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Introduction

Importance of Prime Numbers

Prime numbers are of fundamental importance in mathematics
in general, and number theory in particular. So, it is of great
interest to study different properties of prime numbers,
especially those properties that allow one to determine
efficiently if a number is prime. Such efficient tests are also
useful in practice. For example, a number of cryptographic
protocols need large prime numbers. Infact, primality testing is
one of the fundamental problems in computational number
theory with important applications in complexity theory, coding
theory, cryptography, computer algebra systems and elsewhere.
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Introduction

Developments in the field

Most of the early algorithms are based on Fermat’s little
theorem and differ in their treatment to handle the
Fermat’s pseudoprimes.

Biswas and Agrawal introduced a new technique, which
generalises the idea of Fermat’s little theorem to a similar
identity over polynomial rings which resulted in a simple
probabilistic polynomial time algorithm which completely
bypasses the issue of pseudoprimes.

In 2004, Manindra Agrawal, Neeraj Kayal and Nitin
Saxena, gave a deterministic polynomial time algorithm by
derandomizing the previous algorithm.
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The Problem

Aim of the Project

In this project we study some Primality testing algorithms
(probabilistic or deterministic) that take time polynomial in
log n. Our main focus is to study the AKS algorithm which
gives an unconditional deterministic polynomial time algorithm
that determines whether a given input number is prime or not.
However, before that we study two of its precursers, namely,
the Miller-Rabin test and Agrawal-Biswas test, which give
probablistic polynomial time algorithms to check for primality.

The problem we are looking at:

The goal of primality testing is to devise an algorithm which,
given an integer n, decides whether n is a prime number. To
represent an integer n we need O(log n) bits. Hence, the input
size is O(log n) and by polynomial-time algorithm we mean
algorithms with running time polynomial in log(n).
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The Problem

Formal Statement of the Problem

Formally, the problem stated as follows:

Problem

Give a (probabilistic or deterministic) algorithm which, given an
integer n in binary representation, decides whether n is a prime
number in time O(logk n) where k is an integer independent of
n.

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 7 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The Problem

Formal Statement of the Problem

Formally, the problem stated as follows:

Problem

Give a (probabilistic or deterministic) algorithm which, given an
integer n in binary representation, decides whether n is a prime
number in time O(logk n) where k is an integer independent of
n.

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 7 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

Core Idea behind the Algorithms

1 Introduction

2 The Problem

3 Core Idea behind the Algorithms

4 Preliminaries

5 The Miller-Rabin Primality Testing Algorithm

6 The Agrawal-Biswas Primality Testing Algorithm

7 The AKS Primality Testing Algorithm

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 8 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

Core Idea behind the Algorithms

Difficulty in the Naive Approach and how to overcome it

The naive algorithm which tries to find a factor by
checking whether n is divisible by 2, 3, . . . , b

√
nc takes

Θ(
√

n) time which is exponential in the input-length.

Integer factorization is a much harder problem than
primality testing and not even a probabilistic polynomial
time algorithm is known for that.

The effective approach to primality testing is to come up
with mathematical identities which are satisfied by n if and
only if n is a prime. This allows us to solve the decision
problem without having knowledge of the factors of n.
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Core Idea behind the Algorithms

The Core Idea

1 If n is less than some constant then check whether n is
prime by brute force. Also, if n = ak for some integers a
and k , where k > 2, then return COMPOSITE
(isPower(n) shows than it can be checked efficiently).

2 “Suitably choose” a ring Rn and a subset S of Rn.

3 For suitably chosen elements a1, . . . , al ∈ S , if ai does not
satisfy a “special identity” then return COMPOSITE (else
we may need to perform some “other checks”).

4 If each ai satisfies the “special identity” in Rn then return
PRIME.
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Core Idea behind the Algorithms

The Miller-Rabin Test

Rn = Zn

S = Z∗n
a1, . . . , al are randomly chosen elements from Z∗n
The “special identity” is an−1

i = 1. This identity is
motivated by Fermat’s little theorem which says, if n is
prime then for all a ∈ Z∗n, an−1 = 1.
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Core Idea behind the Algorithms

The Agrawal-Biswas Test

Fermat’s little theorem is generalised to: (x + a)n = xn + a
if and only if n is prime (where a is any element from Z∗n)

Rn = Zn[x ]

S is the set of all monic polynomial of degree dlog ne
Q(x) is randomly chosen from S

Check whether (x + 1)n − (xn + 1) is zero modulo the
polynomial Q(x)
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Core Idea behind the Algorithms

The Probabilistic Nature of these Algorithms

Both of these algorithms are probabilistic and exhibits one
sided error.

If the output is COMPOSITE then n is a composite
number.

If the ouput is PRIME then, n is prime with a high
probability greater than a constant value.

The probability can be boosted arbitrarity close to 1 by
increasing l by a constant factor. However, without
checking the identity for O(|S |) elements in S we cannot
make the probability to be exactly 1.
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The AKS Test

Check whether (x + a)n = xn + a, in Rn, for a = 1, 2, . . . , l
where l = O(log6 n).

Equivalently, (by theorem 8) check: For all
Q(x) ∈ S = {(x + a)r − 1 | a = 1, . . . , l},
(x + 1)n − (xn + 1) is zero modulo Q(x)

This is exactly like the Agrawal-Biswas test, except the
size of S is reduced from O(nlog n) to log6 n, which allows
us to check the “identity” exhaustively for all the elements
in S which leads to the deterministic algorithm.

Rn = Zn/(x r − 1) where r = O(log5 n)

S = {(x + a)r − 1 | a = 1, . . . , l}
For all Q(x) ∈ S = {(x + a)r − 1 | a = 1, . . . , l},
(x + 1)n − (xn + 1) is zero modulo Q(x)
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We state some of the very basic definitions and results about
algebra and algorithms which will later be used.

Groups

Order of a finite group is the cardinality of that group.

Order of a group element g is he smallest positive integer
n for which gn is identity. If no such integer exists then
order of g is defined to be zero.

Proposition

The follwing properties of groups are well-known.

1 (Lagrange Theorem) If H is a subgroup of a finite group
G , the order of H divides the order of G .

2 If g is an element of a finite group G , the order of g
divides the order of G .

3 Let H be a non-empty finite subset of a group G . H is a
subgroup of G iff ∀a, b ∈ H, ab ∈ H.
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Rings

By “ring” we always mean commutative ring with
multiplicative identity.

For a ring R, the set of units forms a multiplicative group
which we write as R∗.

For an element r in ring R, rR is the ideal generated by r
and R/rR is the quotient ring.

For a ∈ R, a + rR is the coset of rR in R with respect to
a. However, we often abuse the notation to identify a + rR
with a. Hence, whenever we use an expression of like,
a ∈ R/rR, where a is an element of R itself, it should be
understood that we mean a + rR ∈ R/rR.Order of a finite
group is the cardinality of that group.
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Rings (contd...)

If R is a euclidean domain then,

Proposition

1 For a ∈ R, a ∈ R/rR∗ if and only if gcd(a, r) = 1.

2 R/rR is a field if and only if r is a prime element of R.

Z denotes the ring of integers. For n ∈ Z \ {0}, Z/nZ is
written as Zn. As mentioned above, when a is an integer,
expression of the form a ∈ Zn actually mean a + nZ ∈ Zn.
For ring R, R[x ] is the univariate polynomial ring over R
and we use R[x ]/f (x) to denote the quotient ring
R[x ]/f (x)R[x ].

Cartesian product of two rings R1 and R2 can be identified
as a ring by defining (a, b) + (c , d) = (a + c , b + d) and
(a, b)(c , d) = (ac, bd) for all a, c ∈ R1 and b, d ∈ R2.
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Fields

From Proposition 18.2 it follows that Zn is a field iff n is prime
and, for a finite field F, F[x ]/f (x) is a field iff f (x) is
irreducible over F. It is also well-known that there exists a
finite field of order q iff q = pd where p is prime and d is a
positive integer. All finite fields of same order are isomorphic,
and hence we can talk about “the” finite field of order q
denoting it by Fq. For q = pd , p is the characteristic of Fq.

Theorem (Fermat’s Little Theorem)

Let p be a prime number. For all a ∈ F∗p, ap−1 = 1.

Proof.

Since p is prime, by Proposition 18.1, F∗p = Fp \ {0} and

|F∗p| = p− 1. By Proposition 16.2, for all a ∈ F∗p, a|F
∗
p | = 1.
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Theorem

Let n ∈ Z and n = n1n2 such that gcd(n1, n2) = 1, then Zn is
isomorphic to Zn1 × Zn2 . In particular φ : Zn → Zn1 × Zn2 as
defined below is an isomorphism:

φ(x + nZ) = (x + n1Z, x + n2Z).

Thus in particular, Z∗n is isomorphic to Z∗n1
× Z∗n2

For a field F, the polynomial ring F[x ] is an integral domain
which implies the following.

Theorem

If F is a field and f (x) ∈ F[x ] is a polynomial of degree d, then
f cannot have more than d roots.
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Some Basic Algorithms

Inputs are an integer or integers of O(n). Hence in binary
representation, the input size is O(log n). Thus in order to have
polynomial time algorithm, it is required that the time
complexities are polynomial in log n.

isPower(n) checks whether the integer n can be
expressed as xk where x , k are integers and k > 2. Step 3
of isPower(n) can be done in O(log n) time and hence
the total time complexity is O(log2 n).

gcd(a, b) computes the gcd of two integers using Euclid’s
method. If a and b are O(n), it can be shown that the
while loop in gcd(a, b) iterates O(log n) times.

Mod-Exp(a, b, n) gives an algorithm which takes time
polynomial in log n for modular exponentiation. We
cannot directly compute ab first and then take modulo n
because it will take O(n log n) bits to represent ab and
hence the time will be superpolynomial in input size.
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Algorithm 1 Check if a Number is an Integral Power
1: procedure isPower(n)
2: for k = 1 to lg n do
3: Use bisection method to find the largest integer x s.t. xk ≤ n
4: if xk = n then
5: return True
6: end if
7: end for
8: return False
9: end procedure

Algorithm 2 Compute GCD of two integers
1: procedure gcd(a, b)
2: while b does not divide a do
3: b′ = a mod b
4: a = b
5: b = b′

6: end while
7: return b
8: end procedure
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Algorithm 3 Modular Exponentiation: Given integers a, b, n
compute ab mod n

1: procedure Mod-Exp(a, b, n)
2: c = 0
3: d = 1
4: let {bk , bk−1, ...., b0} be the binary representation of b
5: for i=k downto 0 do
6: c = 2c
7: d = d2 (mod n)
8: if bi == 1 then
9: c = c + 1

10: d = d .a (mod n)
11: end if
12: end for
13: return d
14: end procedure
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The Miller-Rabin Primality Testing Algorithm

1 Introduction

2 The Problem

3 Core Idea behind the Algorithms

4 Preliminaries

5 The Miller-Rabin Primality Testing Algorithm

6 The Agrawal-Biswas Primality Testing Algorithm

7 The AKS Primality Testing Algorithm
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The Miller-Rabin Primality Testing Algorithm

The Key Concepts

We know that if n is prime then, by Fermat’s little theorem

an−1 = 1 ∀a ∈ Z∗n (1)

However, there are composite numbers called ‘Fermat’s
pseudoprimes’ for which equation 1 is also true.
There are 2 key concepts behind the algorithm.

If n is not a pseudoprime then the converse of equation 1
is almost true. In particular, for at least half of the
elements a in Z∗n equation 1 does not hold.

If n is a pseudoprime then with very high probability we
can find a non trivial square root of unity in Zn which
actually allows us to factorise n.
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The Miller-Rabin Primality Testing Algorithm

The Algorithm

Let n be the given number which we have to test for primality.

Check if n is an integral power. Otherwise, rewrite n − 1
as 2tu.

Pick some a in the range {1, 2, ..., n − 1} and check
whether gcd(n, a) = 1

Otherwise, check for non-trivial square-roots of unity in Zn

by first putting x = au and then repeatedly squaring it till
x becomes equal to an−1.

Check the Fermat's condition, namely check whether
an−1 = 1 for a ∈ Z∗n.

If n fails in either of the two tests, then n is definitely
composite. Otherwise n is probably prime.

We can repeat the process a constant number of times by
taking different a's so as to decrease the probability of
error.
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The Algorithm

Let n be the given number which we have to test for primality.

Check if n is an integral power. Otherwise, rewrite n − 1
as 2tu.

Pick some a in the range {1, 2, ..., n − 1} and check
whether gcd(n, a) = 1

Otherwise, check for non-trivial square-roots of unity in Zn

by first putting x = au and then repeatedly squaring it till
x becomes equal to an−1.

Check the Fermat's condition, namely check whether
an−1 = 1 for a ∈ Z∗n.

If n fails in either of the two tests, then n is definitely
composite. Otherwise n is probably prime.

We can repeat the process a constant number of times by
taking different a's so as to decrease the probability of
error.
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Algorithm 4 Miller-Rabin Primality Test
1: procedure MillerRabin(n)
2: if isPower(n) or n is even with n 6= 2 then
3: return COMPOSITE
4: end if
5: Choose a to be a random number in the range {1, 2, ..., n − 1}
6: if gcd(a, n) 6= 1 then
7: return COMPOSITE
8: end if
9: Find t, u such that (n − 1) = 2tu and u is odd
10: Put x0 = Mod-Exp(a, u, n)
11: for i=1 to t do
12: xi = x2

i−1 (mod n)
13: if xi == 1 and xi−1 6= 1 and xi−1 6= −1 then
14: return COMPOSITE
15: //Checking for non-trivial square roots of unity
16: end if
17: end for
18: if xt 6= 1 then
19: return COMPOSITE //Checking Fermat’s Condition
20: end if
21: return PRIME
22: end procedure
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Correctness

If n is prime, then it can be trivially shown that the output
is always correct.

If n is composite, we divide the analysis into two cases in
both of which, we try to find a proper subgroup of Z∗n
which contains all the elements for which
MillerRabin(n) returns PRIME and hence all the
elements for which the algorithm can err.

Thus, the error in the algorithm becomes less than 1
2 , and so

can be made arbitrarily small by repeating the procedure a
constant number of times.

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 28 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The Miller-Rabin Primality Testing Algorithm

Correctness

If n is prime, then it can be trivially shown that the output
is always correct.

If n is composite, we divide the analysis into two cases in
both of which, we try to find a proper subgroup of Z∗n
which contains all the elements for which
MillerRabin(n) returns PRIME and hence all the
elements for which the algorithm can err.

Thus, the error in the algorithm becomes less than 1
2 , and so

can be made arbitrarily small by repeating the procedure a
constant number of times.

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 28 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The Miller-Rabin Primality Testing Algorithm

Correctness

If n is prime, then it can be trivially shown that the output
is always correct.

If n is composite, we divide the analysis into two cases in
both of which, we try to find a proper subgroup of Z∗n
which contains all the elements for which
MillerRabin(n) returns PRIME and hence all the
elements for which the algorithm can err.

Thus, the error in the algorithm becomes less than 1
2 , and so

can be made arbitrarily small by repeating the procedure a
constant number of times.

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 28 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The Miller-Rabin Primality Testing Algorithm

Theorem

If n is prime, MillerRabin(n) outputs PRIME with
probability one, and if n is composite, it outputs COMPOSITE
with probability > 1

2 .

Proof

As explained in the key concepts, if n is prime, then the output
of the procedure MillerRabin(n) is always PRIME.
On the other hand, if n is composite, we have the following two
cases:
Case 1: n is not a pseudoprime

Any a that has reached line 9 is in Z∗n
∃x ∈ Z∗n such that xn−1 6= 1 (mod n)

B = {z ∈ Z∗n : zn−1 = 1 (mod n)} is a proper non empty
subgroup of Z∗n
|B| ≤ |Z

∗
n |

2
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Proof (contd...)

Case 2: n is a pseudoprime

Any a that has reached line 9 is in Z∗n
∀x ∈ Z∗n, xn−1 = 1 (mod n)

B = {y ∈ Z∗n : y = ±1 (mod n)} is a subgroup of Z∗n
For any n such that the algorithm has reached 6, n is not
an integral power

∃n1, n2 ∈ N such that n = n1n2 where gcd(n1, n2) = 1 and
so by Theorem 3, Z∗n ∼= Z∗n1

× Z∗n2

∃a ∈ Z∗n\B such that a ∼= (1,−1)

B is a proper subgroup of Z∗n
|B| ≤ |Z

∗
n |

2
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∃n1, n2 ∈ N such that n = n1n2 where gcd(n1, n2) = 1 and
so by Theorem 3, Z∗n ∼= Z∗n1

× Z∗n2

∃a ∈ Z∗n\B such that a ∼= (1,−1)

B is a proper subgroup of Z∗n
|B| ≤ |Z

∗
n |

2
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Proof (contd...)

For any ‘a’ such that PRIME is returned by
MillerRabin(n), a is a member of B

Any element in Z∗n that is a non-witness to the
compositeness of n is a member of B

The probability of error is ≤ |Z
∗
n |/2
|Z∗n |

= 1
2

The output is COMPOSITE with probability > 1
2
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Running Time Analysis

If n is the input, isPower(n) takes O(log2 n) time and
thus, Step 2 takes O(log2 n) time

Step 6 takes O(log n) time

Step 9 takes O(log n) time since t (and hence u) can be
found in atmost log n steps of dividing (n − 1) by 2

Mod-Exp(a, b, n) gives a polynomial time algorithm in
log n for modular exponentiation as we have already seen
in Section 21 and thus Step 10 takes time polynomial in
log n.

Since no step in the for loop takes more that polynomial
time in log n, and since t = O(log n), Miller-Rabin(n)
requires no more than time polynomial in log n.
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The Agrawal-Biswas Primality Testing Algorithm

The Key Concept

It is a randomised primality testing algorithm which
reduces primality testing for a number n to testing if a
specific univariate identity over Zn holds.

It uses the following generalisation of Fermat’s little
theorem over polynomial ring.

Theorem

Let Pn(x) = (a + x)n − (a + xn) where a ∈ Z∗n and n ∈ N.
Then, Pn(x) = 0 in Zn[x ] iff n is prime.

Unlike Fermat’s little theorem, the identity is always false
when n is a composite number.

The issue of pseudoprimes is completely sidestepped
leading to the following simple algorithm: If
(x + 1)n = (xn + 1) mod n then return PRIME else
return COMPOSITE.
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The Key Concept (contd.)

The polynomials in both side expands into O(n) term and
we need O(n) time to compute them.

We check the identity modulo a randomly chosen monic
polynomial of degree log n at the cost of introducing one
sided error.

The analysis of the algoritm shows that even in this case,
when n is COMPOSITE, the identity does not hold with
probability greater than 2/3.
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The Algorithm

Choose Q(x) randomly to be monic polynomial of degree
dlog ne

Check whether (x + 1)n − (xn + 1) is zero modulo the
polynomial Q(x)

Using Theorem 6 with a = 1, we see that if that does not
happen, then n is definitely composite

Otherwise n is prime with a probability > 2
3

The process can be repeated a constant number of times
by taking different Q(x)'s so as to decrease the probability
of error arbitrarily.
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Algorithm 5 Agrawal-Biswas Primality Test
1: procedure ABPrime(n)
2: if n = 2, 3, 5, 7, 11, 13 then
3: return PRIME
4: else
5: if n is divisible by any of the above numbers then
6: return COMPOSITE
7: end if
8: end if
9: if isPower(n) then
10: return COMPOSITE
11: end if
12: Pn(x) = (1 + x)n − (1− xn)
13: Choose Q(x) to be a random dlog ne degree monic polynomial in Zn[x]
14: if Q(x) divides Pn(x) over Zn then
15: return PRIME
16: else
17: return COMPOSITE
18: end if
19: end procedure
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Correctness

If n is prime, then it can be trivially shown that the output
is always correct.

However, if n is composite, the probability that a monic
polynomial p with deg(p) = l does not divide Pn(x) > 2

3 ,
so that the error in the algorithm becomes ≤ 2

3 .

To show this:

Define a set I of monic irreducible polynomials having
degree in a certain range with upper bound l .

For each polynomial f in I, define a set Cf of degree l
polynomials having f as a factor.

Note that these Cf 's are mutually disjoint, and hence find
a lower bound for the number of degree l polynomials with
factors in I.
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Correctness (contd.)

Get an upper bound on the number of monic polynomials
of degree l with factors in I that divide Pn(x), and hence
get a lower bound on the number of monic polynomials of
degree l with factors in I that do not divide Pn(x).

Note that this also gives a lower bound on the number of
monic polynomials of degree l that do not divide Pn(x)
and hence we get the required result.

We formalise this as follows:

Theorem

If n is prime, ABPrime(n) outputs PRIME with probability
one, and if n is composite, its probability of error ≤ 2

3 .
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Proof

If n is prime, Pn(x) = 0 in Zn[x ]
⇒ for any Q(x) chosen, Q(x) | Pn(x), and so the output
of the algorithm is PRIME.

If n is composite, Pn(x) 6= 0 in Zn[x ]

Let p be any prime factor of n

The algorithm is correct when n is a prime power or when
divisible by primes upto 13, and so we only have to analyse
when n is odd, not a prime power and its every prime
factor is atleast 17.
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Proof (contd.)

l = dlog ne

I is the set of all monic irreducible polynomials of degree
between 1 + l

2 and l over Fp

I (d) be the number of monic irreducible polynomials of
degree d over Fp

By the distribution theorem of irreducible polynomials[5],
pk

k − p
k
2 ≤ I (d) ≤ pk

k + p
k
2

For f ∈ I, Cf is the set of l degree polynomials that have
f as a factor.
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Proof (contd.)

|Cf | = pl−deg(f )

Cf1 ∩ Cf1 = ∅

∑
f ∈I
|Cf | =

l∑
k=1+ l

2

I (k)pl−k

≥
l∑

k=1+ l
2

pk

k
pl−k − p

k
2 pl−k

=
l∑

k=1+ l
2

pl

(
1

k
− 1

p
k
2

)

= pl
l∑

k=1+ l
2

(
1

k
− 1

pk−2

)
≥
(

ln 2− 1

48

)
pl
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Proof (contd.)

The total number of monic polynomials of degree l with
factors in I ≥

(
ln 2− 1

48

)
pl .

|Cf | = pl−deg(f ) ≤ p
l
2
−1

The number of monic irreducible polynomials of degree
> l

2 over Fp that divide Pn(x) is < n
l/2 = 2n

l

The number of monic polynomials of degree l with factors

in I that divide Pn(x) ≤
(

2n
l

)
p

l
2
−1 ≤ pl

8nl

The total number of monic polynomials of degree l with
factors in I that do not divide Pn(x) ≥

(
ln 2− 1

48 −
1

8nl

)
pl

The total number of monic polynomials with degree l that
do not divide Pn(x) ≥

(
ln 2− 1

48 −
1

8nl

)
pl

The probability that a monic polynomial p with
deg(p) = l does not divide Pn(x) ≥ (ln 2− 1

48 −
1

8nl ) >
2
3

The output is COMPOSITE with probability > 2
3
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Running Time Analysis

n is the input, isPower(n) takes O(log2 n) time and
thus, Step 9 takes O(log2 n) time

In Step 14, the algorithm does O(log n) multiplications of
two degree O(log n) polynomials over Zn and computes
same number of remainders modulo a third degree
O(log n) polynomial and each of these requires O∼(log3 n)

Since these are the only two non trivial steps in the
algorithm, the time complexity of the algorithm is
O∼(log4 n)
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Moving towards the AKS Algorithm

1 The AKS algorithm is a derandomisation this algorithm.

2 S is the set of all monic polynomials of degree dlog ne in
Zn and if n is composite then there are at most |S |/3
many Q(x)’s in S such that P(x) = 0 mod Q(x).

3 A naive approach to derandomize this algorithm is to
check whether P(x) = 0 mod Q(x) for more than |S |/3
many Q(x). But this will take O(|S |) time and
|S | = O(nlog n).

4 The AKS algorithm implies that, we can compute a
O(log5 n) integer r and a O(log6 n) integer l s.t. if n is
composite then there exists an integer a between 1 and l
s.t. P(x) 6= 0 mod (x + a)r − 1.

5 The AKS algorithm does not use exactly this test. It
checks whether for all a between 1 and l ,
(x − a)n = (xn − a) over Zn[x ]/(x r − 1).
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The following lemma shows that these two tests are equivalent.

Lemma

Fix any r > 0 and any l > 0. Then,

(x + 1)n = (xn + 1) (mod n, (x + a)r − 1) for 1 ≤ a ≤ l (2)

if and only if

(x − a)n = (xn − a) (mod n, x r − 1) for 1 ≤ a ≤ l (3)

This can be easily proved using induction on l .
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1 Introduction

2 The Problem

3 Core Idea behind the Algorithms

4 Preliminaries

5 The Miller-Rabin Primality Testing Algorithm

6 The Agrawal-Biswas Primality Testing Algorithm

7 The AKS Primality Testing Algorithm
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The Algorithm

1 Determine whether the input is an integral power

2 Determine whether the input has a small prime divisor

3 Check whether (x + a)n = (xn + a) (mod n, x r − 1).

The third step is equivalent to the condition that for all
Q(x) ∈ S = {(x + a)r − 1 | a = 1, . . . , l}, (x + 1)n − (xn + 1)
is zero modulo Q(x).
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Algorithm 6 AKS Primality Test
1: procedure AKS(n)
2: if isPower(n) then
3: return COMPOSITE
4: end if
5: Find the smallest r such that or (n) > 4 log2 n
6: Set l = or (n)− 1 //or (n) is the order of n modulo r
7: if 1 < gcd(a, n) < n for any a ∈ {1, 2, ..., r} then
8: return COMPOSITE
9: end if
10: if n ≤ r then
11: return PRIME
12: end if
13: for a = 1 to l do
14: if (x + a)n 6= (xn + a) (mod n, x r − 1) then
15: return COMPOSITE
16: end if
17: end for
18: return PRIME
19: end procedure
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Correctness

If n is prime, then it can be trivially shown that the output
is always correct

For the converse, if AKS(n) returns PRIME in step 11,
then it is easy to show that n is prime

If AKS(n) returns PRIME in step 18, then we assume that
n is composite and that it has a non-trivial prime factor p

F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

Consider G =< {x + a : a ∈ {1, 2, ..., l}} >, which is a
subgroup of F ∗ where l = or (n)− 1

Contradictory bounds are derived for | G |
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n is composite and that it has a non-trivial prime factor p

F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

Consider G =< {x + a : a ∈ {1, 2, ..., l}} >, which is a
subgroup of F ∗ where l = or (n)− 1

Contradictory bounds are derived for | G |

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 50 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The AKS Primality Testing Algorithm

Correctness

If n is prime, then it can be trivially shown that the output
is always correct

For the converse, if AKS(n) returns PRIME in step 11,
then it is easy to show that n is prime

If AKS(n) returns PRIME in step 18, then we assume that
n is composite and that it has a non-trivial prime factor p

F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

Consider G =< {x + a : a ∈ {1, 2, ..., l}} >, which is a
subgroup of F ∗ where l = or (n)− 1

Contradictory bounds are derived for | G |

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 50 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The AKS Primality Testing Algorithm

Correctness

If n is prime, then it can be trivially shown that the output
is always correct

For the converse, if AKS(n) returns PRIME in step 11,
then it is easy to show that n is prime

If AKS(n) returns PRIME in step 18, then we assume that
n is composite and that it has a non-trivial prime factor p

F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

Consider G =< {x + a : a ∈ {1, 2, ..., l}} >, which is a
subgroup of F ∗ where l = or (n)− 1

Contradictory bounds are derived for | G |

Prerona Chatterjee(Roll No.: 142123029) (Department of Mathematics IIT Guwahati)PRIMALITY TESTING ALGORITHMS April, 2016 50 / 60



PRIMALITY
TESTING AL-
GORITHMS

Prerona
Chatterjee
(Roll No.:

142123029)

Introduction

The Problem

Core Idea
behind the
Algorithms

Preliminaries

The
Miller-Rabin
Primality
Testing
Algorithm

The Agrawal-
Biswas
Primality
Testing
Algorithm

The AKS
Primality
Testing
Algorithm

The AKS Primality Testing Algorithm

Theorem

If n is prime, AKS(n) returns PRIME.

Proof.

Suppose n is prime.

n 6= pk for any k > 1 and p prime and so, COMPOSITE
cannot be returned by AKS(n) at step 3

gcd(a, b) is 1 if n - a and n if n | a, and so COMPOSITE
cannot be returned by AKS(n) at step 8

(a + x)n = (a + xn) (mod n) ∀a and so (a + x)n = a + xn

(mod n, x r − 1) ∀a ∈ {1, 2, ..., l}. Thus, COMPOSITE
cannot be returned by AKS(n) at step 15

Hence, PRIME must be returned by AKS(n).
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Theorem

If AKS(n) returns PRIME in step 11, then n is prime.

Proof.

Suppose AKS(n) returns prime at step 11.

n ≤ r

If n were composite, ∃p < n ≤ r such that
1 < gcd(p, n) = p < n

Then COMPOSITE would have been returned at step 8

This is not possible, as the program has reached step 11
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Theorem

If AKS(n) returns PRIME in step 18, then n is prime.

Proof

Suppose AKS(n) returns PRIME in step 18.

n > r and gcd(n, r) = 1 as otherwise COMPOSITE would
have been returned at line 8 when a = r

R = Zn[x ]/< x r − 1 >

l is as defined in the algorithm

(a + x)n = a + xn in R, ∀a ∈ {1, 2, ...., l}
Let n be composite, and p be a prime divisor of n

gcd(p, r) = 1 as gcd(n, r) = 1, and thus n, p ∈ Z∗r
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The AKS Primality Testing Algorithm

Proof (contd.)

F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

(a + x)n = a + xn in R, ∀a ∈ {1, 2, ...., l}, and so
(a + x)n = a + xn in F , ∀a ∈ {1, 2, ...., l}
G =< n, p > is a subgroup of Z∗r , and t = | G |
G ≤ Z∗r ⇒ t < r

< n > ≤ < n, p >⇒ or (n) < t

G =< {x + a : a ∈ {1, 2, ..., l}} > is a subgroup of F ∗

m is said to be introspective for f (x) ∈ F if
f (xm) = f (x)m

m is introspective for f ∀m ∈ G and ∀f ∈ G
m1,m2 are introspective for f ⇒ m1m2 is introspective for
f

m is introspective for f , g ⇒ m is introspective for fg
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F = Fp[x ]/ < h(x) > where h(x) is the irreducible part of
the r th cyclotomic polynomial

(a + x)n = a + xn in R, ∀a ∈ {1, 2, ...., l}, and so
(a + x)n = a + xn in F , ∀a ∈ {1, 2, ...., l}
G =< n, p > is a subgroup of Z∗r , and t = | G |
G ≤ Z∗r ⇒ t < r

< n > ≤ < n, p >⇒ or (n) < t

G =< {x + a : a ∈ {1, 2, ..., l}} > is a subgroup of F ∗

m is said to be introspective for f (x) ∈ F if
f (xm) = f (x)m

m is introspective for f ∀m ∈ G and ∀f ∈ G
m1,m2 are introspective for f ⇒ m1m2 is introspective for
f

m is introspective for f , g ⇒ m is introspective for fg
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Proof (contd.)

Claim: | G | > 2t−1

For each K ⊆ {1, 2, ..., l}, consider
fK (x) =

∏
a∈K (x − a) ∈ Z[x ]

Each fK is distinct since they have distinct roots

There are 2l > 2t−1 of such polynomials since there are 2l

subsets of 1, 2, ..., l

In F , x is the r th root of unity, ζr , and so, fK1(x) = fK2(x)
in F for K1 6= K2 would mean fK1(ζr )m = fK2(ζr )m

∀m ∈ G

ζmr is a root for g = fK1 − fK2 ∀m ∈ G where g is a
polynomial of degree < t − 1 and | G |= t

This is not possible unless fk1 = fk2 which is a
contradiction

fK1 6= fK2 in F for K1 6= K2 and hence in G
| G | > 2t−1
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Proof (contd.)

Claim: | G | ≤ n2
√
t

S = {nipj , 0 ≤ i , j ≤
√

t}
If n is not a prime power, then each nipj is distinct, and
hence | S | = (

√
t + 1)2 > t

Considering the elements of S modulo r , they become
elements of G

Since | G | = t, ∃m1,m2 with m1 6= m2 such that
m1 = m2 (mod r) and so m1 = m2 + rk for some k ∈ Z
∀f ∈ G, f (x)m1 = f (xm1) = f (xm2+rk) = f (xm2x rk) =
f (xm2) = f (x)m2 as x r = 1

f (x) is a root of g = xm1 − xm2 ∀f ∈ G
deg(g) = max{m1,m2} = n

√
tp
√

2 < n
√
tn
√
t = n2

√
t

The number of roots of g = n2
√
t and so | G | ≤ n2

√
t
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√
t

S = {nipj , 0 ≤ i , j ≤
√

t}
If n is not a prime power, then each nipj is distinct, and
hence | S | = (

√
t + 1)2 > t

Considering the elements of S modulo r , they become
elements of G

Since | G | = t, ∃m1,m2 with m1 6= m2 such that
m1 = m2 (mod r) and so m1 = m2 + rk for some k ∈ Z
∀f ∈ G, f (x)m1 = f (xm1) = f (xm2+rk) = f (xm2x rk) =
f (xm2) = f (x)m2 as x r = 1

f (x) is a root of g = xm1 − xm2 ∀f ∈ G
deg(g) = max{m1,m2} = n

√
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2 < n
√
tn
√
t = n2

√
t

The number of roots of g = n2
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t and so | G | ≤ n2

√
t
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Proof (contd.)

2t−1 ≤ | G | ≤ n2
√
t

As t > 4 log2 n, the bounds for | G | are contradictory

We thus have the required contradiction if we assume n to be
composite.
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Running Time Analysis

Before we start the running time analysis, we need the
following lemma:

Lemma

Let LCM(m) denote the lcm of the first m numbers. For m
odd, LCM(m) ≥ 2m−1.

Using this, we can show the following result.

Lemma

There exists an r ≤ 16 lg5 n, such that or (n) > 4 lg2 n.
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Running Time Analysis (contd.)

If n is the input, isPower(n) takes O(log2 n) time and
so, step 3 takes O(log2 n) time

To find an r such that or (n) > 4 log2 n, successive values
of r are tried and tested whether nk 6= 1 (mod r) for every
k ≤ 4 log2 n

For a particular r , this will involve at most O(log2 n)
multipications modulo r and so will take time
O∼(log2 n log r)

Only O(log5 n) different r ’s need to be checked, and so
the total complexity of this step is polynomial in log n

Each gcd computation takes time O(log2 n) and since r is
of O(log5 n), Step 8 will also be taking only time O(log7 n)

We have to verify l equations where l = or (n)− 1 < or (n)
which divides φ(r) and hence, l < φ(r) < r is O(log5 n)

Each equation takes O(log n) multipications of r degree
polynomials with coefficients of size O(log n) and so, each
equation can be verified in time O∼(r log2 n) steps

Thus the time taken for Step 15 is
O(r 2 log2 n) = O(log 12n).

Step 15 dominates all the other steps and so, the time
complexity for the AKS algorithm is O(log 12n) which is
polynomial in log n
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the total complexity of this step is polynomial in log n

Each gcd computation takes time O(log2 n) and since r is
of O(log5 n), Step 8 will also be taking only time O(log7 n)

We have to verify l equations where l = or (n)− 1 < or (n)
which divides φ(r) and hence, l < φ(r) < r is O(log5 n)

Each equation takes O(log n) multipications of r degree
polynomials with coefficients of size O(log n) and so, each
equation can be verified in time O∼(r log2 n) steps

Thus the time taken for Step 15 is
O(r 2 log2 n) = O(log 12n).

Step 15 dominates all the other steps and so, the time
complexity for the AKS algorithm is O(log 12n) which is
polynomial in log n
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