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Abstract

We study the algebraic complexity of annihilators of polynomials maps. In particular, when
a polynomial map is ‘encoded by’ a small algebraic circuit, we show that the coefficients of an
annihilator of the map can be computed in PSPACE. Even when the underlying field is that of
reals or complex numbers, an analogous statement is true. We achieve this by using the class
VPSPACE that coincides with computability of coefficients in PSPACE, over integers.

As a consequence, we derive the following two conditional results. First, we show that
a VP-explicit hitting set generator for all of VP would separate either VP from VNP, or non-
uniform P from PSPACE. Second, in relation to algebraic natural proofs, we show that proving
an algebraic natural proofs barrier would imply either VP ̸= VNP or DSPACE(loglog∗ n n) ̸⊂ P.
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1 Introduction

A polynomial map is just a vector of polynomials, for example g = (g1(z), . . . , gn(z)), and an n-
length vector of m-variate polynomials acts as a function (or a map) from an m-dimensional space
to an n-dimensional space. Whenever n > m, the image of the map g does not cover the entire
space and in such cases there is a nonzero n-variate polynomial, say A(x1, . . . , xn), which evalu-
ates to zero on the entire image: A(g1, . . . , gn) is the zero polynomial. We call such an A(x) an
annihilator of the map g. As n becomes further larger than m, the space of annihilators of g natu-
rally becomes richer. Thus, given an m-variate map g = (g1, . . . , gn) with n much larger than m, it
is natural to expect a “simple” annihilator, and therefore, to try and find “the simplest” annihila-
tor for it. In this work, we study the complexity of the annihilator of a given map in terms of the
complexity of the map.

A natural model to study the complexity of multivariate polynomials is that of algebraic circuits
(see Definition 2.1). The algebraic circuit complexity of a polynomial essentially captures the number
of additions/subtractions and multiplications required to compute it at an arbitrary input. The
landmark work of Valiant [Val79] initiated the study of algebraic circuit complexity by introducing
affine projections as a notion of reductions between polynomials, and thus giving rise to complexity
classes of polynomials that are inter-reducible. Using algebraic circuits, one then defines VP: class
of efficiently computable polynomials, and VNP: the class of efficiently definable (or “explicit”)
polynomials (see Definition 2.5 and Definition 2.6). The central question in this area is whether all
explicit polynomials are efficiently computable, or whether VP = VNP.

Similar to its boolean counterpart, the “VP vs VNP” question has proven to be notoriously
hard in spite of it being a weaker1 question (see e.g. [Bür00, Chapter 4]). Nevertheless, research
on circuit lower bounds has provided significant insights in more structured variants culminating
into the recent breakthrough by Limaye, Srinivasan and Tavenas [LST21] that proves a super-
polynomial lower bound on an any constant-depth circuit for a polynomial in VP. We point
the reader to some excellent surveys [SY10, CKW11, Sap15] for more on algebraic circuit lower
bounds. Returning to unrestricted algebraic circuits, the current state is not that great: the best
lower bound is a barely super-linear O(n log n) due to Baur and Strassen [BS83]. This dichotomy
has led some experts to believe that there is a concrete barrier towards proving general circuit
lower bounds using the techniques that have worked so far. This question about a possible barrier
is one of the key motivations of our work. Before we expand on that, we will go over another
central question in algebraic complexity that is intimately connected to circuit lower bounds, an-
nihilators and even the above-mentioned question about barriers.

1Assuming the Generalised Reimann Hypothesis (GRH).
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1.1 Polynomial Identity Testing

“Given an arbitrary n-variate polynomial, f (x), of degree d that is computed by circuit of size s,
how many queries to f suffice to decide whether f is identically zero?” This is the blackbox polyno-
mial identity testing (blackbox PIT) question since we are treating f as a “black box” (as opposed to
white-box PIT, where we are given access to the circuit of f ).

When allowed randomness, this can be done in constantly many queries thanks to Polynomial
Identity Lemma (or ‘Schwartz-Zippel lemma’) [Ore22, DL78, Zip79, Sch80]. Further, this holds
regardless of f being computable by a small circuit. Asking for a deterministic blackbox PIT turns
out to be equivalent to asking for a (fixed) set of queries that works for any valid f (x) for the given
parameters n, d and s. Such a set is called a hitting set. This is essentially a ‘derandomization’
question because a not-too-large set chosen at random works (see [HS80, For14]).

Deterministic2 PIT, especially in the blackbox setting, is intimately connected to the question of
proving strong circuit lower bounds (see, e.g., [HS80, KI04, KS19]), and is therefore a challenging
problem. Almost all known blackbox PITs use the following two-step recipe.

(1) Variable reduction to m≪ n, using the bound on complexity of the input.

(2) Trivial PIT: use a hitting set (the “grid” Sm for a large enough set S) that works for all m-
variate polynomials of the resulting degree.

The ingenuity then lies in the variable reduction, which is done using a hitting set generator.
A hitting set generator (HSG), for a set of polynomials P, is a vector of m-variate polynomials

g = (g1(z), . . . , gn(z)) such that, for any nonzero f ∈ P, we have that f (g) ̸≡ 0. A good HSG
is a map g that has (1) a significant “stretch”: m ≪ n, and (2) low degree: D := maxi deg(gi) ∈
poly(d), both of which enable a much faster blackbox PIT. Any m-variate, degree-D HSG g implies
the hitting set {g(a) : a ∈ Sm} for any S of size ∼ (D · d) for the set of polynomials P.

Clearly an HSG for P is exactly a polynomial map whose annihilators are outside the set P and,
therefore, strongly motivates studying annihilators of “efficiently computable polynomial maps”
that have a significant “stretch”.

1.2 Algebraic Natural Proofs

We now come to the other motivation for our work, which is about the possibility of a barrier
towards proving strong circuit lower bounds. Faced with a similar situation in boolean circuit
complexity — not being able to extend strong lower bounds against structured models to the
general setting — Razborov and Rudich [RR97] produced their seminal work about natural proofs.
They abstracted out a template from known boolean circuit lower bounds at the time and showed
that the existence of (widely believed) strong enough cryptographic primitives implied that this

2Throughout the paper, when we say PIT, we mean deterministic PIT.
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template is fundamentally incapable of proving super-polynomial boolean circuit lower bounds.
Viewed constructively, this led complexity theorists to come up with road-maps to avoid this
template (see, e.g., [Cho11, Wil13, CJSW21]).

The algebraic natural proofs framework introduced3 by Forbes, Shpilka and Volk [FSV18], and
Grochow, Kumar, Saks and Saraf [GKSS17], tries to capture a similar barrier in the algebraic set-
ting, should one exist. It indeed turns out that most known algebraic circuit lower bounds follow
a template that appears to be an algebraic analogue of (boolean) natural proofs. More formally, for
most classes C, a lower bound against C yields a family of polynomials in VP that vanish on the
coefficient vectors of all polynomials in C (with the appropriate parameters). So, in order to prove
lower bounds against VP in this template, there must exist such a polynomial family in VP that
vanishes on the coefficient vectors of polynomial families that are in VP (see Section 2.1 for formal
definitions). If we could rule out such families, even assuming some hardness assumptions like
that in [RR97], this would constitute an ‘algebraic natural proofs barrier’.

However, unlike the boolean world, there is no strong or widely believed assumption that
proves the existence of a barrier. In fact, it can be argued that whatever is known only makes
the question more intriguing. To start with, Forbes, Shpilka and Volk [FSV18] showed that any
polynomial that vanishes on coefficient vectors of depth-3 multilinear formulas4 cannot come from
certain structured classes5; but we already know exponential lower bounds against multilinear
formulas using natural proofs [Raz09, RY09]. Next, Chatterjee, Kumar, Ramya, Saptharishi and
Tengse [CKR+20] showed that there are non-trivial polynomials in VP that vanish on polynomials
in VP with bounded coefficients; their work can be seen as evidence against a barrier somewhat
analoguous to Chow’s work [Cho11]. Finally, Kumar, Ramya, Saptharishi and Tengse [KRST22]
showed that if there is an exponential separation between VP and VNP then the class VNP does
not have VP-natural proofs; which essentially means that any VP-natural proof for VP should be
able to witness VP ̸= VNP! A more detailed summary of these results can be found in a survey by
Volk [Vol21].

One thing that keeps the question about an algebraic natural proofs barrier from being set-
tled is that the results in boolean cryptography do not seem to have any direct implications on it.
The first (and more obvious) reason for this is that low-degree algebraic circuits are a weaker
model and this prevent constructions of “pseudorandom polynomials” using boolean crypto-
graphic primitives in a black-box fashion. The second reason is that the coefficient vector of a
polynomial contains more information than the truth table of a boolean function. In particular, the
truth table only captures the ‘multilinear projection’ of a polynomial and, even for simple poly-
nomial families, such projections can simulate the Permanent (see Hrubeš [Hru16]). This perhaps
intuitively explains the findings in [KRST22]. Quite interestingly, their result uses a seemingly

3Previously, Grochow [Gro15] and Aaronson and Drucker [AD08] had suggested similar formulations.
4Formulas are circuits whose underlying graphs are trees.
5For example, depth-3 with constant top fan-in, ROABPs (in every order) and sparse polynomials, among others.
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weaker assumption than that used by Razborov and Rudich [RR97] (e.g., exponential hardness of
factoring integers). We refer the readers to previous works ([AD08, FSV18]) for some more details
about this.

Existence of an algebraic natural proofs barrier can naturally be viewed as a question about
annihilators of explicit polynomial maps via the well-known notion of a universal circuit (see
Lemma 2.11). In fact, explicit polynomial maps that are hard to annihilate are a fairly natural
algebraic analogue of pseudorandom function generators.

1.3 Annihilators of polynomial maps

With these two strong connections in mind, we wish that our work generates interest towards con-
structing explicit polynomial maps that are hard to annihilate, under widely believed hardness as-
sumptions. In particular, we are looking for size-s-explicit maps (see Definition 1.1), whose annihi-
lators require sizes much larger than s. This setting is sometimes called the ‘cryptographic setting’,
and we believe that this territory is largely unexplored. In particular, to the best of our knowl-
edge, the only known provable example of such a generator map is due to Andrews [And22], that
achieves a “super-quadratic stretch” if ω, the matrix multiplication exponent, is strictly bigger
than 2. We now give a few more details about the above work and other relevant literature on the
annihilators of polynomial maps.

There are multiple works that prove the HSG property for specific polynomial maps ([KS01,
BT88, KI04, SV09, GKSS19]), and thus all of them implicitly prove lower bounds on annihilators
of those maps. We will focus on two of these, because they prove conditional hardness against
general algebraic circuits. Kabanets and Impagliazzo [KI04] adapted the construction of Nisan and
Wigderson [NW94] and showed that any n-variate, 2nε

-hard polynomial h(z) can be converted
into a polylog(n)-variate HSG for circuits of size roughly poly(n), which would give a quasi-
polynomial blackbox PIT. They achieve this by showing that any annihilator of such a map has
to be a multiple of a polylog(n)-variate h(z). Guo, Kumar, Saptharishi and Solomon [GKSS19]
devised a method of obtaining efficient blackbox PIT using an exponentially hard polynomial h.
They require that h be hard because it vanishes on a hitting set for algebraic circuits, since their
proof relies on the annihilator of their map vanishing on the same hitting set. Note that both
these constructions give polynomial maps that require circuits of larger size than the circuits that
they ‘hit’. This is because in some sense the corresponding proofs rely on the hardness of a single
polynomial in the map.

To the best of our knowledge, the earliest work that explicitly studies annihilators with the
perspective of (algebraic) complexity theory is that of Kayal [Kay09], which focusses on maps that
have a ‘stretch’ of just one: n = m + 1. Thus, in this case, the space of annihilators (which is an
ideal) is generated by a single polynomial. Kayal shows an exponential lower bound on the degree
of this polynomial. He further shows that even for constant degree maps of this kind, obtaining
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any non-trivial information about their annihilator is at best NP-hard.
Next we have the works of van Melkebeek and Morgan [vMM22], Andrews and Forbes [AF22]

and Andrews [And22], that study annihilators of specific polynomial maps. The work of van
Melkebeek and Morgan generalizes the so-called “Shpilka-Volkovich generator” [SV09], which
helps them analyse the space of annihilators. They show near-optimal bounds on the degree,
sparsity and ‘minimum support size’ of any annihilator of their map. Andrews and Forbes [AF22]
construct an HSG for constant depth circuits, using the breakthrough lower bound of Limaye,
Srinivasan and Tavenas [LST21]. Their HSG generates all low-rank matrices and they show that
any annihilator essentially simulates a large-enough determinant (which is hard for constant-
depth circuits, due to [LST21]). Andrews [And22] extends the above work, and shows that the
‘low-rank-matrices’ HSG hits general circuits of slightly super-linear size, if the matrix multiplica-
tion exponent ω is strictly bigger than 2. As mentioned earlier, this is the only known instance of
an HSG that works for circuits of some size s and is itself size-s′-explicit, for some s′ < s.

To summarize the entire discussion, the difficulty in obtaining better bounds on the complexity
of annihilators of explicit maps has two sides. Proving upper bounds, which is related to designing
natural proofs, possibly requires us to capture a weakness of some model that computes the map.
Whereas proving lower bounds on the circuit complexity of annihilators, which possibly gives
blackbox PITs, seems tricky unless the ideal of annihilators is simple or structured.

Knowing these intimate connections, the question: “what is an upper bound on the annihila-
tors of an explicit polynomial map?”, is very much relevant. We will see that such annihilators
definitely lie inside a class that is (probably) larger than VNP, called VPSPACE (see Section 2.2 for
details). Even this seemingly simple upper bound reveals interesting connections between black-
box PITs, algebraic natural proofs, and lower bounds, including those in the boolean world. We
now elaborate on our results and these connections, and then present our high level ideas, be-
fore giving some directions for future research. The technical component of our paper starts from
Section 2 after that.

1.4 Our contributions

Our main result is the following upper bound on the annihilators of explicit polynomial maps.

Annihilators of explicit polynomials maps

Let us first formalize what we mean by explicit polynomial maps.

Definition 1.1 (Explicit polynomial maps). A polynomial map G(x1, . . . , xm) = (g1(x), . . . , gn(x)) is
said to have degree d if gi(x) has degree at most d for every i ∈ [n]. Further, we say that a circuit C(z, y)
encodes G if there are assignments a1, a2, . . . , an to y, such that for each i ∈ [n], C(x, ai) = gi(x).
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Analogously, for a family {Gm} of maps and a class C, we say that {Gm} is C-explicit if there is a
family {Cm} ∈ C such that, for every m, Cm encodes Gm. ♢

We focus on VP-explicit families of polynomial maps {Gm}, where the degree and size of en-
coding circuits increases polynomially in the number of parameters m. As we shall soon see,
showing unconditional bounds on annihilators of such maps in terms of VP or VNP would have
strong consequences in complexity theory in general.

For now, the best upper bound we can show is in terms of circuits with special evaluation
gates, called projection gates (see Definition 2.18), which characterizes the class VPSPACE in the
same way as (usual) algebraic circuits characterize VP. A detailed discussion on this class can
be found in Section 2.2 but over any fixed finite field, in particular, it coincides with the class of
polynomials whose bits of coefficients can be computed in non-uniform PSPACE.

Theorem 1.2 (Upper bound for annihilators of explicit maps). Let G : Fm → Fn be a polynomial map
given by (g1(z), . . . , gn(z)) of individual degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit CG(z, y) of size s that encodes G as per Def-
inition 1.1, then there is a circuit with projection gates C′(x) of size (m · d · s)c computing a nonzero
polynomial A(x) of individual degree at most 3 ·m · d that annihilates G; i.e. A (g1(z), . . . , gn(z)) ≡ 0.

In particular, we have the following.

Corollary 1.3. For any VP-explicit family of maps {Gm}, where each Gm has more than 2m outputs, there
is a family {Am} in VPSPACEb such that Am annihilates Gm for all large enough m.

In fact, it turns out that the upper bound in Theorem 1.2 holds even when the encoding cir-
cuit uses projection gates (see Theorem 3.1). That is, VPSPACE even annihilates (low-degree)
VPSPACE-explicit maps. This can be phrased as ‘VPSPACE is closed under taking annihilators’, in
the same way as ‘VP is closed under taking homogenous components’ and ‘VNP is closed under
taking arbitrary coefficients’.

Since the bound in Theorem 1.2 extends to VPSPACE-explicit families, it is believable that it
can be improved; we expand on this in Section 1.6. That said, this result already reveals some
interesting connections between lower bounds, identity testing and algebraic natural proofs.

Algebraic Natural Proofs

First, we get an upper bound on equations for evaluation vectors (similar to truth tables) of
VP(n) in terms of VPSPACE(nlog∗ n). It is easy to see that VPSPACE(nlog∗ n) is incomparable to
VP(N)6, and a VP(N) upper bound would rule out a natural proofs barrier! Using the definition
of ‘constant-free VPSPACE’ (see Definition 2.17), we can state our theorem as follows.

6Here C(n) and D(N) mean that the complexities are polynomial in the parameters n and N ≈ 2n, respectively.
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Theorem 1.4 (Equations for VP). For an arbitrary d(n) ∈ poly(n), and let N(n) = (n+d(n)
n ). For

t(n) := nlog∗ n, there is a family of N(n)-variate, multilinear polynomials {PN} that depends only on the
first t(n) variables, satisfying the following.

• The family {PN} is a family of equations for the evaluation vectors of VPd(n).

• The coefficient functions of {PN} are computable in (uniform) space t(n) = nlog∗ n.

Even though ‘algebraic natural proofs’ are defined in terms of coefficient vectors instead of
evaluation vectors, these notions are more or less equivalent.

Proposition 1.5 (Informal version of Proposition 4.5). For any d(n) and N = (n+d
n ), equations for

coefficient vectors of VPd are computable in VP(N) (or VNP(N)), if and only if, equations for evaluation
vectors of VPd are computable in VP(N) (or VNP(N)).

Thus, combining Theorem 3.1 and Proposition 1.5, we get the following corollary.

Theorem 1.6 (Hardness from absence of natural proofs). If VP does not admit VP-natural proofs then
either VP ̸= VNP or there is a language in DSPACE(loglog∗ n n) that is not in P.

Also, if VP does not admit VNP-natural proofs then there is a language in DSPACE(loglog∗ n n) that is
not in P.

Remark 1.7. The function log∗(·) in Theorem 1.4 and Theorem 1.6 can be replaced by any growing function
in the relevant parameter. ♢

Polynomial Identity Testing

Moving on to the problem of blackbox PIT, we first formally define hitting set generators.

Definition 1.8 (Hitting Set Generators for VPd). Fix d(n) ∈ poly(n). A family of polynomial maps
{Hm} from Cm to Cn(m), is said to be a hitting set generator for VPd, if any family {An} that annihilates
{Hm} is outside the class VPd. ♢

We show that HSGs for algebraic circuits that have a super-polynomial ‘stretch’ would sepa-
rate VP and VPSPACE.

Theorem 1.9 (Cryptographic HSGs separate VP from VPSPACE). Let {Hm} be a VP-explicit family
of m-variate polynomial maps with 2m outputs of degree m8, and let d(n) = n10.

If the family {Hm} is a hitting set generator for VPd, then VP ̸= VPSPACEb. As a consequence, either
P/ poly ̸= PSPACE/ poly or VP ̸= VNP.

As mentioned earlier, lower bounds shown in the work of Kayal [Kay09] do not rule out such
HSGs since those bound crucially rely on the space of annihilators being generated by a single
polynomial. On the other hand, our setting ensures that the space of annihilators is fairly rich and
therefore guarantees low-degree annihilators. More importantly, even conditioned on standard
hardness assumptions, it is no longer obvious whether any of the annihilators is computable by
efficient algebraic circuits.
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1.5 Proof Overview

The main ideas behind our proofs are a combination of elementary techniques and hence we will
try to give a nearly complete outline of our proofs.

Upper bound on the annihilators

We begin with an overview of the proof of Theorem 1.2. Let G = (g1(z), . . . , gn(z)) be an arbitrary
tuple of degree-d polynomials, in m < n/2 variables, that is explicit (see Definition 1.1). The fact
that g is explicit will be used later in the proof.

Observe that an annihilator A(x1, . . . , xn) ∈ C[x] of individual degree (D − 1) for this tuple
is precisely a (non-trivial) C-linear dependency between products of g1, . . . , gn of total degree ≤
n(D − 1), where each gi is multiplied at most (D − 1) times. Now, any such product is itself a
polynomial in m variables of individual degree less than d′ := (nD · d), and hence belongs to a
vector space of dimension less than d′m over C. On the other hand, there are at least Dn of these
products, so if D is large enough to ensure Dn ≥ d′m = (ndD)m then we are guaranteed some
non-trivial linear dependency. For n ≥ 2m this happens for a D ≤ nd.

Now we turn to finding the coefficients of this dependency, which are going to be the coeffi-
cients of our annihilator. For this, consider a matrix M with rows labelled by monomials in z of
individual degree at most (d′− 1), and columns labelled by monomials in x of individual degree at
most (D− 1). Order both the rows and columns lexicographically. For a monomial xe = xe1

1 · · · x
en
n ,

the eth column of M is the coefficient vector of g. In this language, any column-dependency of M
is the coefficient vector of an annihilator of (g1, . . . , gn).

Since we are chasing an annihilator with as efficient a description as possible, it makes sense
to pick the “lexicographically first” one. That is, let e be the “smallest” exponent such that ge is
dependent on the set of ge′s where all e′s are “smaller than” e. Our annihilator will precisely be
this unique (up to scaling by C) dependency.

Given a linear system of equations, Ax = 0, with a unique (up to scaling) solution, Cramer’s
rule describes the solution in terms of determinants of submatrices of A. We will fix the ‘last
coefficient’ to be −det(A′) where A′ is the submatrix that has all but the last column. This is done
to ensure that all the coefficients are integers (and “sub-determinants of A”). In fact it turns out
that, stated this way, the annihilator itself can be written as a single determinant by just adding a
new last row with all the (symbolic) monomials xe! We will call this ‘special Cramer’s rule’ for the
remainder of this overview.

At this point, note that there is a minor issue. For all we know, the “first” dependency that we
have chosen gives us a submatrix (all columns up to e) that has more rows than columns and we
cannot apply Cramer’s rule. Further, it is not even clear if the basis of rows has a small description
(smaller than just its characteristic vector). We get around this using a rank extractor, in particular
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the construction used by Forbes and Shpilka [FS12] (see Lemma 2.8), because it fits snugly with
the structure of the matrix M. The arguments up to this point have been formalized in Lemma 3.2.

Now that we are in the setting of ‘special Cramer’s rule’: we have an (r + 1)× (r + 1) matrix
M̃ whose determinant is the annihilator. Since r ≤ (md)O(m) this structure is not enough on its
own to guarantee a non-trivial upper bound. But we have even more structure in M̃, owing to the
explicitness of g. Specifically we have that, for all i ≤ r, the (i, ej)

th entry of M̃ is the evaluation
of gej at a point, β(i−1) ∈ Zm and this can be calculated efficiently by a constant-free algebraic
circuit when i is given in its binary representation. Since computing a circuit for gej given the
binary encoding of ej is also doable efficiently, we say that the matrix M̃ is efficiently encodable
using algebraic circuits. More formally, there is a size poly(log r) = poly(m, d, s) algebraic circuit
which, when given bit-vectors corresponding to i, j ∈ [r + 1], outputs M̃[i, j], Note that this can
sometimes be a monomial in x. The formal argument can be found in the proof of Lemma 3.5.

Finally, we use the fact that determinant of an explicit matrix can itself be computed in a
“memory-efficient” way. More formally, we use the elegant construction due to Mahajan and
Vinay [MV97], of an algebraic branching program (see Definition 2.3) for the determinant polyno-
mial, along with repeated squaring using projection gates (see Definition 2.18). Here, the fact that
projection gates let us evaluate a polynomial at constant cost proves to be crucial. Quantitatively,
given any matrix that is encoded by a circuit of size s′, we can compute the determinant of this ma-
trix using a circuit with projection gates of size poly(s′). In fact, Malod [Mal11] uses this to give an
alternative characterization of VPSPACE. This argument has been formalized in Proposition 2.27.

Putting all the pieces together (see Figure 1), we get a circuit with projection gates, of size
poly(m, d, s) that computes the annihilator of the map G = (g1, . . . , gn) as required.

Lower bounds from Constructive HSGs

Theorem 1.9 follows from Theorem 1.2 in a fairly straightforward manner. Suppose, for contra-
diction, that VP = VPSPACEb. This means that any circuit with projection gates can be efficiently
simulated by a circuit without projection gates. So, in particular, the circuits that compute the fam-
ily of annihilators of the hitting set generator {Hm} can be converted to “usual” algebraic circuits
of polynomially larger size. Finally, since the degree function d(n) is large enough for the annihi-
lators ensured by Theorem 1.2, we get that there is annihilator for {Hm} in VPd, contradicting its
‘hitting property’ in the hypothesis.

Algebraic Natural Proofs

The observation that allows us to move from Theorem 1.2 to Theorem 1.6 is that we can work
with evaluation vectors instead of coefficient vectors, especially when dealing with VP-natural or
VNP-natural proofs (due to Proposition 1.5). This means that a family of equations can be con-
structed to vanish on the evaluation vector of the universal circuit of a slightly super-polynomial
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size, say nO(log∗ n). Clearly, this evaluation vector is a size(nO(log∗ n))-explicit map. Applying Theo-
rem 1.2, we get a family of equations that can be computed by circuits with projection gates, of size
nO(log∗ n). Thus, giving “VPSPACE(nlog∗ n)-natural proofs for VP(n)”. The theorem then follows by
instantiating VPSPACE(nlog∗ n) ̸⊂ VP(N) or VNP(N) with the appropriate parameters.

1.6 Open directions

• The most important takeaway from our results, and the consequences, is the need for con-
structions of ‘cryptographic HSGs’ as in Theorem 1.9 and the more general Theorem 4.1.
Specifically, we ask whether the arguments of Heintz and Schnorr [HS80] can be derandom-
ized within space that is sub-polynomial in the parameters n, d and s. As this would satisfy
the hypothesis of Theorem 4.1, achieving this even under a hardness assumption that is
weaker (more believable) than P ̸= PSPACE would be interesting.

Along the same lines, under what assumptions do ‘sub-exponentially strong cryptographic
HSGs’ corresponding to Theorem 1.6 exist? There are some caveats7 due to which boolean
cryptographic primitives do not directly imply such HSGs.

• Another interesting thread is to improve the upper bound in this paper on annihilators of
explicit polynomial maps. Since we expect VPSPACEb to be exponentially stronger than VP

and VNP, any sub-exponential upper bound (2o(s) for size-s-explicit maps) in terms of VP or
VNP would be interesting, even if it requires assuming some standard hypothesis.

It appears that using the ‘minimal dependency’, as in Lemma 3.2, is unlikely to imply such
a bound without observing some structure of VP. This is mainly because such an approach
gives coefficients that are determinants of matrices of dimension 2poly(s) and one has to argue
that all these coefficients can be “compressed” into a smaller circuit.

Note that Theorem 3.1 implies that the bound from Theorem 1.4 extends to equations for
VNP. So, can we prove a better bound just for VP? Certainly, deriving any property of VP
that does not hold for VNP should probably assume hardness of VNP (e.g. [KRST22]).

1.7 Organization of the paper

The rest of our paper is organized as follows. We first formalize some relevant concepts in Sec-
tion 2, in which Section 2.2 is dedicated to the class VPSPACE. Then, we prove the upper bound
on annihilators in Section 3, and formally state and prove its important consequences in Section 4.
For completeness, we include a somewhat detailed proof sketch about the equivalence of two
definitions of VPSPACE that we use, in Appendix A.

7This is beyond the scope of this paper. Readers may refer to the literature on algebraic natural proofs (e.g.
[AD08],[FSV18]) for some details.
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Figure 1: The annihilator is computed by using (1) repeatedly to get Clog N , if N is the length of the
ABP described by (2) (Claim 2.29); (2) describes the ABP computing det(M̃) using (3) (Claim 2.28);
(3) describes the matrix M̃, such that det(M̃) ◦ G ≡ 0, in terms of the generator G (Lemma 3.5).
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2 Preliminaries

• We use [n] to denote the set {1, . . . , n}.

• We use boldface letters such as x, y to denote tuples, typically of variables. When necessary,
we adorn them with a subscript such as y[n] to denote the length of the tuple. We also use xe

to denote the monomial ∏ xei
i .

• We use { fn}n∈N to denote families of polynomials. We drop the index set whenever it is clear
from context. For a given polynomial f we denote by deg( f ) its degree. For a polynomial
f (x, y, . . .) on multiple sets of variables, we use degx( f ), degy( f ), etc., to denote the degree
in the variables from the respective sets.

• For a given n-variate polynomial f (x) of degree d, and a monomial m, we use coeffm( f ) to
refer to the coefficient of m in f . We further use coeff( f ) to denote the vector8 of coefficients
of f .

• For a matrix M, we use M[i, j] to refer to its (i, j)th entry. We commonly start our indices from
1, but sometimes start them from 0 when it helps the exposition. Whenever this is done, we
make it clear.

Models of Algebraic Computation

We now formally define the models of algebraic computation that we need for this work. We first
define algebraic circuits and their constant-free version.

Definition 2.1 (Algebraic Circuits). An algebraic circuit is specified by a directed acyclic graph, with
leaves (nodes with in-degree zero, called inputs) labelled by field constants or variables, and internal nodes
labelled by + or ×. The nodes with out-degree zero are called the outputs of the circuit. Computation
proceeds in the natural way, where inductively each + gate computes the sum of its children and each ×
gate computes the product of its children.

The size of the circuit is defined as the number of edges (or wires) in the underlying graph. ♢

Definition 2.2 (Constant-free Algebraic Circuits). An algebraic circuit is said to be “constant-free”, if
the only field constants that appear in it are 1 and −1. In order that the circuit is able to compute rational
numbers, we allow it to have division gates, where both the inputs are field constants. ♢

We also formally define algebraic branching programs.

Definition 2.3 (Algebraic Branching Programs (ABPs)). An algebraic branching program is speci-
fied by a layered graph where each edge is labelled by an affine linear form and the first and the last layer
have one vertex each, called the “source” and the “sink” vertex respectively. The polynomial computed by

8We do not explicitly mention the monomial ordering used for this vector representation, since all our statements
work for any monomial ordering.
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an ABP is equal to the sum of the weights of all paths from the start vertex to the end vertex in the ABP,
where the weight of a path is equal to the product of the labels of all the edges on it.

The width of a layer in an ABP is the number of vertices in it and the width of an ABP is the width of
the layer that has the maximum number of vertices in it.

The size of an ABP is the number of edges in it. ♢

Remark 2.4. We will use ABPs to mean ABPs that have been defined as above, but with edge labels also
being allowed to be monomials of degree that is at most the size of the ABP. ♢

Algebraic Complexity Classes

We now define the basic algebraic complexity classes.

Definition 2.5 (VP). A family { fn}n of polynomials is said to be in VP, if there exists a constant c ∈ N

such that for all large n, fn depends on at most nc variables, has degree at most nc, and is computable by an
algebraic circuit of size at most nc. ♢

Definition 2.6 (VNP). A family { fn}n of polynomials is said to be in VNP, if there exists a constant c ∈N,
and an m-variate family {gm} ∈ VP with m, size(gm) ≤ nc, such that for all large enough n, fn satisfies
the following.

fn(x) = ∑
a∈{0,1}|y|

gm(x, y = a) ♢

We will also be needing the following subclass of VP, especially in the context of algebraic
natural proofs.

Definition 2.7 (VPd). For a function d(n) ∈ poly(n), we define VPd to be the class of all degree-d families
that belong to VP. Equivalently, a family { fn} ∈ VP is said to be in VPd if for all large enough n,
deg( fn) ≤ d(n).

We also define VNPd to contain all the degree-d families from VNP. ♢

Rank Extractor We will also need the concept of rank extractors. A rank extractor is a family of
maps which have rank preserving properties. The following lemma shows the existence of such a
family in the setting that we will need.

Lemma 2.8 ([FS12]). Let 1 ≤ r ≤ n and let M ∈ Cn×r be of rank r. Define Aα ∈ Cr×n by Aα[i, j] = αij.
Then there exists α ∈ [nr] such that rank(Aα ·M) = r.

Polynomials for boolean operations Finally we note that there are computationally simple poly-
nomials which capture certain boolean operations. Since this is easy to check, we omit the proof.

Observation 2.9. Given vectors a, b ∈ {0, 1}ℓ, the following polynomials (or vectors of polynomials) have
constant-free circuits of size O(ℓ2).
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• EQ(a, b): outputs 1 if a = b, 0 otherwise.

• GT(a, b): outputs 1 if a > b when seen as binary encodings of positive integers, 0 otherwise.

• LT(a, b): outputs 1 if a < b when seen as binary encodings of positive integers, 0 otherwise.

• INC(a): outputs a vector b such that b = a + 1, when seen as positive integers.

2.1 Universal Circuits and Natural Proofs

A circuit is said to be universal for circuits of size s if every such circuit is a simple projection of it.

Definition 2.10 (Universal Circuit [SY10]). A circuit U is called universal for n-input circuits of size s,
that compute polynomials of degree d, if the following holds.

For any polynomial f (x1, . . . , xn) of degree d that can be computed by a circuit of size s, there
exists a circuit φ computing f as well, such that the computation graph of U is the same as the
graph of φ. ♢

The following lemma due to Raz [Raz10] shows the existence of such circuits. For a proof
sketch that yields the exact statement given below, please refer to [CKR+20].

Lemma 2.11 (Existence of Universal Circuits [Raz10]). Let F be any field and n, s ≥ 1 and d ≥ 0. Then
there exists an algebraic circuit U of size poly(n, d, s) computing a polynomial in F[x1, . . . , xn, y1, . . . , yr]

with r ≤ poly(n, d, s) such that:

• degx(U (x, y)), degy(U (x, y)) ≤ poly(d);

• for any f ∈ F[x1, . . . , xn] with degx( f ) ≤ d that is computable by an algebraic circuit of size s, there
exists an a ∈ Fr such that f (x) = U (x, a).

Algebraic Natural Proofs

We now define the concepts around natural proofs that we will need.

Definition 2.12 (Degree-d families). For any function d : N → N, we denote by Pd the class of all
degree-d polynomial families. That is, a family { fn} of n-variate polynomials belongs to Pd if deg( fn) ≤
d(n) for all large enough n. ♢

Definition 2.13 (D-Natural Proofs for C). Let d(n), D(N) be polynomially growing functions, and let
C ∈ Pd andD ∈ PD be any classes of polynomial families. For N(n) = (n+d(n)

n ), we say that an N-variate
family {AN} ∈ D is a D-natural proof for C if for any family { fn} ∈ C we have that the polynomial
AN(n) vanishes on the coefficient vector of fn, for all large enough n. ♢

Definition 2.14 (VP, VNP, and natural proofs). For a fixed d(n) ∈ poly(n), we say that VP-natural
proofs exist for VPd if for some D(N) ∈ poly(N), there exists a family {AN} that is a VPD-natural proof
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for VPd. We say that VP-natural proofs exist for VP if there is some VP-natural proof for VPd, for every
d(n) ∈ poly(n).

Similarly, we say that there are VNP-natural proofs for VP, if there is some VNP-natural proof for
each d(n) ∈ poly(n). ♢

2.2 Algebraic analogues of bounded-space computation: VPSPACE

The upper bound on the annihilator that we show is in terms of space complexity.

Definition 2.15 (DSPACE). We use DSPACE(s(n)) to denote the class of languages that can be decided by
deterministic Turing Machines in space s(n) for all inputs of length n. ♢

Defining the class

One way to define the algebraic analogue of PSPACE is using the space needed to compute coeffi-
cients of the polynomial, which was the route taken by Koiran and Perifel [KP09].

Definition 2.16 (Coefficient function). Suppose f (x1, . . . , xn) is a polynomial of individual degree d,
and each of its coefficient is an integer of absolute value < 2ℓ.

Then, for M = n · ⌈log(d + 1)⌉+(ℓ+ 1), we define the coefficient function of f to be the M-bit boolean
function Φ f such that Φ f (e1, . . . , en, i) outputs the ith bit of the coefficient of the monomial xe1

1 · · · x
en
n ,

where the 0th bit encodes the sign.
A family { fn} of integer polynomials naturally defines a family {Φn} of coefficient functions. ♢

Definition 2.17 (VPSPACE0 from coefficient functions [KP09]). A family {PN} of integer polynomials
is said to be in VPSPACE0 if, for all large N, the polynomial PN has poly(N) variables, degree 2poly(N) and
if the coefficient function of PN , ΦPN is computable in PSPACE/ poly. ♢

Poizat [Poi08] on the other hand defined VPSPACE without going into boolean computation,
using a new type of gate called projection gate, defined below. He showed9 that this definition is
equivalent to that of Koiran and Perifel.

Definition 2.18 (Projection gates). A projection gate is labelled by a variable, say w, and a constant
b ∈ {0, 1}. We denote such a gate by fixw=b. The gate fixw=b “projects” w to b in the input polynomial.
That is, fixw=b f (w, x) = f (b, x). ♢

Definition 2.19 (Circuits with projections [Poi08]). A family {PN} of integer polynomials is said to be
in VPPROJ0 if for all large N, there is a constant-free algebraic circuit, say C, that additionally have access
to projection gates such that C has size poly(N) and PN is the polynomial computed by C. ♢

Proposition 2.20 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.

9Poizat’s paper (written in French) includes a rough sketch of this proof. Malod’s paper [Mal11] (in English) quotes
his result but does not provide a proof.
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We believe that this statement is not entirely obvious, so we give a fairly detailed proof sketch
of this in Appendix A. Finally, for polynomials with arbitrary constants, VPSPACE is defined
using VPSPACE0 as follows.

Definition 2.21 (VPSPACE). Let F be the field of rationals, reals or complexes. A family {PN} of poly-
nomials over F is in VPSPACE, if there exists an M = poly(N) and a family {QM} ∈ VPSPACE0, such
that for all N, PN is obtained from QM by setting some variables to constants from F. ♢

For convenience, we also define two new types of gates: summation and production gates.

Definition 2.22 (Summations and Productions). The summation and production operations are defined,
using the operation of projection as defined in Definition 2.18, as follows.

• sumz f (z, x) := fixz=0 f (z, x) + fixz=1 f (z, x)

• prodz f (z, x) := fixz=0 f (z, x)× fixz=1 f (z, x) ♢

It is easy to see that, by definition, these gates can be simulated using projection gates and the
usual sum, product gates.

Before moving on, it is important to note that there are (at least) two more equivalent charac-
terizations of VPSPACE due to Malod [Mal11], and Mahajan and Rao [MR13]. We omit the details
of these definitions as we do not directly use them.

Comparison with VP

Given that VPSPACE corresponds to a class as powerful as PSPACE, it is worth checking that
the known “hard polynomial families” are outside VPSPACE as well. In this context, it makes
sense to define a bounded degree analogue of VPSPACE written as VPSPACEb. As Koiran and
Perifel [KP09] showed, the degree bound is inconsequential when comparing VP and VPSPACE.

Proposition 2.23 (Restatement of [KP09, Lemma 4]). Let VPSPACEb be the polynomial families of
degree poly(n) that belong to VPSPACE, and similarly, let VPnb be the class of polynomial families of
unbounded degree that have algebraic circuits of size poly(n).

Then, VP = VPSPACEb if and only if VPnb = VPSPACE.

We can now summarize the relationship of VPSPACEb with known hard polynomials as fol-
lows, essentially by using the arguments in the well-known book by Bürgisser [Bür00].

• Since a random polynomial does not have small circuits with projection gates with high prob-
ability, random polynomial families are outside VPSPACEb.

• Any construction that involves exponentially many “independent irrational numbers”, e.g.
hc(x) = ∑e

√
pe · xe for distinct primes {pe}, also works against VPSPACEb. This is because

the coefficients of polynomials in VPSPACEb can always be written as integer polynomials
that depend on at most polynomially many scalars from the underlying field.
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• Finally, Strassen’s multilinear polynomial, defined10 as hs(x) = ∑0≤i<2n 22i
xi has coefficients

that are triply exponential in the number of variables n. This means that we will need dou-
bly exponentially many bits to even index into the bits of the coefficients, which puts the
(corresponding family of) coefficient functions outside PSPACE.

Koiran and Perifel [KP09] further showed that separating VP and VPSPACEb would imply
other lower bounds, as follows.

Proposition 2.24 ([KP09, Proposition 3]). If VP ̸= VPSPACEb, then either VP ̸= VNP or P/ poly ̸=
PSPACE/ poly.

Assuming the Generalized Riemann Hypothesis (GRH), the converse is also true. That is, if VP ̸= VNP

or P/ poly ̸= PSPACE/ poly then VP ̸= VPSPACEb.

2.3 Explicit Objects

Next, along the same lines as explicit polynomial maps (Definition 1.1), we define explicit matrices
and explicit ABPs. As before, we use the word explicit to mean encodable by efficient circuits.

Definition 2.25 (Explicit matrices). A circuit C(x, a, b) is said to encode a matrix M ∈ Fr×c if |a| =
⌈log r⌉, |b| = ⌈log c⌉ and for i, j being binary representations of i, j respectively, C(x, i, j) = M[i, j].

Analogously, for a family of matrices {Mr,c : Mr,c has r rows and c columns} and a class C, we say
that {Mr,c} is C-explicit if there is a family {Cr,c} ∈ C such that, for every r, c, Cr,c encodes Mr,c. ♢

Definition 2.26 (Explicit ABPs). A circuit CA(x, (a, b), (a′, b′)) is said to encode an algebraic branching
program A, of width w and d layers, if |a| = |a′| = ⌈log d⌉, |b| = |b′| = ⌈log w⌉ and

∀i, i′ ∈ {0, 1}⌈log d⌉ ∀j, j′ ∈ {0, 1}⌈log w⌉ ,

CA(x, (i, j), (i′, j′)) is the label on the edge ((i, j), (i′, j′)) in A.

Here i, j, i′, j′ are the binary representations of i, j, i′, j′ respectively and ((i, j), (i′, j′)) denotes the edge
between the j-th vertex in layer i and the j′-th vertex in layer i′.

Analogously, for a family of algebraic branching programs {Aw,d : Aw,d has width w and d layers}
and a class C, we say that {Aw,d} is C-explicit if there is a family {Cw,d} ∈ C such that, for every w, d,
Cw,d encodes Mw,d. ♢

2.4 Computing determinants of explicit matrices in VPSPACE

We now show that given a matrix that is encoded by a small circuit, its determinant can be com-
puted using a small circuit with projection gates. A similar result already appears in a work by
Malod [Mal11] and we provide a proof here for completeness.

10Here i is the vector corresponding to the binary representation of i.
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Proposition 2.27 (Computing determinant of explicit matrices). Let M ∈ CN×N be a matrix that is
encoded by a circuit C(x, a, b) with |a| = |b| = ⌈log N⌉.

Then det(M) can be computed by a circuit C′ with projection gates, of size O(size(C) + log2 N).
Moreover, if C is constant-free, then so is C′.

Proof. The proof has two parts. First we show that det(M) can be computed by an explicit Alge-
braic Branching Program (ABP) and then show that the polynomial computed by an explicit ABP
can also be efficiently computed by circuits with projection gates.

The first step is easy to deduce from the well-known elegant construction due to Mahajan and
Vinay [MV97] and the second step is just a careful application of “repeated squaring” for matrices.
We now prove these formally.

Claim 2.28. There is an explicit ABP of size poly(size(CM), log N), say A(x), that computes det(M).

Proof. We just describe the ABP computing det(M) here and also the circuit that encodes it. For
a crisp proof of why this ABP computes the determinant, we direct the reader to Saptharishi’s
survey [Sap15, Section 3.3.3].

The ABP has N + 1 layers of vertices and, except for the first and the last layer, each layer has
O(N2) vertices. Vertices of the ABP are labelled by (ℓ, (i, j)) where ℓ ∈ [N + 1] denotes the layer
and (i, j) ∈ [N]× [N] indexes a particular vertex in that layer. The edges are given as below.

• For each vertex (ℓ, (i, j)) with ℓ ∈ [N − 1], there is an edge to each (ℓ+ 1, (i, k)) where k > i.
The label of the edge is M[j, k].

• For each vertex (ℓ, (i, j)) with ℓ ∈ [N − 1], there is an edge to each (ℓ+ 1, (k, k)) where k > i.
The label of the edge is −M[j, i].

• All vertices (N, (i, j)) have an edge to the sink (N + 1, (1, 1)), with the label −M[j, i].

We now describe the circuit C̃ that encodes the above ABP, using the circuit CM. Each vertex
of the ABP is a vector of 3 ⌈log N⌉ bits: ⌈log N⌉ each for ℓ, i and j as described in the above
construction. In the circuit, the two input vertices are u ≡ (ℓu, (iu, ju)) and v ≡ (ℓv, (iv, jv))11.
Using the polynomials defined in Observation 2.9, we get the following expression for C̃.

Let G(x, u, v) = EQ(ℓv, INC(ℓu)) · EQ(iu, iv) ·GT(jv, iu) · C(x, ju, jv)

+ EQ(ℓv, INC(ℓu)) ·GT(iv, iu) · EQ(iv, jv) · (−1 · C(x, iu, ju))

+ EQ(ℓv, INC(ℓu)) · EQ(ℓu, n) · EQ(0 . . . 01, iv) · EQ(iv, jv) · (−1 · C(x, iu, ju)) ,

and valid(u) = LT(0 . . . 00, ℓu) · LT(ℓu, INC(INC(n))) · int(iu) · int(ju),

where int(a) = LT(0 . . . 00, a) · LT(a, INC(n)).

Then C̃(x, u, v) = valid(u) · valid(v) · g(x, u, v).

11Here ℓ,i,j for both u and v are bit-vectors. We have used plain lowercase symbols since we think of them as numbers.
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Here each ‘product term’ in the definition of G corresponds to one type of edge in the description
above, and n, 0 . . . 00 and 0 . . . 01 are the bit-vectors corresponding to the numbers N, 0 and 1
respectively. We use the polynomial “valid” to ensure that C̃ outputs 0 whenever it is given a pair
of labels that is of a ‘non-edge’.

The correctness of this expression is easy to check using the description of the ABP. Also, C̃ has
size O(size(C) + log2 N) and is a constant-free algebraic circuit (without projection gates) if C is
constant free.

Claim 2.29. There is a circuit C′ with projection gates, of size poly(size(C̃), log N) that computes the
polynomial computed by the above ABP.

Proof. Let A be the adjacency matrix of the graph that underlies the branching program. The
polynomial computed by the ABP is just the (s, t)-th entry of the matrix AN , where s = (1, (1, 1))
and t = (N + 1, (1, 1)) are the tuples corresponding to the source and the sink. Since C̃ encodes A,
we only need to figure out how to encode A2, which we can then use recursively to obtain access
to the entries of A2k

for any k. Note that this becomes much easier when N is a power of 2.
So we modify the ABP by adding layers N + 2, . . . , N′ + 1, to ensure that N′ is a power of 2.

Each of the new layers have a single vertex with the label (ℓ, (1, 1)) where ℓ is the layer. We also
add an edge from (ℓ, 1, 1) to (ℓ+ 1, 1, 1), labelled with the scalar 1, for every N < ℓ ≤ N′. This
new ABP is explicit since we can add the term

EQ(ℓv, INC(ℓu)) ·GT(ℓu, n) · EQ(0 . . . 01, iu) · EQ(iu, ju) · EQ(0 . . . 01, iv) · EQ(iv, jv) · 1

to the polynomial G defined above, and also modify valid(u) appropriately, to obtain a circuit that
encodes the new ABP.

Now note that the (s, t)-th entry of AN′ is the same as the (s, t)-th entry of AN , and therefore is
the polynomial we are looking for. Further, we can now easily compute the (s, t)-th entry of AN′

using recursion, as described earlier. We now describe a circuit using projection gates that carries
out this operation.

Consider the following circuits defined using projections (Definition 2.18) and summations
(Definition 2.22).

P1(x, u, w, v, z) := C̃ (x, ((1− z)u + zw), ((1− z)w + zv))

D1(x, u, v) := sumw1sumw2 · · · sumwL (fixz=0 P1(x, u, w, v, z) · fixz=1 P1(x, u, w, v, z))

Note that D1 encodes the adjacency matrix A2 when C̃ encodes A and L = O(log N) is the length
of the vertex labels of A.

Now for every 2 ≤ i ≤ k = ⌈log(N + 1)⌉, we define Pi+1 by using Di in place of C̃, and Di+1

by using Pi+1 in place of P1, in the definitions of P1 and D1 above.
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As each of the Pi+1s and Di+1s have circuits (with projection gates) of size poly(log N) with
exactly one use of Di and Pi+1 respectively, all these increases are additive. So, finally, C′(x) =

Dk(x, s, t) has a circuit of size O(size(C̃)+ log2 N) and computes the polynomial we need. Further,
C′ is constant-free if C̃ is constant free.

Combining both the above claims, we get that size(C′) = O(size(C) + log2 N), and also that
C′ is constant-free whenever C is constant-free.

3 VPSPACE Upper Bounds for Annihilators

We now prove our main theorem, namely Theorem 1.2. In fact, we will prove the following (much)
stronger statement.

Theorem 3.1 (Annihilators of explicit maps). Let m be large enough, and let G : Fm → Fn be a
polynomial map given by (g1(z), . . . , gn(z)) of degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit with projection gates CG(z, y) of size s that
encodes G as per Definition 1.1, then there is a circuit with projection gates C′(x) of size (m · d · s)c

computing a nonzero polynomial A(x) of individual degree at most 3 · m · d that annihilates G (that is,
A ◦ Gm = A (g1(z), . . . , gn(z)) ≡ 0).

To prove this, we will first show that there is an explicit matrix whose determinant is the anni-
hilator, and then show that in this case the annihilator has a small circuit with projection gates.

3.1 Annihilator as determinant of a matrix

Formally, we will prove the following..

Lemma 3.2 (Annihilator as a determinant). Let G be a polynomial map as given in Theorem 3.1. Further,
let CG(z, y) be a circuit that generates G.

Then for D =
⌈
(nd)m/(n−m)

⌉
+ 1, there exists a K× K matrix M̃ with K ≤ Dn such that det(M̃) is

an annihilator of G that has individual degree at most D− 1. Moreover, M̃ can be described as follows.
There is some positive integer α < D2n such that, for i ∈ {0, . . . , K− 1} and j ∈ [K],

M̃[i, e(j)] =

(G(vα,i))
e(j)

if i ≤ K− 2

(−1)K−1 · xe(j)
if i = K− 1,

where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1
).

Proof. First we see how linear dependencies of specific polynomials in terms of G give us anni-
hilators of the map G. Suppose A(x) is an annihilator of G, and let A(x) = ∑e fexe be its sparse
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representation. Then 0 = A(G) = ∑e feGe. In other words, the coefficient vector of A is a linear
dependency in the set of polynomials of the form Ge, as we range over all the exponent vectors
e. Clearly, the converse is also true: for any polynomial A(x) = ∑e fexe, if the coefficients { fe}
represent a linear dependency in the polynomials {Ge}, then F(G) = 0.

Now, for a parameter D to be fixed later, consider the following matrix M.

• Columns of M are indexed by monomials in x = {x1, . . . , xn} of individual degree at most
D− 1, ordered lexicographically.

• Rows of M are indexed by monomials in z = {z1, . . . , zm} of individual degree at most
(ndD)− 1, ordered lexicographically.

• For any valid e ∈ Nn, the eth column of M is the coefficient vector of the product Ge =

g1(z)
e1 · · · gn(z)

en . Note that this product is an m-variate polynomial of individual degree at
most |e| ≤ (n · (D− 1)) · d < (ndD)− 1.

From the previous discussion, we can see that any nonzero dependency in the columns of M is
the coefficient vector of some annihilator of G. Now observe that M has fewer rows than columns
whenever D > (nd)m/(n−m), since (ndD)m < Dn in this case. Therefore, there is a non-trivial
dependency in its columns if we set D =

⌈
(nd)m/(n−m)

⌉
+ 1.

In order to ensure a unique dependency (up to scaling), we restrict M to its first K columns,
where K− 1 is the largest number for which the first K− 1 columns are linearly independent. So
now M has the following properties.

• M has K ≤ Dn columns and each column is labelled by a monomial in {x1, . . . , xn} of indi-
vidual degree ≤ D− 1. Let

{
e(j)
}

j∈[K]
be the labels of the columns.

• Each row is labelled by a monomial in {z1, . . . , zm} of individual degree ≤ (ndD)− 1 and
so, if the number of rows in M is R, then

R ≤ (ndD)m < Dn

• The (ze, e(j))-th entry of M is the coefficient of ze in Ge(j)
.

• The first K− 1 columns are linearly independent and the last column is a linear combination
of the previous columns.

• A(x) = xe(K) −∑K−1
j=1 fe(j) · xe(j)

is an annihilator of G ,if M[e(K)] = ∑K−1
j=1 fe(j) ·M[e(j)].

We now construct a matrix M′, with (K− 1) rows and K columns, such that M′ has rank exactly
(K− 1). In fact, the columns of M′ will share the same dependencies as the columns of M.

Claim 3.3. Define for α ∈ N, the matrix Eα ∈ C(K−1)×R such that Eα[i, j] = αij for each 0 ≤ i < K− 1
and 0 ≤ j < R. For some α ≤ D2n, the matrix product M′ := Eα ·M has rank exactly K− 1. Further, M′

has the same dependencies in its columns as M.
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Proof. By Lemma 2.8, we immediately have that there exists α ≤ R · (K − 1) < D2n such that
rank(Eα · M) = K − 1. Let M′ = Eα · M. To show that M′ has the same dependencies in its
columns as M, let us first assume that Mu = 0 for some u ∈ CK. Clearly this implies that M′u =

Eα ·Mu = 0.
Conversely, let v ∈ CK be such that M′v = 0 but Mv ̸= 0. Then, clearly, v ̸= βu for any β ∈ C.

This shows that dim(ker(M′)) ≥ 2, contradicting the rank-nullity theorem since rank(M′) =

K− 1. Therefore no such v can exist, proving that for any v ∈ CK, M′v = 0 =⇒ Mv = 0.

For M′ defined as in the claim above, we clearly have that M′[e(K)] = ∑K−1
j=1 fe(j) · M′[e(j)].

Also, note that the rows of M′ are labelled by {0, . . . , K− 2} and the columns are labelled by{
e(j) : j ∈ [K]

}
. We now define M̃, a K × K matrix with rows labelled by {0, . . . , K− 1} and

columns labelled by
{

e(j) : j ∈ [K]
}

, as follows.

M̃[i, e(j)] =

M′[i− 1, e(j)] if i ≤ K− 2

(−1)i · xe(j)
if i = K− 1

First, we show that the determinant of M̃ is an annihilator of G. In particular, we show that
det(M̃) is a scalar multiple of A(x). We use M′[∗, e(j)] to denote the e(j)th column of the matrix
M′, and M′ \M′[∗, e(j)] to denote the submatrix of M′ obtained by deleting the e(j)th column.

Claim 3.4. det(M̃) = det(M′ \M′[∗, e(K)]) · A(x).

Proof. Note that, by expanding with respect to the last row,

det(M̃) =
K

∑
j=1

(−1)j−1 · det(M′ \M′[∗, e(j)]) · (−1)K−1 · xe(j)
.

This can be re-written as

det(M̃)

det(M′ \M′[∗, e(K)])
= xe(K) +

K−1

∑
j=1

(−1)K−j · det(M′ \M′[∗, e(j)])

det(M′ \M′[∗, e(K)])
· xe(j)

.

Since M′[e(K)] = ∑K−1
j=1 fe(j) ·M′[e(j)], it is now easy to check the following using Cramer’s Rule.

det(M̃)

det(M′ \M′[∗, e(K)])
= xe(K) −

K−1

∑
j=1

fe(j) · xe(j)
= A(x).

Since det(M′ \ M′[∗, e(K)]) is a fixed, nonzero scalar, det(M̃) is an annihilator of G. Further,
since every monomial in

{
xe(j)

: j ∈ [K]
}

has individual degree at most D − 1, det(M̃) also has
individual degree at most D− 1.
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We now show that M̃ can be described as claimed. To show that, we note that M′ has a very
special structure. For any ℓ ∈ {0, . . . , R− 1}, let vℓ ∈ [ndD− 1]m be the unique vector such that

ℓ =
m

∑
b=1

vℓ(b) · (ndD)b−1.

Then, for i ∈ {0, . . . , K− 2} and j ∈ [K],

M′[i, e(j)] =
R−1

∑
ℓ=0

αiℓ · coeffzvℓ (Ge(j)
) =

R−1

∑
ℓ=0

coeffzvℓ (G(e
j)) · αi·(∑m

b=1 vℓ(b)·(ndD)b−1)

=
R−1

∑
ℓ=0

(
coeffzvℓ (Ge(j)

)
m

∏
b=1

α(i·(ndD)b−1)vℓ(b)

)
=

R−1

∑
ℓ=0

(
coeffzvℓ (Ge(j)

) · vvℓ
α,i

)

where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1
). That is,

M′[i, e(j)] = (G(vα,i))
e(j)

.

We can therefore re-write M̃ as claimed.

3.2 Annihilator as determinant of an explicit matrix

We now show that the matrix described in the last section is explicit in the sense of Definition 2.25.

Lemma 3.5 (Annihilator as determinant of an explicit matrix). Let G be a polynomial map as given in
Theorem 3.1. Let CG(z, y) be a circuit that encodes G. Further, for D =

⌈
(nd)m/(n−m)

⌉
+ 1, α < D2n and

K ≤ Dn , let M̃ be defined as follows.
For i ∈ {0, . . . , K− 1} and j ∈ [K],

M̃[i, e(j)] =

(G(vα,i))
e(j)

if 0 ≤ i ≤ K− 2

(−1)K−1 · xe(j)
if i = K− 1.

where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1
).

Then, given access to a CG gate, there is a purely algebraic circuit12 C̃G that encodes M̃. Further, C̃G
uses only a single CG gate and has overall size O((nd)3 + n · size(CG)).

Proof. Let j be a bit-vector of length n · δ, for δ := ⌈log D⌉, which we interpret as the tuple
(j(1), . . . , j(n)) where j(ℓ) is the bit-vector encoding the ℓ-th co-ordinate of e(j). Further, let the
bit-vector i encode the integer i. We want to construct a circuit C̃G such that C̃G(x, i, j) = M̃[i, e(j)].

12Algebraic circuit without projection gates.
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Firstly, it is easy to see that there is a constant-free multi-output circuit C′, of size O(log2 K),
such that C′(j) = (j(1), . . . , j(n)) as described above. We will use C′k,b(j) to denote the output gate
of C′(j) which outputs the b-th bit of j(k).

Let ∆ = ndD and vα := (α, α∆, . . . , α∆m−1
). We start by computing L = ⌈log K⌉ many dis-

tinct powers of the vector vα, namely, vα, v2
α, v4

α, . . ., v2L−1

α . Here vr
α is used to denote the vector

(αr, αr·∆, . . . , αr·∆m−1
). Since α can be computed by a constant-free circuit of size O(n log(nd)),

each of these L vectors can be computed by a constant-free circuit of size O(L · n log(nd)) =

O(log K · n log(nd)). Let these multi-output circuits be C0(α), . . . , CL−1(α) with Cℓ,k(α) denoting
the k-th output gate in Cℓ(α) for k ∈ {0, . . . , m− 1}. That is, Cℓ,k(α) = αr·∆k

for k ∈ {0, . . . , m− 1}.
We now describe some intermediate circuits, and then finally C̃G . For i = (i0, . . . , iL−1),

pow(i) :=

(
L−1

∏
ℓ=0

(iℓ · Cℓ,0(α) + (1− iℓ) · 1) , . . . ,
L−1

∏
ℓ=0

(iℓ · Cℓ,m−1(α) + (1− iℓ) · 1)
)

ROW(i) := LT(i, k) · CG(pow(i)) + EQ(i, k) · x

C̃G(i, j) := ∏
a∈[n]

(
δ−1

∏
b=0

(
C′a,b(j) · (ROW(i)a)

2b
+ (1− C′a,b(j)) · 1

))

Here pow(i) computes the vector vα,i, and the polynomials LT(·, ·) and EQ(·, ·) are as defined
in Observation 2.9. Further, k is the binary encoding of the integer K − 1 and ROW(i)a denotes
the a-th output gate of ROW(i). That is, ROW(i)a = LT(i, k) · ga(pow(i)) + EQ(i, k) · xa if G =

(g1, . . . , gn).
Note that C̃G uses the sub-circuit CG exactly once, in ROW, as claimed. Also, all the three

expressions described above are constant-free, algebraic expressions. Finally, note that the size of
C̃G is O(L · n log(nd) + L + L2 + nd + n · size(CG)), which is O(n3 · d2 + n · size(CG)).

3.3 Completing the proof

We now have all the components necessary to complete the proof of Theorem 3.1.

Theorem 3.1 (Annihilators of explicit maps). Let m be large enough, and let G : Fm → Fn be a
polynomial map given by (g1(z), . . . , gn(z)) of degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit with projection gates CG(z, y) of size s that
encodes G as per Definition 1.1, then there is a circuit with projection gates C′(x) of size (m · d · s)c

computing a nonzero polynomial A(x) of individual degree at most 3 · m · d that annihilates G (that is,
A ◦ Gm = A (g1(z), . . . , gn(z)) ≡ 0).

Proof. Let G ′ = (g1(z), . . . , g2m(z)), the first 2m co-ordinates. Clearly, CG encodes G ′ as well.
Lemma 3.2 tells us that there is a K × K matrix, M̃, such that 0 ̸≡ A′(x) = det(M̃) is an

annihilator for the map G ′ (that is, A′ ◦ G ′ ≡ 0). Here K = (2md) + 12m and A′(x) has individual
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degree at most
⌈
(2md)m/(2m−m)

⌉
+ 1 = 2md + 1.

Using the fact that the entries of M̃ are either evaluations of G ′ or monomials, Lemma 3.5
provides a circuit C̃ that encodes the matrix M̃ where C̃ has size O((2md)3 + (2m) · size(CG)).
Further C̃ is a purely algebraic circuit13 and also constant-free, assuming we have access to a
gate computing CGm . Finally, we use Proposition 2.27 to obtain a circuit with projections C′ that
computes A′(x). The circuit C′ has size O((2md)3 +(4m) · size(CG)+ log2 K) = O((2md)3 +(4m) ·
size(CG)) = (m · d · s)4 for s = size(CG).

Finally, we note that for A(x1, . . . , xn) := A′(x1, . . . , x2m), 0 ̸≡ A(x) and A ◦ Gm ≡ 0. This
completes the proof, since C′ also computes A.

Clearly Theorem 1.2 is a special case of Theorem 3.1 and therefore follows as a corollary. We
restate Theorem 1.2 here for convenience.

Theorem 1.2 (Upper bound for annihilators of explicit maps). Let G : Fm → Fn be a polynomial map
given by (g1(z), . . . , gn(z)) of individual degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit CG(z, y) of size s that encodes G as per Def-
inition 1.1, then there is a circuit with projection gates C′(x) of size (m · d · s)c computing a nonzero
polynomial A(x) of individual degree at most 3 ·m · d that annihilates G; i.e. A (g1(z), . . . , gn(z)) ≡ 0.

4 Important Consequences

We now discuss some consequences of Theorem 3.1 on two concepts: obtaining lower bounds
from hitting set generators and algebraic natural proofs.

4.1 Lower Bounds from Explicit Hitting Set Generators

As stated earlier, a special case of Theorem 3.1 is the following upper bound on the complexity of
annihilators of an explicit polynomial map.

Theorem 1.2 (Upper bound for annihilators of explicit maps). Let G : Fm → Fn be a polynomial map
given by (g1(z), . . . , gn(z)) of individual degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit CG(z, y) of size s that encodes G as per Def-
inition 1.1, then there is a circuit with projection gates C′(x) of size (m · d · s)c computing a nonzero
polynomial A(x) of individual degree at most 3 ·m · d that annihilates G; i.e. A (g1(z), . . . , gn(z)) ≡ 0.

This has the below interesting consequence in the context of what are called “hardness ran-
domness connections”, via the previously mentioned result due to Koiran and Perifel [KP09] (see
Proposition 2.24).

13Algebraic circuit without projection gates.
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Theorem 1.9 (Cryptographic HSGs separate VP from VPSPACE). Let {Hm} be a VP-explicit family
of m-variate polynomial maps with 2m outputs of degree m8, and let d(n) = n10.

If the family {Hm} is a hitting set generator for VPd, then VP ̸= VPSPACEb. As a consequence, either
P/ poly ̸= PSPACE/ poly or VP ̸= VNP.

Informally this says that a hitting set generator with a ‘super-polynomial stretch’ would imply
VP ̸= VPSPACEb. This, in tur, would either separate (non-uniform) P and PSPACE or separate VP

from VNP. We now show how this follows from Theorem 3.1.

Proof of Theorem 1.9. We shall prove the statement via contradiction. Let us assume VPSPACEb =

VP, which means that any family {An} in VPSPACEb of degree d′(n) ∈ poly(n) belongs to VPd′ .
For the specific parameters of the generator family {Hm}, Theorem 3.1 implies a family {An} ∈
VPSPACEb of annihilators of individual degree at most (2m ·m8) = n · (n/2)8 ≤ n9, and thus total
degree at most n10 = d(n). Now from our assumption, {An} ∈ VPd, which contradicts the HSG
property of {Hm}. So it must be the case that VP ̸= VPSPACE as claimed.

One can weaken the hypothesis of Theorem 1.9 to a family of VNP or even VPSPACEb-explicit
HSGs because of Theorem 3.1, as follows.

Theorem 4.1. Let {Hm} be a VPSPACEb-explicit family of m-variate polynomial maps with n(m) > 2m
outputs of degree d0(m) ∈ poly(m), and let d(n) ∈ poly(n) be such that d(n(m)) > 2m · d0(m), for all
large m.

If the family {Hm} is a hitting set generator for VPd, then VP ̸= VPSPACEb. As a consequence, either
P/ poly ̸= PSPACE/ poly or VP ̸= VNP.

Note that the PSPACE-construction of hitting sets for algebraic circuits by Mulmuley [Mul12]
(see also Forbes and Shpilka [FS18]), does not satisfy the hypothesis of Theorem 4.1. This is essen-
tially the same reason as why the arguments of Heintz and Schnorr [HS80] do not give a “cryp-
tographic” generator as required in Theorem 1.9. These constructions ([Mul12, FS18]) yield a
(possibly) different family of generators constructible in space poly(n, d, s) for each size s. On the
other hand, Theorem 4.1 requires a single family that works for all sizes s(n) ∈ poly(n).

4.2 Algebraic Natural Proofs

We also get an upper bound on equations for the evaluation vectors of VP. Before moving on to the
formal statement, we state some definitions and observations.

Definition 4.2 (Interpolating set). For a set of polynomials P, a set of evaluation points I is called an
interpolating set for P, if there is a linear transformation M such that for any polynomial f ∈ P, the
coefficients of f can be obtained from the evaluations of f on the set I by an application of M. ♢

Proposition 4.3 (Restatement of [BP20, Theorem 10]). Let S := {0, 1, 2, . . . , d}, then the set of evalua-
tion points In,d := {(a1, a2, . . . , an) ∈ Sn|a1 + a2 + · · ·+ an ≤ d} forms an interpolating set for the set of

26



all n-variate polynomials of total degree at most d.

Definition 4.4 (Evaluation vector). For any n-variate polynomial f (x) of total degree-d, its evaluation
vector is simply the vector14 formed by evaluations of f on the set In,d from Proposition 4.3. ♢

Proposition 4.5 (Equations for evaluation vectors and natural proofs). Let C and D be either VP or
VNP. For any d(n), there are D-natural proofs for Cd if and only if there is a family {AN} ∈ D such that
for each { fn} ∈ Cd, AN vanishes on the evaluation vector of fn for all large enough n.

Sketch. These statements essentially follow from the fact that for any n-variate, degree-d polyno-
mial, we can move between its coefficient vector and evaluation vector using linear transforma-
tions. Clearly, both these transformations have (constant-free) algebraic circuits of size poly(N).
Since both VP and VNP are rich enough to implement the above circuits, we get all the required
statements.

We now state the upper bound on equations for evaluation vectors of VP..

Theorem 4.6. There exists a constant c, such that for all large enough n, d, s ∈N, a multilinear equation
for the evaluation vectors of the set of n-variate, degree-d polynomials computable by circuits of size s, is
computable by constant-free circuits with projection gates of size at most (nds)c.

Proof. For the given parameters n, d, s, let N = (n+d
n ) and consider the universal circuit U (x[n], y[r])

as given in Lemma 2.11. Let I ⊆ Cn be an interpolating set of size N given by Proposition 4.3.
Define a polynomial map Un,d,s : Cr → CN such that each co-ordinate of Un,d,s is exactly U (x = a, y)
for a unique point a ∈ I. We also know from Lemma 2.11 that Un,d,s can be encoded by a constant-
free circuit of size poly(n, d, s), and has individual degree at most poly(n, d, s).

Since any n-variate, degree-d polynomial that is computable by circuits of size s can be ob-
tained by fixing the y variables to some scalars in U (x, y), we have that any annihilator of Un,d,s

vanishes on the evaluation vector of every such polynomial.
Now, using Theorem 3.1, we can construct a multilinear, poly(n, d, s)-variate annihilator A for

Un,d,s, that is computable by constant-free circuits with projections, of size at most (nds)c for some
constant c. That the annihilator A can be multilinear is guaranteed by the bound on the individual
degree from Lemma 3.2.

Corollary 4.7. Fix a d(n) = poly(n), and let N(n) := (n+d(n)
n ). For t(n) = nlog∗ n, there is a family

{PN} of t(n)-variate annihilators of evaluation vectors of VPd that is in uniform VPSPACE0. Further,
the coefficient functions of {PN} are computable in space t(n).

Proof. Let c be a constant as chosen in the proof of Theorem 4.6, β > 2 be a constant to be fixed later
and let s = s(n) = nlog∗ n/(β·c). Using Theorem 4.6, define a polynomial family {PN} such that,
for each n, PN(Z1, . . . , ZN) is an annihilator for the set of n-variate, degree-d, size-s polynomials

14The order can be picked arbitrarily.
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and depends only on the first (nds)2c ≤ nlog∗ n = t(n) variables. As each PN is computable using
constant-free algebraic circuits with projections, of size s3c ≤ t(n), the family {PN} is in VPSPACE0.
Further since the family of universal circuits {Un,d,s} is DTIME(poly(n, d, s))-uniform, using the
characterization of VPSPACE0 due to Koiran and Perifel (Definition 2.17), the coefficient functions
of {PN} can be computed by a Turing machine that uses space s(n)3c·β′ for some constant β′. We
now fix β = 3β′ so that s(n)3c·β′ ≤ t(n).

Let { fn} ∈ VPd be arbitrary. We know that for all large enough n, size( fn) = na for some
constant a. Thus there is a finite n0 ∈ N such that size( fn) ≤ s(n) for all n > n0. Therefore, for all
large enough n, the evaluation vectors of fn are zeroes of the polynomial PN(Z1, . . . , ZN) and so
{PN} is a family of equations in uniform VPSPACE0 as claimed.

Thus, we have proven the following statement about equations for evaluation vectors of VP.

Theorem 1.4 (Equations for VP). For an arbitrary d(n) ∈ poly(n), and let N(n) = (n+d(n)
n ). For

t(n) := nlog∗ n, there is a family of N(n)-variate, multilinear polynomials {PN} that depends only on the
first t(n) variables, satisfying the following.

• The family {PN} is a family of equations for the evaluation vectors of VPd(n).

• The coefficient functions of {PN} are computable in (uniform) space t(n) = nlog∗ n.
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A Equivalence of the definitions of VPSPACE

This section is devoted to proving Proposition 2.20, restated below.

Proposition 2.20 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.

Throughout this section, whenever a bit-string corresponds to an integer, the 0th bit refers to
the sign-bit, the first bit to the most significant bit (MSB) and the last bit to the least significant bit
(LSB).

Before moving to Proposition 2.20, we sketch the proofs of a few basic facts that will be needed.

Observation A.1 (Adding in small space). Let A, B be positive integers such that A + B is at most 22s
.

Assuming bit-access to A and B, any bit of the sum A + B can be computed in space at most O(s).
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Sketch. Let i ∈ [s] be the index of the bit of A + B that we wish to compute. This will be done in i
iterations, starting from the LSB to the ith bit. We maintain a counter j (using s bits) to keep track
of the current iteration. We also use 4 additional bits: a, b, r and c, for A, B, the result and the carry,
respectively, all initialized to 0.

In iteration j, we get the jth bits of A and B in a and b, respectively. We then set r ← a⊕ b⊕ c,
and c← (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c), in that order. At the end of iteration i, we output r as the ith bit
of A + B.

The total space used is, clearly, at most O(s) for all large s.

Observation A.2 (Subtracting in small space). Let A, B be integers of absolute value at most 22s
such

that the absolute value of A− B is at most 22s
. Assuming bit-access to A and B, any bit of the difference

A− B can be computed in space at most O(s).

Sketch. As an initial step, we query the sign-bits (0th bits) of A and B, to decide whether the abso-
lute value of A− B is the sum of the difference of their absolute values.

The rest of the algorithm is the same as that for Observation A.1, but with the correct expres-
sions for computing r and c in each of the iterations. In order to compute the sign-bit of A− B, we
need to check the sign-bits of A and B, and check if there is a carry from iteration 1.

Observation A.3 (Summing a list in small space). Let A1, A2, . . . , AL be positive integers such that
their sum T := A1 + A2 + · · ·+ AL is at most 22s

. Assuming bit-access to each of the Ais, any bit of the
sum T can be computed in space at most O(⌈log L⌉ · s).

Sketch. We prove this using Observation A.1, and induction on the size of the list, L. Assuming
bit-access to the sums T1 = A1 + · · · + AL/2, and T2 = AL/2+1 + · · · + AL, we can compute the
sum T in space 2s. In order to simulate bit-access to T1 and T2, we recursively run the algorithm
of the two smaller lists. The key observation is that we can reuse the same 2 · (⌈log L⌉ − 1) · s bits
of space for both these computations. The total space used is thus, at most O(⌈log L⌉ · s).

Observation A.4 (Multiplying in small space). Let A, B be positive integers such that A× B is at most
22s

. Assuming bit-access to A and B, any bit of the product A× B can be computed in space at most O(s3).

Sketch. Using the “school method” the product A× B can be calculated as the sum of L = ⌈log B⌉
many numbers, each of which is either 0, or a shift of A.

Therefore, we can use Observation A.3 by simulating bit-access to each of the shifts mentioned
above. Here, the jth bit in the kth shift of A, is either 0 (if the kth bit of B is 0), or the (j + k− 1)th bit
of A. So we just need an additional space of at most 2s bits for this simulation.

The total space used is therefore O(s2) + O(s) ≤ O(s3), for all large enough s.

We are now ready to prove Proposition 2.20, which we restate once more.

Proposition 2.20 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.
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The statement clearly follows from the following lemmas, namely Lemma A.5 and Lemma A.6.

Lemma A.5. Let s be large enough, and suppose f (x) ∈ Z[x] is computable by a constant-free, algebraic
circuit with projections gates, of size s.

Then, the coefficient function15 Φ of f , is computable by a Turing machine that uses space at most
O(s4), and takes as advice a string of length at most O(s2).

Proof. Let C be the constant-free circuit with projection gates that computes f . The advice to the
Turing machine is going to be an encoding of the graph of C.

We can assume that C(x) = C1(x)− C2(x), with C1, C2 being monotone (that is, they only use
the positive constant 1, and addition and multiplication gates). We shall therefore assume that C
itself is monotone, and show that its coefficient function can be computed in small space, and then
just use Observation A.2 to finish the proof.

For each gate g ∈ C, let Φg be its coefficient function.

• If g is a leaf, then its coefficient function is trivial.

• If g = u + v, then Φg can be decided in space O(s) using Observation A.1, by using an
additional space of at most O((s− 1)4) bits, to simulate Φu and Φv whenever required.

• If g = fixz=0 u(z, x), then Φg is essentially Φu with the exponent for z fixed to zero.
When g = fixz=1 u(z, x), for any monomial xe, coeffg(xe) = ∑0≤a≤degz(u)

coeffu(xe · za).
Therefore, we can calculate Φg using Φu and Observation A.3.

• If g = u× v, then the coefficient of a monomial xe in g is given by ∑e′ coeffu(xe′) coeffv(xe−e′).
The degree of f is at most 2s, and hence there are at most 2ns ≤ 2s2

terms in the above sum.
Therefore, if we can simulate bit-access to each of the product terms, then we can compute
any bit of the sum in additional space O(s3) using Observation A.3. Since we can inductively
compute the coefficient functions of both u and vin space O((s− 1)4), Observation A.4 gives
us bit-access to each of the terms in the sum, using an additional space of at most O(s3) bits.
Putting all the pieces together, Φg can be decided in space at most O((s− 1)4 + s3).

Thus, the total space used is at most O((s− 1)4 + s3) ≤ O(s4), for all large s.

Lemma A.6. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function can
be computed in space s. Then there is a constant-free circuit with projection gates of size poly(s, n, log d)
that can compute f (x).

Proof. We prove this in two steps. First we show that the coefficient function can be efficiently
computed by a constant-free algebraic circuit with projection gates. We then show that if the
coefficient function of a polynomial can be efficiently computed by a constant-free algebraic circuit
with projection gates, then the polynomial itself can be efficiently computed by a constant-free
algebraic circuit with projection gates.

15Definition 2.16.
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Claim A.7. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function
can be computed in space s. Then there is a constant-free algebraic circuit with projection gates of size
poly(s, n, log d) that computes the coefficient function of f .

Proof. Using the fact that totally quantified boolean expressions capture PSPACE, since the coef-
ficient function of f can be computed using space s, we note that the coefficient function can be
written as a quantified boolean formula of size poly(s).

We now arithmetize the boolean expression in the usual way to get an algebraic circuit. Addi-
tionally, we use projection gates to simulate the quantifiers using constant sized gadgets:

• ∀yΨ(y) ≡ fixy=0 p(y)× fixy=1 p(y),

• ∃yΨ(y) ≡ 1− (1− fixy=0 p(y))× (1− fixy=1 p(y)).

We therefore get an algebraic circuit with projection gates, of size poly(s, n, log d) that computes
the coefficient function of f .

Claim A.8. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function can be
computed by a constant-free algebraic circuit with projection gates of size s′. Then there is a constant-free
algebraic circuit with projection gates of size poly(s′, n, log d) that computes f .

Proof. It is easy to see that projection gates can efficiently simulate exponential sums. So it suffices
to provide an exponential sum that computes f (x) given access to a circuit, say CF(ye, i), comput-
ing the coefficient function, as follows. Here m = n · ⌈log d⌉ is the length of the bit-vectors for
exponents, and b is the base-2-logarithm of the bit complexity of the coefficients of f .

f (x) = ∑
ye∈{0,1}m

 ∑
i∈{0,1}b

pow(i) ·CF(ye, i)

 · check(ye) ·mon(x, ye)

The polynomials pow computes the ith power of two, check outputs 1 when the exponent e is
valid, and zero otherwise, and mon computes the eth monomial in x. All these polynomials have
easy constructions in size poly(m, b) = poly(n, log d, s).

The required statement clearly follows from the above two claims.
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