y of the form p(y)/q(y) with deg p, deg q ≤ poly(s, d).
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We now show how to clear the denominators.

Step-wise clearing (layer by layer). Fix i ∈ {2, 3, . . . , d}. Over F(y1, . . . , yk−2), we have the
transition identity:

λ′d−i · Ai = T′d−i+1 · λ′d−i+1 · Ai−1. (5.40)

Each entry of λ′d−i and of T′d−i+1λ′d−i+1 is a rational function in y (with coefficients in F) and hence
may have denominators. Let ȳ = {y1, . . . , yk−2}.

Let pi(ȳ), qi(ȳ) ∈ F[ȳ] \ {0} be the common multiple of all denominator appearing in λ′i, T′i
respectively. We will define the λ′′i , T′′i matrices starting from i = d− 1.

Base case : We have the equation λ′d−1 · Ā1 = 0. This implies pd−1λ′d−1 · Ā1 = 0. Define
λ′′d−1 := pd−1 · λ′d−1 ∈ F[ȳ] ⟨X2⟩wd−1×wd−1 . Next, we want to define T′′d−1. Note that we have
the following equation λ′d−2Ā2 = T′d−1λ′d−1Ā1. Hence, multiplying both side by pd−1, we get
pd−1λ′d−2 · Ā2 = T′d−1(pd−1λ′d−1) · Ā1 and clearing the denominators of λ′d−2, T′d−1, we get that
(qd−1 pd−2 pd−1λ′d−2) · Ā2 = (qd−1 pd−2T′d−1)λ

′′
d−1 · Ā1.

Define T′′d−1 = pd−2(qd−1T′d−1) ∈ F[ȳ] ⟨X1 ⊔ X2⟩wd−1×wd and λ′′d−2 = (qd−1 pd−2 pd−1λ′d−2) ∈
F[ȳ] ⟨X2⟩wd−2×wd−2 . Since λ′d−2 · Ā2 = 0, λ′′d−2 · Ā2 = 0. Further note that multiplying by some
polynomials in F[ȳ] does not increase the size of the ABP of each entry of λ′′d−1 and T′′d−1.

Inductive case : Assume we have constructed λ′′d−i such that λ′′d−i · Āi = 0 and

λ′′d−i = (
i

∏
j=1

pd−j

i−1

∏
j=1

qd−j)︸ ︷︷ ︸
Pd−i

·λ′d−i.

We have the equation λ′d−i−1 · Āi+1 = T′d−i · λ′d−i Āi. Hence, multiplying both side by Pd−i,
Pd−iλ

′
d−i−1 · Āi+1 = T′d−i · (Pd−i · λ′d−i)Āi. Clearing the denominators of λ′d−i−1, T′d−i, we obtain

the following equation: (qd−i pd−i−1Pd−iλ
′
d−i−1) · Āi+1 = (qd−i pd−i−1T′d−i)λ

′′
d−i · Āi.

We define λ′′d−i−1 ∈ F[ȳ] ⟨X2⟩wd−i−1×wd−i−1 and T′′d−i ∈ F[ȳ] ⟨X1 ⊔ X2⟩wd−i×wd−i+1 as follows:

λ′′d−i−1 := (qd−i pd−i−1Pd−iλ
′
d−i−1); T′′d−i := (qd−i pd−i−1T′d−i).

Clearly the equation λ′′d−i−1 · Āi+1 = 0 is satisfied for this choice. So we can inductively define the
following matrices,

λ′′d−i := (
i

∏
j=1

pd−j

i−1

∏
j=1

qd−j) · λ′d−i; T′d−i := (qd−i pd−i−1T′d−i); λ′′0 = (
d

∏
j=1

pd−j

d−1

∏
j=1

qd−j) (5.41)

Note that both the matrices in the above equation has the degree of the coefficients st most
poly(s, d) and each entry of λ′′i , T′′j is computable by poly(s) size ABP.
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A Remaining details from Section 3

A.1 Boolean Solutions Exist if and only if Matrix Solutions Exist

Claim 3.5. Let
{

f1 = 0, . . . , fm = 0 : fi ∈ F
〈

X1 ⊔ · · · ⊔ Xp
〉}

(with
∣∣Xj
∣∣ = n for every j ∈ [q] and∣∣Xj

∣∣ = 1 for every j ∈ [q + 1, p]) be a set of equations that include the boolean axioms and the com-
mutator axioms. Then the given system has a common solution in F(n×q)+(p−q) if and only if there exist
aq+1, . . . ap ∈ F and d ≥ 1, set of matrices

{
A1,1, . . . , Aq,n

}
⊆ Fd×d which satisfy the given system.

Proof. Suppose the given system has a common solution in F(n×q)+(p−q), say a =

(a1,1, . . . , aq,n, aq+1, aq+2, . . . , ap). Taking d = 1 and Aij = aij for every (i, j) ∈ [q] × [n], we triv-
ially get the required statement.

For the converse direction, we give the full proof for q = 1 and observe that the proof
follows analogously for larger q. Let a = (a2, . . . , ap) ∈ Fp−1 and the set of d × d matrices
A = (A1, . . . , An) ∈ (Fd×d)n be a common solution to the given system of equations.

Since the set of equations includes boolean axioms, A2
i = Ai for every i ∈ [n], the minimal

polynomial of Ai must divide xi(xi − 1). Thus the minimal polynomial has roots 0, 1 with multi-
plicity 1, implying that each Ai is diagonalizable, with diagonal entries 0, 1.

Moreover, the matrices satisfy the commutator axioms. That is, for every i ̸= j, Ai Aj = Aj Ai.
This implies that the matrices are simultaneously diagonalizable. That is, there exists an invertible
matrix R ∈ Fd×d such that for every i, RAiR−1 = Di = Diag(a(i)1 , a(i)2 , . . . , a(i)d ) is a diagonal matrix
with diagonal entries a(i)j ∈ {0, 1}. Observe that, for every i ∈ [m],

fi(A1, . . . , An, a2,1, . . . ap,1) = 0 =⇒ R · fi(A, a) · R−1 = 0 =⇒ fi(RA1R−1, . . . , RAnR−1, a) = 0.

Now for every monomial over X1 in fi, say m = ∏j∈T xj ∈ fi for some T ⊆ [n],

R ·m(A) · R−1 = R(∏
j∈T

Aj)R−1 = ∏
j∈T

(R · Aj · R−1).

Thus, for every i ∈ [m], fi(D1, . . . , Dn, a) = 0 where each Dj = Diag(a(j)
1 , a(j)

2 , . . . , a(j)
d ) with a(j)

j ∈
{0, 1}. Here, the left hand side is a d × d dimensional 0 matrix, with the (t, t)-th entry being
fi(a(t)1 , a(t)2 , . . . , a(t)n , a). Since this is true for every fi, we obtain a set of solutions over F to the
system of equations, namely

{
(a(t)1 , . . . , a(t)n , a2, . . . , ap) : t ∈ [d]

}
.

For q > 1 the proof follows analogously since the matrices corresponding to different buckets
commute (by definition) and we have commutator axioms for variables within each bucket. Hence
all the matrices from the solution set mutually commute, and this gives us a unique invertible
matrix R that diagonalizes every matrix. This proves the claim.

54



A.2 PCp,q- IPS simulating Frege

Lemma 3.8. (PCp,q- IPS simulates Schoenfield-Frege: analogue of [LTW18, Lemma 3.3]) Let F be
a field. Further, let X = X1 ⊔ · · · ⊔ Xp be partially commutative variables where, for some 0 ≤ q ≤ p,
|Xi| = n for every i ∈ [q] and |Xi| = 1 for every i ∈ [q + 1, p]. Here the variables inside each Xi are
noncommuting and variables from different buckets commute.

Let π be a tree-like Frege (Schoenfield) proof of a propositional formula T, defined over X, from as-
sumptions {F1, . . . , Fm}, and let the proof-lines be ℓ1, ℓ2, . . . , ℓs. Let Tr′(·) be the algebraic translation from
Boolean formulas to F ⟨X⟩ as in Definition 3.6. For each i ∈ [N] define the partially commutative algebraic
translation Li := Tr′(ℓi) ∈ F ⟨X⟩ and let F :=

(
Tr′(F1), . . . , Tr′(Fm)

)
.

Finally, let B be the set of all Boolean axioms: x(x − 1) for every x ∈ X and let C be the set of all
partial commutator axioms: xy− yx for every x, y ∈ Xi, i ∈ [p]. Then for every i ∈ [s], there exists a
partially commutative algebraic formula Φi(X, Y, Z, W) ∈ F ⟨X, Y, Z, W⟩, where Y = (y1, . . . , ym) and
Z, W are placeholder vectors for the Boolean and commutator axioms, such that:

1. Φi(X, 0, 0, 0) = 0.

2. Φi(X, F, B, C) = Li.

3. |Φi| ≤
(

∑ℓ∈Ai
|Lℓ|

)4
, where Ai ⊆ [s] is the set of Frege proof-lines involved in deriving ℓi in the

tree-like proof π (i.e., the indices of the sub-tree rooted at ℓi).

In particular, Φs is a PCp,q- IPS proof of Tr′(T) from assumptions {Tr′(F1), . . . , Tr′(Fm)}, and its size is
poly(|π|).

Proof. Fix the (tree-like) proof π and its sequence of lines ℓ1, . . . , ℓN . As in [LTW18], we build Φi

by induction on the derivation of ℓi.

Placeholders. The formula Φi(X, Y, Z, W) is a partially commutative formula in the variables X
and in placeholder variables Y, Z, W, where:

• Y will be substituted by the translated assumptions Tr′(Fj);

• Z will be substituted by the Boolean axioms x(x− 1);

• W will be substituted by the commutator axioms xy− yx for x, y in the same bucket.

Condition (1) says Φi vanishes when all placeholders are set to 0, and (2) says that after substitu-
tion we obtain exactly Li.

Base cases. (B1) ℓi is an assumption. Suppose ℓi = Fj for some j ∈ [m]. Then Li = Tr′(Fj). Define

Φi(X, Y, Z, W) := yj.
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Clearly, Φi(X, 0, 0, 0) = 0 and Φi(X, F, B, C) = Tr′(Fj) = Li.

(B2) ℓi is a Schoenfield axiom instance. We treat explicitly the axiom scheme A→ (B→ A). Note
that A→ (B→ A) ≡ ¬A ∨ (¬B ∨ A), and hence by the definition of Tr′(·),

Li = Tr′
(
¬A ∨ (¬B ∨ A)

)
= Tr′(¬A) · Tr′(¬B ∨ A) = (1− a) ·

(
(1− b) · a

)
,

where a := Tr′(A) and b := Tr′(B). Thus,

Li = (1− a) · (1− b) · a.

By Lemma 3.6 in [LTW18], there exists a partially commutative formula Ψa(X, Z) such that

Ψa(X, 0) = 0, Ψa(X, B) = (1− a) · a, |Ψa| ≤ |a|2.

Multiplying on the left by (1− b) yields a certificate for

(1− b) · (1− a) · a.

Define
Θ(X, Z) := (1− b) ·Ψa(X, Z).

Then Θ(X, 0) = 0 and Θ(X, B) = (1− b) · (1− a) · a.
Now swap the first two factors to obtain (1− a) · (1− b) · a. Using the analogue of Lemma 3.4

from [LTW18] with only intra-bucket commutator axioms, there exists a partially commutative
formula φM,N(X, W) such that

φM,N(X, 0) = 0, φM,N(X, C) = M− N, |φM,N | ≤ |M|2|N|2,

where
M := (1− b) · (1− a) · a, N := (1− a) · (1− b) · a = Li.

Finally define
Φi(X, Y, Z, W) := Θ(X, Z) + φM,N(X, W).

Then Φi(X, 0, 0, 0) = 0 and after substitution we obtain

Φi(X, F, B, C) = M + (M− N) = N = Li.

The other Schoenfield axioms are handled analogously, as in [LTW18].
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Induction step: modus ponens. Assume ℓi is derived by modus ponens from ℓj = A and ℓh =

A→ B, with j, h < i. By the definition of Tr′(·), since A→ B ≡ ¬A ∨ B, we have

Lj = Tr′(A) = a, Lh = Tr′(A→ B) = Tr′(¬A ∨ B) = (1− a) · Tr′(B) = (1− a) · c,

where c := Tr′(B). The conclusion is ℓi = B, hence Li = c.
By induction, we have Φj, Φh satisfying (2)-(3) in Definition 1.1 . Define

Φi(X, Y, Z, W) := Φj(X, Y, Z, W) · Tr′(B) + Φh(X, Y, Z, W).

Then Φi(X, 0, 0, 0) = 0 and after substituting (Y, Z, W) = (F, B, C) we obtain

Φi(X, F, B, C) = Tr′(A) · Tr′(B) + (1− Tr′(A)) · Tr′(B)

=
(
Tr′(A) + (1− Tr′(A))

)
· Tr′(B)

= 1 · Tr′(B)

= Tr′(B) = Li.

The size bound follows exactly as in [LTW18] using tree-likeness and the fourth-power potential.

Conclusion. Applying the construction to i = N gives a partially commutative IPS proof of
LN = Tr′(T) from assumptions Tr′(F1), . . . , Tr′(Fm) and the Boolean/partial-commutator axioms,
with size poly(|π|).

B Remaining Details from Section 4

B.1 Frege Proof for Homogenisation of Partially Commutative Formulas

Lemma 4.6. Let F be a partially commutative formula of size s and depth O(log s) computing a polynomial
in F ⟨X1 ⊔ . . . ⊔ Xk⟩ where F = GF(2). Moreover, let F(d1,...,dk) be the homogeneous component of the
polynomial computed by F with degree signature (d1, . . . , dk). Then there exists a sO(log s) size Frege proof
of

F̃(X)←→
⊕

(d1,...,dk)

F̃(d1,...,dk). (4.6)

Proof. We first show the homogenization of [Raz13] in the partially commutative setting; then, we
show how Frege can prove it.

Raz’s Homogenization in the Partially Commutative Setting Let X = X1 ⊔ X2 ⊔ · · · ⊔ Xk be
the variable set. Since the size of the formula F is s, the degree of the polynomial computed by
F is at most s. Furthermore, the individual degree from each bucket can be at most s. Given any
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node u ∈ F, denote the product depth of u by δu. We assume the depth of F is O(log s). The
idea is to track the increment of any monomial’s degree signature along the path from u → r
with r being the root. This is done by considering all monotone non increasing functions Nu :={

Du : {0, 1, . . . , δu} → {0, 1, . . . , s + 1}k
}

. The number of such functions is |Nu| ≤ (s+δu+2
δu+1 )

k ≤
sO(k log s). So, first we construct the homogeneous formula F′ with |Nu|many nodes for every node
u ∈ F. We identify 0 with the root r in the function Du ∈ Nu. For (i1, . . . , ik) ∈ [0, 1, . . . , s + 1]k,
Du

i1,...,ik
denotes all the functions Du ∈ Nu such that Du(δu) = (i1, . . . , ik). We want to prove for

every node u ∈ F, ( ⊕
(d1,...,dk)

F̃′(u,Du
d1,...,dk

)

)
←→ F̃u. (B.1)

If we prove Equation B.1 for the root r, we prove Equation 4.7 within Frege.
Construction of F′ and Frege proof If u ∈ F is a leaf, then for every Du ∈ Nu, the node (u, Du)

is a leaf. If u is labeled by a field element and Du(u) = (0, . . . , 0)︸ ︷︷ ︸
k

, then (u, Du) is labeled by the

same field element, and if Du(u) ̸= (0, . . . , 0) then (u, Du) is labeled by 0. If u is labeled from
X1 (respectively Xi for i ∈ [k]), then (u, Du) is labeled by the same variable only if Du(u) =

(1, 0, . . . , 0) (respectively Du(u) = (0, . . . , 1, . . . , 0)). Otherwise, we label it by 0. In this case, we
can clearly prove Equation B.1 within Frege.

Inductive Case : Let u, v, w ∈ F such that u = v + w. For every Du ∈ Nu, let Dv ∈ Nv be
the function that agrees with Du on {0, 1, . . . , δu} and Dv(δv) = Du(δu). Similarly, consider such
Dw ∈ Nw. Then we have the following connection (u, Du) = (v, Dv) + (w, Dw) in F′. This implies

F̂′(u,Du) := F̂′(v,Dv) + F̂′(w,Dw)

If Du(δu) = (i1, . . . , ik) then we have the following,

F̂′(u,Du
i1,...,ik

) := F̂′(v,Dv
i1,...,ik

) + F̂′(w,Dw
i1,...,ik

).

(B.2)

Hence, we have the following tautology,

F̃′(u,Du
i1,...,ik

) ←→ F̃′(v,Dv
i1,...,ik

)

⊕
F̃′(w,Dw

i1,...,ik
). (B.3)

By the inductive hypothesis,

F̃v ↔
⊕

(i1,...,ik)

F̃′(v,Dv
i1,...,ik

) F̃w ↔
⊕

(i1,...,ik)

F̃′(w,Dw
i1,...,ik

)

=⇒ F̃v ⊕ F̃w ↔
⊕

(i1,...,ik)

(F̃′(v,Dv
i1,...,ik

) ⊕ F̃′(w,Dw
i1,...,ik

)) we can prove

=⇒ F̃u ←→
⊕

(i1,...,ik)

F̃(u,Du
i1,...,ik

) this follows from Equation B.3.

(B.4)
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Let u = v× w and Du ∈ Nu be such that Du(u) = (d1, . . . , dk).
Then, (u, Du) = ∑d1

i1=0 ∑d2
i2=0 · · ·∑

dk
ik=0(v, Dv

i1,...,ik
)(w, Dw

d1−i1,...,dk−ik
). That is,

F̂′(u,Du
i1,...,ik

) :=
i1

∑
j1=0

i2

∑
j2=0
· · ·

ik

∑
jk=0

F̂′(v,Dv
j1,...,jk

) F̂′(w,Dw
i1−j1,...,ik−jk

)

=⇒ F̃′(u,Du
i1,...,ik

) ↔ ⊕i1
j1=0(· · · (⊕

ik
jk=0(F̃′(v,Dv

j1,...,jk
) ∧ F̃′(w,Dw

i1−j1,...,ik−jk
)) · · · ).

(B.5)

F̃u ←→ F̃v ∧ F̃w ↔ (
⊕

(i1,...,ik)
0≤i1,...,ik≤sv+1

F̃′(v,Dv
i1,...,ik

)) ∧ (
⊕

(j1,...,jk)
0≤j1,...,jk≤sw+1

F̃′(w,Dw
j1,...,jk

))

↔
⊕

(j1,...,jk)
0≤j1,...,jk≤su+1

(⊕i1
j1=0 · · · (⊕

ik
jk=0(F̃′(v,Dv

j1,...,jk
) ∧ F̃′(w,Dw

i1−j1,...,ik−jk
))) · · · )

↔
⊕

(i1,...,ik)
0≤i1,...,ik≤su+1

F̃′(u,Du
i1,...,ik

) follows from Equation B.5.

(B.6)

B.2 Definition of the Translation Map between ABP and Formula

We want to define a map

g : {nodes of AF} → {nodes of F} ∪ {∅}

where g(u) = v if the polynomial computed by F at v is the polynomial computed between u and
t in AF. The definition is by induction.

Base case. Let F be the formula u = x. The corresponding ABP AF consists of a single edge
s x−→ t. We define g(s) := u and g(t) := ∅.

Inductive case (addition). Let F = G + H, where u, v, w are the roots of F, G, H, respectively,
with u = v + w. Let AG, AH be the corresponding ABPs, and let g1, g2 be the associated maps with
g1(s) = v and g2(s) = w. We abuse notation by denoting the source and sink nodes of both ABPs
by s and t.

The ABP AF is obtained using the parallel composition of AG and AH. The map g is defined

59



by

g(ui) =



u, if ui is the source node,

g1(ui), if ui ∈ AG,

g2(ui), if ui ∈ AH,

∅, if ui is the sink node.

(B.7)

Inductive case (multiplication). If F = G · H, then AF is obtained by sequentially composing
AG and AH. The source of AF is the source of AG, and the sink of AG is identified with the source
of AH. The map g is defined as the union of g1 and g2, except at the merged node ut, where we set

g(ut) := g2(s),

with s denoting the source of AH.

B.3 D’ as defined in Subsection 4.5.2 is Well-Defined

Lemma 4.15. (Well-definedness of the refined operator D′) Let F be a partially commutative homoge-
neous constant-free formula over the variable set X = X1 ⊔ . . . ⊔ Xk, and let d be the number of layers of
the ABP AF (hence the maximum possible X1-degree in the constructions). Let D′ be defined inductively
on sub-formulas of F and on a parameter p ∈ {0, 1, . . . , d} as in the construction of Subsection 4.5.2.

Then for every sub-formula Fu of F, every node u of Fu, and every p ∈ {0, . . . , d}, the expression
D′(Fu, u, p) is well-defined. Moreover, for every triple (Fu, u, p) for which D′(Fu, u, p) is defined, the
output is an induced formula of Fu (obtained from Fu by substituting some sub-formulas by constants 0, 1
and by replacing some sub-formulas by their degree-refined induced parts).

Proof. We define D′(Fu, u, p) by induction on the structure (depth) of the subformula Fu, and
within the same Fu by induction on the parameter p.
Base case (leaves). If Fu is a leaf, i.e. Fu = x for some x ∈ X, then D′(x, u, p) is defined explicitly
by the leaf rule (and is either x or 0). Hence it is well-defined and is trivially an induced formula
of Fu.
Inductive step. Assume Fu is an internal gate, and that for every strict subformula Fu′ ⊊ Fu, for
every node u′ ∈ Fu′ and every p′ ∈ {0, . . . , d}, the value D′(Fu′ , u′, p′) is already well-defined and
is an induced formula of Fu′ .

There are two cases.
Case 1: Fu = G + H. If u ∈ G then D′(G + H, u, p) := D′(G, u, p) + 0, and if u ∈ H then D′(G +

H, u, p) := 0 + D′(H, u, p). By the induction hypothesis, D′(G, u, p) and D′(H, u, p) are already
well-defined induced formulas of G and H respectively; therefore D′(G + H, u, p) is well-defined.
It is obtained from Fu by replacing the other summand by 0, hence it is an induced formula of Fu.
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Case 2: Fu = G · H. We must justify the multiplication rule, in particular the occurrence of the term
F∗(p−q)

root(H)
.

Let rH denote the root node of the subformula H (so H itself is FrH ). By definition, for any
integer t ∈ {0, . . . , d} we set

F∗(t)rH := D′(H, rH, t).

This is well-defined by the induction hypothesis because H is a strict subformula of Fu.
Now consider the definition of D′(Fu, u, p):

(i) If u ∈ H. Then we simply set

D′(G · H, u, p) := D′(H, u, p),

which is well-defined by the induction hypothesis and is an induced formula of H (hence of Fu).

(ii) If u ∈ G. We define

D′(G · H, u, p) :=
p

∑
q=0

D′(G, u, q) · F∗(p−q)
rH =

p

∑
q=0

D′(G, u, q) · D′(H, rH, p− q).

Each summand is well-defined by the induction hypothesis: D′(G, u, q) is defined because G is a
strict sub-formula of Fu, and D′(H, rH, p − q) is defined because H is a strict sub-formula of Fu.
Therefore the entire sum is well-defined.

Finally we argue that this output is an induced formula of Fu. Indeed, each product term

D′(G, u, q) · D′(H, rH, p− q)

is obtained from the product G · H by replacing the left factor G by the induced sub-formula
D′(G, u, q) and replacing the right factor H by the induced sub-formula D′(H, rH, p − q), while
keeping the top multiplication gate. Thus each summand is an induced formula of Fu, and the
sum of induced formulas is again an induced formula of Fu (since we only introduce + gates
above induced sub-formulas and do not create any new variable occurrences outside Fu).
This completes the inductive proof that D′(Fu, u, p) is well-defined in all cases and always yields
an induced formula of Fu.

C Remaining details of Section Section 5

C.1 Proof of linear matrix factorization

We first recall Lemma 5.7 from Subsection 5.1.

Lemma 5.7. (Linear Matrix Factorization). Suppose F′ = F(ȳ) be the field of rational functions in
ȳ over F and X = {x1, x2, . . . , xn}. Let L ∈ F′⟨X⟩ℓ×m be a noncommutative linear matrix of rank
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r < min{ℓ, m} and d be the maximum degree of the coefficients of the entries of L. Then we can construct
linear matrices L1 ∈ F′⟨X⟩ℓ×r and L2 ∈ F′⟨X⟩r×m such that L = L1 · L2 in deterministic poly(ℓ, m, n)
time. Moreover, the coefficients of the entries of L1 and L2 have degree at most poly(ℓ, m, d).

As it is already mentioned, we divide the proof into two parts. Given such a linear matrix L,
we first do a finer analysis of [IQS18] to construct a nontrivial shrunk subspace. We then exploit
this subspace to obtain a zero block [FR04], which in turn yields a factorization of the input matrix.
In the following lemma, we first show the construction of a nontrivial subspace.

Lemma C.1. Let F′ = F(ȳ) be the field of rational functions in y1, . . . , yk over F, and let L = ∑n
i=1 Aixi ∈

F′⟨X⟩ℓ×m be a noncommutative linear matrix with ncrank(L) = r < min {ℓ, m}. Suppose the degree of
the coefficients appearing in the entries of L is bounded by d. Then we can find a basis of a (m− r)-shrunk
subspace T ⊆ F′m such that the degree of the coefficients is bounded by poly(n, ℓ, m, d).

Proof. For k = 0, the proof follows from [IQS18, Theorem 1.5]. For k ≥ 1, the result is proved using
a finer analysis of [IQS18] and [IKQS15], in particular, [IQS18, Theorem 5.10].

Define a matrix space A = ⟨A1, A2, . . . , An⟩. For any integer d′, let us denote the matrix space
A{d′} = Fd′×d′ ⊗A. We first describe the key ideas of [IQS18] in an informal way. The proof of
[IQS18, Theorem 5.10] is obtained through an algorithm that runs for at most min {ℓ, m} stages.
Without loss of generality, we assume m ≤ ℓ. At the ith stage of the algorithm, it maintains a
matrix B ∈ F′ℓd′×md′ in A{d′} of rank rd′ where r ≤ min {ℓ, m} and d′ ≤ r + 1. We call such
a matrix B as a witness of noncommutative rank r of L. The algorithm then gradually tries to
find witness matrices of higher ranks via the second Wong sequence. When it is unable to do so,
it computes a shrunk subspace witnessing the fact that L is not of full noncommutative rank. By
clearing the denominator, assume that the entries of B are polynomials in ȳ and the maximum
degree is bounded by Di.

Since for our purpose, it is enough to argue the degree bound in an existential way, we do
not need to investigate at each step whether the algorithm can increase the rank in a constructive
manner. In particular, [IQS18] constructs matrices C1, . . . , Cℓ ∈ A such that

CℓB−1Cℓ−1B−1 · · ·C1B−1(0) ̸⊆ Im(B).

Note that for a subspace V, we denote by B−1V the preimage of B. By linearity, we can obtain
Ai1 , Ai2 , . . . , Aiℓ ∈ {Ai′ ⊗ Ej′k′ | i′ ∈ [n] and 1 ≤ j′, k′ ≤ d′} such that

AiℓB
−1Aiℓ−1 B−1 · · · Ai1 B−1(0) ̸⊆ Im(B).

Here Ej′k′ is an elementary matrix of dimension d′. Next, the algorithm in [IQS18] constructs a set
of matrices Z1, . . . , Zn only using a basis of F′d

′′
(for a suitable integer d′′). The dimension of the

Zi matrices is d′′. Now construct the matrix C′ = Ai1 ⊗ Z1 + · · · + Aiℓ ⊗ Zℓ. This step does not
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incur any degree blow-up. Define B′ = B⊗ Id′′ . If the rank of C′ is already more than rd′d′′, then
the algorithm moves into the next subroutine with an update B′′ ← C′. Otherwise it finds a shift
λ ∈ F(ȳ) such that the rank of B′ + λC′ is more than rd′d′′. The computation of such a λ depends
on avoiding the roots of a polynomial-degree polynomial in λ (essentially we need to ensure the
invertibility of a submatrix). Thus we can choose a polynomial in F[ȳ] of polynomial degree for
λ. This step incurs a degree blow-up from Di to Di + poly(n, d, d′, d′′).

The next important steps are rounding and blow-up control. A self-contained and somewhat
simpler description can be found in [CM23]. The rounding step ensures to produce a rank wit-
ness of rank (r + 1)d′d′′ (in other words, rounding to the next possible rank). This step uses
concepts from cyclic division algebra. The initial witness matrices will be expressed as a linear
combination of the generators of a suitable cyclic division algebra. The coefficients will be over
F(ȳ, ω) for a chosen root of unity adjoined with F. Then gradually the coefficients will be chosen
from the ground field F(ȳ). This step again amounts to avoiding roots of univariate polynomi-
als of polynomial-degree. Thus incurring poly(n, d, d′, d′′) additive blow up in the degree of ȳ.
The blow-up control steps bring down the blown-up dimension to at most m and again requires
rounding using cyclic division algebra incurring poly(n, d, d′, d′′) blow-up in the degree of y. So
the final degree bound will be at most Di + (n, m, d)O(1) which is bounded by (n, m, d)O(1).

Now when the algorithm can not increase the rank any more, the second Wong sequence
computation outputs a shrunk subspace of the matrix space A{d}. Let the matrix obtained at
this step is B and the goal is to obtain a basis of a shrunk subspace of dimension co-rank(B).
Here we need to use the concept of pseudo-inverse of a matrix [IKQS15, Lemma 10]. When at
the ith step the rank can not be improved any more, we obtain subspaces Wi = Wi+1 and Wi =

(A{d}B′)i ker(BB′) where B′ is the pseudo-inverse of B. Then the required shrunk subspace is
B′Wi. Since the construction of pseudo-inverse involves simple linear algebraic operations, the
final degree bound will be (n, m, d)O(1).

The second part of the proof uses the shrunk subspace obtained to compute the factors. We
do this again in two parts. First, we compute a nontrivial decomposition, which then implies the
factors.

Lemma C.2. Let L = ∑n
i=1 Aixi ∈ F[ȳ]⟨X⟩ℓ×m be a noncommutative linear matrix with ncrank(L) =

r < min {ℓ, m}. Let T ⊆ F(ȳ)m be a (m− r)-shrunk subspace corresponding to L. Then, given a basis of
T, one can construct invertible matrices U ∈ F(ȳ)ℓ×ℓ and V ∈ F(ȳ)m×m such that

ULV =

[
M 0
B C

]
,

where the zero block is of size a× b such that a + b = ℓ+ m− r.

Proof. We show the existence of invertible matrices U ∈ F(ȳ)ℓ×ℓ and V ∈ F(ȳ)m×m such that for
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every i ∈ [n],

UAiV =

[
Mi 0
Bi Ci

]
. (C.3)

Let dim(T) = r′ and let BT := {u1, . . . , ur′} ⊂ F(ȳ)m be a spanning set of T. We extend BT

to a basis of F(ȳ)m by adding {ur′+1, . . . , um} to BT and let T′ := spanF(ȳ) {ur′+1, . . . , um}. Thus
T ⊕ T′ = F(ȳ)m. We define the matrix V := [u1, . . . , ur′ , ur′+1, . . . , um] to be the matrix whose
columns are the vectors {u1, . . . , um}. Clearly, V is invertible over F(ȳ).

Let W be a subspace of dimension s < r′ containing spanF(ȳ) {
⋃n

i=1 Ai · T}.
Let BW := {w1, . . . , ws} ⊂ F(ȳ)ℓ be a basis of W. We extend this basis to a basis of

F(ȳ)ℓ by adding {ws+1, . . . , wℓ} to BW . Let U be the invertible matrix in F(ȳ)ℓ×ℓ such that
U := [w1, . . . , wℓ]

−1. Assume the maximum degree (numerator and denominator) of each en-
try in V and U−1 is at most d. Then, the maximum degree between numerator and denominator
of each entry is at most O(ℓd).

Consider the matrix Ai ·V. For every j ≤ r′, the j-th column of this matrix is Ai · uj ∈W by the
definition of the shrunk subspace. Hence, for every j ≤ r′, there exist α1, . . . , αs ∈ F(ȳ) such that
Aiuj = ∑s

i=1 αi · wi. Formally,

U−1 ·



α1
...

αs

0
...
0


=
[

w1 w2 w3 . . . wk

]
·



α1
...

αs

0
...
0


= Aiuj =⇒ U · (Ai · uj) =



α1
...

αs

0
...
0


. (C.4)

Thus, the last ℓ− s positions in U · (Aiuj) are 0 for every j ≤ r′.
Therefore, for every i ∈ [n] we obtain

UAiV =

[
∗ ∗
0 ∗

]
, (C.5)

where the zero block is of size (ℓ− s)× r′. Furthermore, T is a (m− r)-shrunk subspace of dimen-
sion r′, therefore, r′ − s = m− r. Hence, ℓ− s + r′ = ℓ+ m− r.

By further row and column operations, we obtain invertible matrices U′ ∈ F(ȳ)ℓ×ℓ and V ′ ∈
F(ȳ)m×m such that

U′AiV ′ =

[
Mi 0
Bi Ci

]
for every i ∈ [n].
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Consequently,

U′LV ′ = U′
(

∑
i

xi Ai

)
V ′ =

[
M 0
B C

]
.

We now show that given the r-decomposability form Equation 5.6, the linear factors are easy
to compute.

Corollary C.6. Let L = ∑n
i=1 xi · Ai ∈ F(ȳ)⟨X⟩ℓ×m be a noncommutative linear matrix with

ncrank(L) = r. Then L admits a nontrivial factorization

L = L1 · L2,

where the factorization follows from the r-decomposability of L.

Proof. Since L is r-decomposable, we have invertible matrices U ∈ F(ȳ)ℓ×ℓ and V ∈ F(ȳ)m×m such
that

U · L ·V =

[
M 0
B C

]
,

where the zero block is of size i× j such that i + j = ℓ+ m− r. Therefore, we can write:

L = U−1

[
M 0
B Ii

]
·
[

Ij 0
0 C

]
·V−1

where L1 = U−1

[
M 0
B Ii

]
and L2 =

[
Ij 0
0 C

]
·V−1.

We are now ready to prove Lemma 5.7.

Proof of Lemma 5.7. The proof combines the equivalent definitions in Theorem 5.5. If the linear ma-
trix L ∈ F′ ⟨X⟩ has low rank, then it admits a shrunk subspace, and by Lemma C.2 one can choose
a basis of this subspace with polynomially bounded y-degree. This yields an r-decomposition of
L, and the desired factorization follows directly from Corollary C.6.

C.2 Toy Example for the factorisation

Let M be a 2× 3 matrix in which each entry is a product of 2 matrices.

M =

(
AB CD EF

A′B′ C′D′ E′F′

)
such that Ap×qBq×r, A′p′×qB′q×r

Cp×k, Dk×n, C′p′×kD′k×n and Ep×mFm×s, E′p′×mF′m×s are linear matrices.

(C.7)
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Claim C.8. There exists t ∈ N such that (M ⊕ It) = P · L · Q where the matrix P (Q) is an upper
triangular (lower triangular) matrix with diagonal entries are 1 and every entry of P and Q is computable
by poly(S)-sized ABPs. Here S = poly(p, q, r, p′, k, n, m, s).

Proof. Consider M⊕ Im first.

M⊕ Im =

 AB CD EF 0
A′B′ C′D′ E′F′ 0

0 0 0 Im



=

Ip 0 0
0 Ip′ −E′

0 0 Im

 ·
 AB CD EF 0

A′B′ C′D′ 0 E′

0 0 −F′ Im

 ·


Ir 0 0 0
0 In 0 0
0 0 Is 0
0 0 F′ Im


Using the previous equation, we linearize the matrix block E′F′.

Now we linearize the block EF by applying the same process to the matrix AB CD EF 0
A′B′ C′D′ 0 E′

0 0 −F′ Im

 = M1 (say). Let P1 =

Ip 0 0
0 Ip′ −E′

0 0 Im

 and Q1 =


Ir 0 0 0
0 In 0 0
0 0 Is 0
0 0 F′ Im

.

Then (M ⊕ Im ⊕ Im) = (P1 ⊕ Im)(M1 ⊕ Im)(Q1 ⊕ Im). Now if we consider the matrix M1 ⊕ Im,
then we get

M1 ⊕ Im =


AB CD EF 0 0

A′B′ C′D′ 0 E′ 0
0 0 −F′ Im 0
0 0 0 0 Im

 =
row-column swipe

P′ ·


0 0 Im −F′ 0

A′B′ C′D′ E′ 0 0
AB CD 0 EF 0
0 0 0 0 Im


︸ ︷︷ ︸

M′1

·Q′

where P′, Q′ are permutation matrices. Hence both (P1 ⊕ Im) · P′ and Q′ · (Q1 ⊕ Im) are invertible.
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So

M′1 =


0 0 Im −F′ 0

A′B′ C′D′ E′ 0 0
AB CD 0 EF 0
0 0 0 0 Im



=


Im 0 0 0
0 Ip′ 0 0
0 0 Ip −E
0 0 0 Im


︸ ︷︷ ︸

P′1

·


0 0 Im −F′ 0

A′B′ C′D′ E′ 0 0
AB CD 0 0 E
0 0 0 −F Im


︸ ︷︷ ︸

M2

·


Ir 0 0 0 0
0 In 0 0 0
0 0 Im 0 0
0 0 0 Is 0
0 0 0 F Im


︸ ︷︷ ︸

Q′1

Let us denote P2 = (P1 ⊕ Im) · P′ · P′1 and Q2 = Q′1 ·Q′ · (Q1 ⊕ Im). Now the idea is to linearize the
block CD in M2 by applying the same process to M2 ⊕ Ik. Note that at the end of this process, we
obtain t = q + k + m.

67


	Introduction
	Our Contribution
	Proof Overview
	Proof Overview for the Frege Simulation
	Proof Overview for the Construction of Witness Identities

	Further Remarks

	Preliminaries
	Computational Models
	The Ideal Proof Systems
	The Frege Proof System

	Partially Commutative Proof Systems
	Soundness and Completeness
	Verifiability
	PCp,q-IPS simulates the Frege proof system

	Frege Quasi-Polynomially Simulates PCk,2-IPS for any constant k
	Formal Statement of our Main Theorem
	The Reflection Principle
	Homogenization of Partially Commutative Formulas
	Translation Between Formulas and ABPs
	Refined Translation Between Formulas and ABPs
	Refined ABP Construction
	Refined ABP Tracking
	Size of the degree-refined induced formulas.
	Local ABP identities in A'F.

	Identity Witnesses
	ABP identity witnesses over F[y]

	The Frege Simulation

	Existence of a Partially Commutative ABP Identity Witness 
	Linear Matrix Factorization
	Matrix Polynomial Factorization
	Higman's Linearization for a Matrix of Noncommutative ABPs
	Proof of Factorization Lemma

	Construction of witness matrices

	Remaining details from Section 3
	Boolean Solutions Exist if and only if Matrix Solutions Exist
	PCp,q-IPS simulating Frege

	Remaining Details from Section 4
	Frege Proof for Homogenisation of Partially Commutative Formulas
	Definition of the Translation Map between ABP and Formula
	D' as defined in Subsection 4.5.2 is Well-Defined

	Remaining details of Section Section 5
	Proof of linear matrix factorization
	Toy Example for the factorisation


