
PRIMALITY TESTING ALGORITHMS

A Project Report Submitted

in Partial Fulfilment of the Requirements

for the Degree of

MASTER OF SCIENCE

in

Mathematics and Computing

by

PRERONA CHATTERJEE

(Roll No. 142123029)

to the

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

GUWAHATI - 781039, INDIA

April 2016

CERTIFICATE

This is to certify that the work contained in this report entitled

“PRIMALITY TESTING ALGORITHMS”

submitted by Prerona Chatterjee (Roll No: 142123029)

to Department of Mathematics, Indian Institute of Technology Guwahati

towards the requirement of the course MA699 Project has been carried

out by her under my supervision.

Guwahati - 781 039 (Dr. Sagarmoy Dutta)

April 2016 Project Supervisor

ii

ABSTRACT

Prime numbers are of fundamental importance in mathematics in general,

and number theory in particular. So, it is of great interest to study different

properties of prime numbers. Of special interest are those properties that

allow one to determine efficiently if a number is prime. Such efficient tests

are also useful in practice. For example, a number of cryptographic protocols

need large prime numbers.

In this project we study some Primality testing algorithms (probabilistic

or deterministic) that take time polynomial in log n. Our main focus is to

study the AKS algorithm which gives an unconditional deterministic polyno-

mial time algorithm that determines whether a given input number is prime

or not. However, before that we study two of its precursers, namely, the

Miller-Rabin test and Agrawal-Biswas test, which give probablistic polyno-

mial time algorithms to check for primality.

iii

Contents

1 Introduction 1

1.1 The Problem . 2

1.2 The Core Idea Behind the Algorithms 2

1.3 Outline of the Rest of Report 4

2 Preliminaries 5

2.1 Groups, Rings and Fields . 5

2.2 Some Basic Algorithms . 8

3 Miller-Rabin Primality Testing Algorithm 10

3.1 Key Concepts . 10

3.2 The Algorithm . 11

3.3 Correctness . 13

3.4 Running Time Analysis . 14

4 Moving towards the AKS Algorithm 15

4.1 The Key Concept . 15

4.2 The Algorithm . 17

4.3 Correctness . 17

iv

4.4 Running Time Analysis . 21

4.5 Link to the AKS Algorithm 21

5 The AKS Algorithm 25

5.1 The Algorithm . 25

5.2 Correctness . 27

5.3 Running Time Analysis . 29

6 Conclusion 32

Bibliography 34

v

List of Algorithms

1 Check if a Number is an Integral Power 9

2 Compute GCD of two integers 9

3 Modular Exponentiation: Given integers a, b, n compute ab

mod n . 9

4 Miller-Rabin Primality Test 12

5 Agrawal-Biswas Primality Test 18

6 AKS Primality Test . 26

vi

List of Notations

Symbol Meaning

Z Ring of integers

Zn Ring of integers modulo n

Z∗n Group of units of Zn

R[x] Polynomial ring over ring R

R[x]/f(x) Ring obtained by quotienting R[x] with principal ideal generated by f(x)

Fq Field of order q

or(n) order of n in group Zr

ln Natural logarithm

lg Logarithm base 2

φ(n) The number of integers less than n which are co-prime to n

vii

Chapter 1

Introduction

Primality testing is one of the fundamental problems in computational num-

ber theory with important applications in complexity theory, coding theory,

cryptography, computer algebra systems and elsewhere. A number of non-

deterministic polynomial time algorithms for the problem have been known

for a long time [Miller [6]; Rabin [7]]. All these algorithms are based on

Fermat’s little theorem and differ in their treatment to handle the Fermat’s

pseudoprimes. In [1] Biswas and Agrawal introduced a new technique, which

generalises the idea of Fermat’s little theorem to a similar identity over poly-

nomial rings. This resulted in a simple probabilistic polynomial time algo-

rithm which completely bypasses the issue of pseudoprimes. Finally, in 2004

[2], Manindra Agrawal, Neeraj Kayal and Nitin Saxena, gave a deterinistic

polynomial time algorithm by derandomizing the previous algorithm. In this

project, our main focus is to study the AKS algorithm along with two of its

precursers, namely, the Miller-Rabin test and Agrawal-Biswas test.

1

1.1 The Problem

The goal of primality testing is to devise an algorithm which, given an integer

n, decides whether n is a prime number. To represent an integer n we

need O(log n) bits. Hence, the input size is O(log n) and by polynomial-

time algorithm we mean algorithms with running time polynomial in log(n).

Formally, the problem stated as follows:

Problem 1. Give a (probabilistic or deterministic) algorithm which, given

an integer n in binary representation, decides whether n is a prime number

in time O(logk n) where k is an integer independent of n.

1.2 The Core Idea Behind the Algorithms

To appreciate the difficulty, notice that the naive algorithm which tries to

find a factor by checking whether n is divisible by 2, 3, . . . , b
√
nc takes Θ(

√
n)

time which is exponential in the input-length. In fact, integer factorization

is a much harder problem than primality testing and not even a probabilistic

polynomial time algorithm is known for that. Hence the effective approach

to primality testing is to come up with mathematical identities which are

satisfied by n if and only if n is a prime. This allows us to solve the decision

problem without having knowledge of the factors of n.

Informally, the core idea behind all these algorithms can be stated as

follows.

1. If n is less than some constant then check whether n is prime by brute

force. Also, if n = ak for some integers a and k , where k > 2, then

2

return COMPOSITE (isPower(n) shows than it can be checked effi-

ciently).

2. “Suitably choose” a ring Rn and a subset S of Rn.

3. For suitably chosen elements a1, . . . , al ∈ S, if ai does not satisfy a “spe-

cial identity” then return COMPOSITE (else we may need to perform

some “other checks”).

4. If each ai satisfies the “special identity” in Rn then return PRIME.

In Miller-Rabin test Rn = Zn, S = Z∗n and a1, . . . , al are randomly chosen

elements from Z∗n. And the “special identity” is an−1i = 1. This identity is

motivated by Fermat’s little theorem which says, if n is prime then for all

a ∈ Z∗n, an−1 = 1.

In Agrawal-Biswas test Rn = Zn[x] and they generalise Fermat’s little

theorem to the following: (x+ a)n = xn + a if and only if n is prime (where

a is any element from Z∗n). They choose S as the set of all monic polynomial

of degree dlog ne. Q(x) is randomly chosen from S and it is checked whether

(x+ 1)n − (xn + 1) is zero modulo the polynomial Q(x).

Both of these algorithms are probabilistic and exhibits one sided error.

If the output is COMPOSITE then n is a composite number. If the ouput

is PRIME then, with high probability, n is prime. The probability can be

boosted arbitrarity close to 1 by increasing l by a constant factor. However,

without checking the identity for O(|S|) elements in S we cannot make the

probability to be exactly 1. Since, for both the algorithms, the size of S is

superpolynomial, it would take superpolynomial time to make them deter-

ministic.

3

In AKS test Rn = Zn/(x
r − 1) where r = O(log5 n). And it is checked

whether (x + a)n = xn + a , in Rn, for a = 1, 2, . . . , l where l = O(log6 n).

This is equivalent (see theorem 4.5.1) to the condition: For all Q(x) ∈ S =

{(x + a)r − 1 | a = 1, . . . , l}, (x + 1)n − (xn + 1) is zero modulo Q(x). This

is exactly like the Agrawal-Biswas test, except the size of S is reduced from

O(nlogn) to log6 n. It allows us to check the “identity” exhaustively for all

the elements in S which leads to the deterministic algorithm.

1.3 Outline of the Rest of Report

Chapter 2 recapitulates some standard results in algebra and some number

theoretic algorithms which are used later. In Chapter 3 we cover the Miller-

Rabin Primality Test which is still the most widely used Primality Testing

algorithm. In Chapter 4 we analyse the algorithm given by M. Agrawal and S.

Biswas which was a crucial intermediate step towards the AKS algorithm. In

Chapter 5, we cover the AKS Algorithm which proved that primality testing

is in P. And finally in Chapter 6, we briefly overview what we have covered

in the project and discuss what further work can be done in this area.

4

Chapter 2

Preliminaries

In this section we state some of the very basic definitions and results about

algebra and algorithms which will later be used. Readers are assumed to be

already familiar with preliminary algebra and hence most of the results are

stated without proof which can be found in standard undergraduate level

textbooks [4].

2.1 Groups, Rings and Fields

Order of a finite group is the cardinality of that group. Order of a group

element g is he smallest positive integer n for which gn is identity. If no such

integer exists then order of g is defined to be zero.

Proposition 2.1.1. The follwing properties of groups are well-known.

1. (Lagrange Theorem) If H is a subgroup of a finite group G, the order

of H divides the order of G.

5

2. If g is an element of a finite group G, the order of g divides the order

of G.

3. Let H be a non-empty finite subset of a group G. H is a subgroup of

G iff ∀a, b ∈ H, ab ∈ H.

By “ring” we always mean commutative ring with multiplicative identity.

For a ring R, the set of units forms a multiplicative group which we write as

R∗. For an element r in ring R, rR is the ideal generated by r and R/rR is

the quotient ring. For a ∈ R, a+ rR is the coset of rR in R with respect to

a. However, we often abuse the notation to identify a + rR with a. Hence,

whenever we use an expression of like, a ∈ R/rR, where a is an element of

R itself, it should be understood that we mean a+ rR ∈ R/rR.

Proposition 2.1.2. If R is a euclidean domain then,

1. For a ∈ R, a ∈ R/rR∗ if and only if gcd(a, r) = 1.

2. R/rR is a field if and only if r is a prime element of R.

Z denotes the ring of integers. For n ∈ Z \ {0}, Z/nZ is written as Zn.

As mentioned above, when a is an integer, expression of the form a ∈ Zn

actually mean a + nZ ∈ Zn. For ring R, R[x] is the univariate polynomial

ring over R and we use R[x]/f(x) to denote the quotient ring R[x]/f(x)R[x].

From Proposition 2.1.2.2 it follows that Zn is a field iff n is prime and,

for a finite field F, F[x]/f(x) is a field iff f(x) is irreducible over F. It is also

well-known that there exists a finite field of order q iff q = pd where p is prime

and d is a positive integer. All finite fields of same order are isomorphic, and

hence we can talk about “the” finite field of order q denoting it by Fq. For

q = pd, p is the characteristic of Fq.

6

Theorem 2.1.3 (Fermat’s Little Theorem). Let p be a prime number. For

all a ∈ F∗p, ap−1 = 1.

Proof. Since p is prime, by Proposition 2.1.2.1, F∗p = Fp\{0} and |F∗p| = p−1.

By Proposition 2.1.1.2, for all a ∈ F∗p, a|F
∗
p| = 1.

Cartesian product of two rings R1 and R2 can be identified as a ring by

defining (a, b)+(c, d) = (a+c, b+d) and (a, b)(c, d) = (ac, bd) for all a, c ∈ R1

and b, d ∈ R2.

Theorem 2.1.4. Let n ∈ Z and n = n1n2 such that gcd(n1, n2) = 1, then

Zn is isomorphic to Zn1 × Zn2. In particular φ : Zn → Zn1 × Zn2 as defined

below is an isomorphism:

φ(x+ nZ) = (x+ n1Z, x+ n2Z).

Proof. By definition, φ is a homomorphism. Notice that if we identify Zm

with the set of integers {0, . . . ,m − 1} then we can view φ as a map from

{0, . . . , n − 1} to {0, . . . , n1 − 1} × {0, . . . , n2 − 1} and φ(x) = (x1, x2) s.t.

x = xi mod ni (for i = 1, 2).

Now let (x1, x2) ∈ Zn1 × Zn2 . Since gcd(n1, n2) = 1, by Proposition

2.1.2.1, there exists (x2, x1) ∈ Zn1 × Zn2 s.t. n1x1 = 1 mod n2 and n2x2 = 1

mod n1. Given any element (a, b) ∈ Zn1×Zn2 if we choose x = an2x2 +bn1x1

mod n, then φ(x) = (a, b) which implies that φ is surjective.

Finally, φ is injective as φ(x) = φ(y) implies φ(x− y) = (0, 0) or x− y is

divisible by both n1 and n2. Since n1 and n2 are co-prime, n divides x − y

implying x = y in Zn.

For a field F, the polynomial ring F[x] is an integral domain which implies

the following.

7

Theorem 2.1.5. If F is a field and f(x) ∈ F[x] is a polynomial of degree d,

then f cannot have more than d roots.

2.2 Some Basic Algorithms

Here we give some well-known number theoretic algorithims. Inputs are an

integer or integers of O(n). Hence in binary representation, the input size

is O(log n). Thus in order to have polynomial time algorithm, it is required

that the time complexities are polynomial in log n.

isPower(n) checks whether the integer n can be expressed as xk where

x, k are integers and k > 2. gcd(a, b) computes the gcd of two integers using

Euclid’s method.

Step 3 of isPower(n) can be done in O(log n) time and hence the total

time complexity is O(log2 n). If a and b are O(n), it can be shown that the

while loop in gcd(a, b) iterates O(log n) times.

In computation number theory we are often required to compute ab

(mod n) where a, b, n are integers such that a and b are O(n). We cannot di-

rectly compute ab first and then take modulo n because it will take O(n log n)

bits to represent ab and hence the time will be superpolynomial in input size.

Mod-Exp(a, b, n) gives an algorithm which takes time polynomial in log n

for modular exponentiation.

8

Algorithm 1 Check if a Number is an Integral Power

1: procedure isPower(n)
2: for k = 1 to lg n do
3: Use bisection method to find the largest integer x s.t. xk ≤ n
4: if xk = n then
5: return True
6: end if
7: end for
8: return False
9: end procedure

Algorithm 2 Compute GCD of two integers

1: procedure gcd(a, b)
2: while b does not divide a do
3: b′ = a mod b
4: a = b
5: b = b′

6: end while
7: return b
8: end procedure

Algorithm 3 Modular Exponentiation: Given integers a, b, n compute ab

mod n
1: procedure Mod-Exp(a, b, n)
2: c = 0
3: d = 1
4: let {bk, bk−1,, b0} be the binary representation of b
5: for i=k downto 0 do
6: c = 2c
7: d = d2 (mod n)
8: if bi == 1 then
9: c = c+ 1

10: d = d.a (mod n)
11: end if
12: end for
13: return d
14: end procedure

9

Chapter 3

Miller-Rabin Primality Testing

Algorithm

The Miller Rabin Primality Test is a probabilistic algorithm which deter-

mines whether a given number is prime. Its original version, due to Gary L.

Miller[6], is deterministic, but the determinism relies on the unproven Ex-

tended Riemann hypothesis. Michael O. Rabin[7] later modified it to obtain

an unconditional probabilistic algorithm.

3.1 Key Concepts

We know that if n is prime then, by Fermat’s little theorem

an−1 = 1 ∀a ∈ Z∗n (3.1)

10

However, there are composite numbers called ‘Fermat’s pseudoprimes’ for

which equation 3.1 is also true.

There are 2 key concepts behind the algorithm.

Firstly, if n is not a pseudoprime then the converse of equation 3.1 is

almost true. In particular, for at least half of the elements a in Z∗n equation

3.1 does not hold.

Secondly, if n is a pseudoprime then with very high probability we can

find a non trivial square root of unity in Zn which actually allows us to

factorise n.

3.2 The Algorithm

Let n be the given number which we have to test for primality. First we

rewrite n− 1 as 2tu. Next, we pick some a in the range {1, 2, ..., n− 1} and

check for non-trivial square-roots of unity in Zn by first putting x = au and

then repeatedly squaring it till x becomes equal to an−1. We then check the

Fermat's condition, namely check whether an−1 = 1 for a ∈ Z∗n. If n fails

in either of the two tests, then n is definitely composite. Otherwise n is

probably prime. We can repeat the process a constant number of times by

taking different a's so as to decrease the probability of error.

A small procedure realizing the above algorithm is given below:

11

Algorithm 4 Miller-Rabin Primality Test

1: procedure MillerRabin(n)
2: if isPower(n) or n is even with n 6= 2 then
3: return COMPOSITE
4: end if
5: Choose a to be a random number in the range {1, 2, ..., n− 1}
6: if gcd(a, n) 6= 1 then
7: return COMPOSITE
8: end if
9: Find t, u such that (n− 1) = 2tu and u is odd

10: Put x0 = Mod-Exp(a, u, n)
11: for i=1 to t do
12: xi = x2i−1 (mod n)
13: if xi == 1 and xi−1 6= 1 and xi−1 6= −1 then
14: return COMPOSITE
15: //Checking for non-trivial square roots of unity
16: end if
17: end for
18: if xt 6= 1 then
19: return COMPOSITE //Checking Fermat’s Condition
20: end if
21: return PRIME
22: end procedure

12

3.3 Correctness

We now analyse the correctness of the above algorithm. We see that if n is

prime, then it can be trivially shown that the output is always correct. How-

ever, if n is composite, the analysis becomes a little tougher. We divide the

analysis into two cases but in both of them, we basically try to find a proper

subgroup of Z∗n which contains all the elements for which MillerRabin(n)

returns PRIME and hence all the elements for which the algorithm can err.

Thus, the error in the algorithm becomes less than 1
2
, and so can be made ar-

bitrarily small by repeating the procedure a constant number of times. This

is formalised in the following:

Theorem 3.3.1. If n is prime, MillerRabin(n) outputs PRIME with

probability one, and if n is composite, its probability of error ≤ 1
2
.

Proof. As explained in Section 3.1, if n is prime, then the output of the pro-

cedure MillerRabin(n) is always PRIME.

On the other hand, if n is composite, we have the following two cases:

Case 1: ∃a ∈ Z∗n such that an−1 6= 1 (mod n)

We first note that any ‘a’ chosen in line 8 is in Z∗n.

Define B = {x ∈ Z∗n : xn−1 = 1 (mod n)}.

Then, ∀a, b ∈ B, (ab)n−1 = (an−1)(bn−1) = 1 (mod n) and thus B is a sub-

group of Z∗n by property 2.1.1.3, which is nonempty as 1 ∈ B.

However, by the condition of the case, ∃a ∈ Z∗n such that a /∈ B.

Thus B is a proper subgroup of Z∗n and hence, |B| ≤ |Z∗
n|
2

.

Case 2: ∀a ∈ Z∗n an−1 = 1 (mod n)

Again, we note that any ‘a’ chosen in line 8 is in Z∗n and that for any n such

13

that the algorithm has not returned before line 8, n is not an integral power.

Define B = {x ∈ Z∗n : xn−1 = ±1 (mod n)}.

Then, ∀a, b ∈ B, (ab)n−1 = (an−1)(bn−1) = 1 (mod n) and thus B is a sub-

group of Z∗n by property 2.1.1.3 which is nonempty as 1 ∈ B.

We now note that as n 6= xk for any x, k ∈ N, ∃n1, n2 ∈ N such that n = n1n2

where gcd(n1, n2) = 1 and hence by Theorem 2.1.4, Zn
∼= Zn1 × Zn2 .

Thus, ∃a ∈ Z∗n\B such that a ∼= (1,−1) as 1 ∼= (1, 1) and −1 ∼= (−1,−1)

implying that B is a proper subgroup of Z∗n and hence, |B| ≤ |Z∗
n|
2

.

Now, in both cases we find that any ‘a’ such that PRIME is returned by

MillerRabin(n), is a member of B, and so any element in Z∗n that is a

non-witness to the compositeness of n is a member of B.

So, the probability of error is ≤ |Z∗
n|/2
|Z∗

n|
= 1

2
.

3.4 Running Time Analysis

If n is the input, we have already seen in Section 2.2, that isPower(n)

takes O(log2 n) time and thus, Step 2 takes O(log2 n) time. Next, Step 9

takes O(log n) time since t (and hence u) can be found in atmost log n steps

of dividing (n − 1) by 2. Also,Mod-Exp(a, b, n) gives a polynomial time

algorithm in log n for modular exponentiation as we have already seen in

Section 2.2 and thus Step 10 takes time polynomial in log n. Finally, since

no step in the for loop takes more that polynomial time in log n, and since

t = O(log n), we can easily see that Miller-Rabin(n) requires no more

than time polynomial in log n.

14

Chapter 4

Moving towards the AKS

Algorithm

We now move to another simple randomised primality testing algorithm

which reduces primality testing for a number n to testing if a specific uni-

variate identity over Zn holds. This algorithm is due to Manindra Agrawal

and Somenath Biswas [1], and it was the derandomization of this algorithm

which finally led to the AKS Algorithm.

4.1 The Key Concept

The key concept used in this algorithm is the following generalisation of

Fermat’s little theorem over polynomial ring.

Theorem 4.1.1. Let Pn(x) = (a+ x)n − (a+ xn) where a ∈ Z∗n and n ∈ N.

Then, Pn(x) = 0 in Zn[x] iff n is prime.

Notice that, unlike Fermat’s little theorem, the identity is always false

15

when n is a composite number. This allows us to completely sidestep the

issue of pseudoprimes and leads to a very simple algorithm: If (x + 1)n =

(xn + 1) mod n then return PRIME else return COMPOSITE. However the

polynomials in both side expands into O(n) term and we need O(n) time

to compute them. So, as a compromise, we check the identity modulo a

randomly chosen monic polynomial of degree log n at the cost of introducing

one sided error. However the analysis of the algoritm shows that even in this

case, when n is COMPOSITE, the identity does not hold with probability

greater than 2/3. We now present the proof of theorem 4.1.1

Proof. (Theorem 4.1.1) Let n be prime. Then by Fermat's little theorem,

an = a (mod n). Thus, Pn(x) = (a+ x)n − a− xn =
∑n−1

j=1

(
n
j

)
an−jxn.

Note that ∀j ∈ {1, 2,, n−1}, in
(
n
j

)
, n appears in the numerator and since

all the numbers appearing in the denominator are less than n, they do not

divide n. So, ∀j ∈ {1, 2,, n− 1},
(
n
j

)
is divisible by n. Thus Pn(x) = 0 in

Zn[x] if n is prime.

Conversely, let n be composite. Then, n has a prime divisor, p such that

n = pkm and gcd(p,m) = 1. Consider the coefficient of xp =
(
n
p

)
an−p.

Now gcd(n, a) = 1⇒ gcd(p, a) = 1. So, n|
(
n
p

)
an−p ⇒ pk|

(
n
p

)
an−p ⇒ pk|

(
n
p

)
.

However,

(
n

p

)
=
n(n− 1)...(n− p+ 1)

p!

=
pkm(pkm− 1)...(pkm− p+ 1)

p!

=
pk−1m(pkm− 1)...(pkm− p+ 1)

(p− 1)!

16

Note that gcd(p, pkm− i) = 1 ∀i ∈ {1, 2, ..., p− 1}.

So, n |
(
n
p

)
⇒ pk |

(
n
p

)
⇒ pkm | pk−1m ⇒⇐ as gcd(p,m) = 1. Hence,

coefficient of xp 6= 0 (mod n) and p 6= 0, n, and so, Pn(x) 6= 0 in Zn[x].

4.2 The Algorithm

In this algorithm, we first check for some small prime factors of n. If such

factors are not found, we choose Q(x) randomly to be monic polynomial of

degree dlog ne, and check whether (x + 1)n − (xn + 1) is zero modulo the

polynomial Q(x). Using Theorem 4.1.1 with a = 1, we see that if that does

not happen, then n is definitely composite. Otherwise n is probably prime

and we can repeat the process a constant number of times by taking different

Q(x)'s so as to decrease the probability of error arbitrarily. The pseudocode

realising the above algorithm is given in Algorithm 5.

4.3 Correctness

We now analyse the correctness of the above algorithm. As in the case of

Miller-Rabin(n), we see that if n is prime, then it can be trivially shown

that the output is always correct. However, if n is composite, we want to

show that the probability that a monic polynomial p with deg(p) = l does

not divide Pn(x) > 2
3
, so that the error in the algorithm becomes ≤ 2

3
.

To do this, we define a set I of monic irreducible polynomials having

degree in a certain range with upper bound l. For each polynomial f in I,

we define a set Cf of degree l polynomials having f as a factor and noting

17

Algorithm 5 Agrawal-Biswas Primality Test

1: procedure ABPrime(n)
2: if n = 2, 3, 5, 7, 11, 13 then
3: return PRIME
4: else
5: if n is divisible by any of the above numbers then
6: return COMPOSITE
7: end if
8: end if
9: if isPower(n) then

10: return COMPOSITE
11: end if
12: Pn(x) = (1 + x)n − (1− xn)
13: Choose Q(x) to be a random dlog ne degree monic polynomial in Zn[x]
14: if Q(x) divides Pn(x) over Zn then
15: return PRIME
16: else
17: return COMPOSITE
18: end if
19: end procedure

18

that these Cf 's are mutually disjoint, we find an lower bound for the number

of degree l polynomials with factors in I. We then get an upper bound on

the number of monic polynomials of degree l with factors in I that divide

Pn(x), and hence get a lower bound on the number of monic polynomials

of degree l with factors in I that do not divide Pn(x). Finally noting that

this also gives a lower bound on the number of monic polynomials of degree

l that do not divide Pn(x), we get the required result.

We formalise this as follows:

Theorem 4.3.1. If n is prime, ABPrime(n) outputs PRIME with proba-

bility one, and if n is composite, its probability of error ≤ 2
3
.

Proof. If n is prime, by Theorem 4.1.1, Pn(x) = 0 in Zn[x]. Thus, for any

Q(x) chosen, Q(x) | Pn(x), and so the output of the algorithm is PRIME.

Now, if n is composite, Pn(x) 6= 0 in Zn[x].

We, however note that the algorithm is correct when n is a prime power or

when divisible by primes upto 13. Thus we only have to analyse when n is

odd, not a prime power and its every prime factor is atleast 17.

Let l = dlog ne and I be the set of all monic irreducible polynomials of degree

between 1 + l
2

and l over Fp.

Next, let I(d) be the number of monic irreducible polynomials of degree d over

Fp. We note that by the distribution theorem of irreducible polynomials[5],

pk

k
− p k

2 ≤ I(k) ≤ pk

k
+ p

k
2

Finally, for f ∈ I, let Cf be the set of l degree polynomials that have f

as a factor. Now, g ∈ Cf ⇒ g = fq for some polynomial q with deg(q) =

19

l − deg(f) and the number of polynomials in Fp with degree (l − deg(f)) is

pl−deg(f). Thus, |Cf | = pl−deg(f).

Also, f ∈ Cf1 ∩ Cf1 ⇒ f1|f and f2|f ⇒ lcm{f1, f2}|f .

But, gcd{f1, f2} = 1 as f1, f2 are irreducible ⇒ lcm{f1, f2} = f1f2

⇒ f1f2|f ⇒⇐ (as, deg(f1f2) = deg(f1) + deg(f2) >
l
2

+ l
2

= l = deg(f)).

So,

∑
f∈I

|Cf | =
l∑

k=1+ l
2

I(k)pl−k

≥
l∑

k=1+ l
2

pk

k
pl−k − p

k
2 pl−k

=
l∑

k=1+ l
2

pl
(

1

k
− 1

p
k
2

)

= pl
l∑

k=1+ l
2

(
1

k
− 1

pk−2

)
≥
(

ln 2− 1

48

)
pl

Also, |Cf | = pl−deg(f) ≤ p
l
2
−1 because deg(f) ≥ 1 + l

2
. So, the total number

of monic polynomials of degree l with factors in I ≥
(
ln 2 − 1

48

)
pl.

Now the number of monic irreducible polynomials of degree > l
2

over Fp that

divide Pn(x) is < n
l/2

= 2n
l

and so the number of monic polynomials of degree

l with factors in I that divide Pn(x) ≤
(
2n
l

)
p

l
2
−1 ≤ pl

8nl
(as p > 16). Thus,

the total number of monic polynomials of degree l with factors in I that do

not divide Pn(x) ≥
(
ln 2 − 1

48
− 1

8nl

)
pl, and so the total number of monic

polynomials p with deg(p) = l that do not divide Pn(x) ≥
(
ln 2− 1

48
− 1

8nl

)
pl.

Hence the probability that a monic polynomial p with deg(p) = l does not

20

divide Pn(x) ≥ (ln 2− 1
48
− 1

8nl
) > 2

3
(∵ n > 16, l = lg n > 4).

Thus, if n is composite, it outputs COMPOSITE with probability > 2
3
, and

so the probability of error ≤ 2
3
.

4.4 Running Time Analysis

If n is the input, we have already seen in Section 2.2, that isPower(n)

takes O(log2 n) time and thus, Step 9 takes O(log2 n) time. In Step 14, the

algorithm does O(log n) multiplications of two degree O(log n) polynomials

over Zn and computes same number of remainders modulo a third degree

O(log n) polynomial and each of these requires O∼(log3 n). Since these are

the only two non trivial steps in the algorithm, the time complexity of the

algorithm is O∼(log4 n).

4.5 Link to the AKS Algorithm

The AKS algorithm can be seen as a derandomisation this algorithm. Let S

be the set of all monic polynomials of degree dlog ne in Zn. We know that,

if n is composite then there are at most |S|/3 many Q(x)’s in S such that

P (x) = 0 mod Q(x). Hence a naive approach to derandomize this algorithm

is to check whether P (x) = 0 mod Q(x) for more than |S|/3 manyQ(x). But

this will take O(|S|) time and |S| = O(nlogn). The AKS algorithm implies

that, we can compute a O(log5 n) integer r and a O(log6 n) integer l s.t. if

n is composite then there exists an integer a between 1 and l s.t. P (x) 6= 0

mod (x+ a)r− 1. However in AKS the authors did not use exactly this test.

21

Rather they checked whether for all a between 1 and l, (x− a)n = (xn − a)

over Zn[x]/(xr − 1). The following lemma shows that these two tests are

equivalent.

Lemma 4.5.1. Fix any r > 0 and any l > 0. Then,

(x+ 1)n = (xn + 1) (mod n, (x+ a)r − 1) for 1 ≤ a ≤ l (4.1)

if and only if

(x− a)n = (xn − a) (mod n, xr − 1) for 1 ≤ a ≤ l (4.2)

Proof. The proof is by induction on l. So, we see first the result for l = 1.

Then, equation (4.1) ≡ (x+ 1)n = (xn + 1) (mod n, (x+ 1)r − 1).

Putting x − 1 for x, we have xn = ((x − 1)n + 1) (mod n, xr − 1). Thus,

xn − 1 = (x − 1)n (mod n, xr − 1) ⇒ (x − 1)n = (xn − 1) (mod n, xr − 1)

which is equation (4.2) with a = 1.

Conversely for l = 1, equation (4.2) ≡ (x− 1)n = (xn − 1) (mod n, xr − 1).

So, putting x + 1 for x, we have xn = ((x + 1)n − 1) (mod n, (x + 1)r − 1).

Thus, xn + 1 = (x + 1)n (mod n, (x + 1)r − 1) ⇒ (x + 1)n = (xn + 1)

(mod n, (x+ 1)r − 1) which is equation (4.1) with a = 1.

So, the equivalence hold for l = 1.

Now, take l > 1 and let the equivalence hold for every a ≤ l − 1.

First, let equation (4.1) hold.

Then, (x+ 1)n = (xn + 1) (mod n, (x+ a)r − 1) for 1 ≤ a ≤ l. Thus,

(x+ 1)n = (xn + 1) (mod n, (x+ l)r − 1) (4.3)

22

and (x+ 1)n = (xn + 1) (mod n, (x+ a)r − 1) for 1 ≤ a ≤ l − 1. (4.4)

Hence, substituting x− l for l in equation (4.3) we have

(x− (l − 1))n = ((x− l)n + 1) (mod n, xr − 1). (4.5)

Also, by our induction hypothesis, equations (4.4) would mean that

(x− a)n = (xn − a) (mod n, xr − 1) for 1 ≤ a ≤ l − 1. (4.6)

Thus putting a = l − 1 in equation 4.6, and using equation 4.5 we get

xn − (l − 1) = ((x− l)n + 1) (mod n, xr − 1). Thus,

xn − l = (x− l)n (mod n, xr − 1)⇒ (x− l)n = (xn − l) (mod n, xr − 1).

Thus, (x− a)n = (xn − a) (mod n, xr − 1) for 1 ≤ a ≤ l.

Conversely, let equation (4.2) hold.

Then (x− a)n = (xn − a) (mod n, xr − 1) for 1 ≤ a ≤ l. Thus,

(x− l)n = (xn − l) (mod n, xr − 1) (4.7)

and (x− a)n = (xn − a) (mod n, xr − 1) for 1 ≤ a ≤ l − 1 (4.8)

So, substituting x+ 1 for x in equation 4.7,

(x− (l − 1))n = ((x+ 1)n − l) (mod n, (x+ 1)r − 1) (4.9)

Also, by our induction hypothesis, equations (4.8) would mean that

(x+ 1)n = (xn + 1) (mod n, (x+ a)r − 1) for 1 ≤ a ≤ l − 1 (4.10)

23

For a = 1 in equation (4.10), and using equation 4.9 we get

(x− (l − 1))n = (xn + 1− l) (mod n, (x+ 1)r − 1) (4.11)

and substituting x+ 1 for x in equation (4.11),

(x− (l − 2))n = ((x+ 1)n − (l − 1)) (mod n, (x+ 2)r − 1) (4.12)

For a = 2 in equation (4.10), and using equation (4.12) we get

(x− (l − 2))n = (xn − (l − 2)) (mod n, (x+ 2)r − 1) (4.13)

and substituting x+ 1 for x in equation (4.13),

(x− (l − 3))n = ((x+ 1)n − (l − 2)) (mod n, (x+ 3)r − 1) (4.14)

Continuing like this, we get

(x− (l − l))n = ((x+ 1)n − (l − (l − 1))) (mod n, (x+ l)r − 1).

Thus, xn = ((x + 1)n − 1) (mod n, (x + l)r − 1) and so, xn + 1 = (x + 1)n

(mod n, (x+ l)r − 1)⇒ (x+ 1)n = (xn + 1) (mod n, (x+ l)r − 1).

Hence, (x+ 1)n = (xn + 1) (mod n, (x+ a)r − 1) for 1 ≤ a ≤ l.

24

Chapter 5

The AKS Algorithm

Since the beginning of complexity theory in the 1960’s - when the notions

of complexity theory were formalized and various complexity classes were

defined - the problem of primality testing has been investigated intensively.

The ultimate goal of this line of research has been to obtain an unconditional

deterministic polynomial time algorithm for primality testing.

Despite the impressive progress made, it wasn’t before AKS algorithm

that this could be acheived. The AKS algorithm gives a deterministicO(log12 n)

time algorithm for testing if a number is prime. The algorithm is based on

a generalisation of Fermat’s Little Theorem to polynomial rings over finite

fields (ie. Theorem 4.1.1) and its equivalent formulation (see Lemma 4.5.1).

5.1 The Algorithm

The AKS algorithm can be divided into the following three parts:

1. Determine whether the input is an integral power,

25

2. Determine whether the input has a small prime divisor,

3. Check whether (x+ a)n = (xn + a) (mod n, xr − 1).

The third step is the crucial part of this algorithm and as we have seen in

Theorem 4.5.1, this is equivalent to the condition that for all Q(x) ∈ S =

{(x+a)r−1 | a = 1, . . . , l}, (x+1)n−(xn+1) is zero modulo Q(x). Thus, this

is very similar to the Agrawal-Biswas test except for the fact that in the case

we have changed the ring to Zn/(x
r − 1) for a suitably chosen r ∈ O(log5 n).

This reduces the size of S which allows us to check exhaustively whether all

the elements in S satisfy the equation.

Algorithm 6 AKS Primality Test

1: procedure AKS(n)
2: if isPower(n) then
3: return COMPOSITE
4: end if
5: Find the smallest r such that or(n) > 4log2n
6: Set l = or(n)− 1 //or(n) is the order of n modulo r
7: if 1 < gcd(a, n) < n for any a ∈ {1, 2, ..., r} then
8: return COMPOSITE
9: end if

10: if n ≤ r then
11: return PRIME
12: end if
13: for a = 1 to l do
14: if (x+ a)n 6= (xn + a) (mod n, xr − 1) then
15: return COMPOSITE
16: end if
17: end for
18: return PRIME
19: end procedure

26

5.2 Correctness

We now analyse the correctness of the above algorithm. As usual, if n is

prime, then it can be trivially shown that the output is always correct.

Theorem 5.2.1. If n is prime, AKS(n) returns PRIME.

Proof. Suppose n is prime. Then, n 6= pk for any k > 1 and p prime and so,

COMPOSITE cannot be returned by AKS(n) at step 3. Again, gcd(n, a) is

1 if n-a and n if n|a, and so COMPOSITE cannot be returned by AKS(n)

at step 8. Finally, we have seen by Theorem 4.1.1 that (a + x)n = (a + xn)

(mod n) ∀a and so (a+x)n = a+xn (mod n, xr−1) ∀a ∈ {1, 2, ..., l}. Thus,

COMPOSITE cannot be returned by AKS(n) at step 15. Hence, PRIME

must be returned by AKS(n).

For the converse, we break the proof into two parts, of which the first is

easy to prove.

Theorem 5.2.2. If AKS(n) returns PRIME in step 11, then n is prime.

Proof. Suppose AKS(n) returns prime at step 11. Then, n ≤ r. So if n

were composite, ∃p < n ≤ r such that 1 < gcd(p, n) = p < n. But then

COMPOSITE would have been returned at step 8 which is a contradiction

as the program has reached step 11.

For the second part, we assume that n is composite and that it has a

non-trivial prime factor p. We then define F = Fp[x]/ < h(x) > where

h(x) is the irreducible part of the rth cyclotomic polynomial and consider the

subgroup G =< {x+ a : a ∈ {1, 2, ..., l}} > of F ∗ where l = or(n)− 1. Some

27

analysis derives contradictory bounds for | G |, thus getting the required

contradiction.

Theorem 5.2.3. If AKS(n) returns PRIME in step 18, then n is prime.

Proof. Suppose AKS(n) returns PRIME in step 18. Then, n > r and

gcd(n, r) = 1 as otherwise COMPOSITE would have been returned at line 8

when a = r. Let R = Zn[x]/< xr− 1 > and l be as defined in the algorithm.

Then by Theorem 4.1.1, (a+ x)n = a+ xn in R, ∀a ∈ {1, 2,, l}.

If possible, let n be composite. Then, ∃ a prime p such that p | n. So,

gcd(p, r) = 1 as gcd(n, r) = 1, and thus n, p ∈ Z∗r.

Define F = Fp[x]/ < h(x) > where h(x) is the irreducible part of the rth

cyclotomic polynomial. So, (a + x)n = a + xn in R, ∀a ∈ {1, 2,, l} would

mean that (a+ x)n = a+ xn in F , ∀a ∈ {1, 2,, l}.

Now we have already noted that n, p ∈ Z∗r. So, we can consider a subgroup

G =< n, p > of Z∗r, and let t = | G |. We note that G ≤ Z∗r implies that

t < r, and < n > ≤ < n, p > implies that or(n) < t.

Next, consider the subgroup G =< {x+ a : a ∈ {1, 2, ..., l}} > of F ∗.

Define an integer m to be introspective for a polynomial f(x) ∈ F if f(xm) =

f(x)m. We note that m is introspective for for f ∀m ∈ G and ∀f ∈ G. We

also note some of the properties satisfied by introspective integers are that

m1,m2 are introspective for f ⇒ m1m2 is introspective for f and also, m is

introspective for f, g ⇒ m is introspective for fg.

Claim: | G | > 2t−1

For each K ⊆ {1, 2, ..., l}, consider fK(x) =
∏

a∈K(x − a) ∈ Z[x]. Each fK

is distinct since they have distinct roots. Further there are 2l > 2t−1 of such

polynomials since there are 2l subsets of 1, 2, ..., l. Note that in F , x is the

28

rth root of unity, ζr. So, fK1(x) = fK2(x) in F for K1 6= K2 would mean

fK1(ζr) = fK2(ζr) and so fK1(ζr)
m = fK2(ζr)

m ∀m ∈ G.

Thus, fK1(ζ
m
r) = fK2(ζ

m
r) ∀m ∈ G and so, ζmr is a root for g = fK1 − fK2

∀m ∈ G where g is a polynomial of degree < t− 1 and | G |= t which is not

possible unless fk1 = fk2 ⇒⇐.

Thus, fK1 6= fK2 in F for K1 6= K2 and hence in G. So | G | > 2t−1.

Claim: | G | ≤ n2
√
t

Consider S = {nipj, 0 ≤ i, j ≤
√
t}. If n is not a prime power, then each nipj

is distinct. Hence | S | = (
√
t + 1)2 > t. So, when we consider the elements

of S modulo r, they become elements of G. Since | G | = t, ∃m1,m2 with

m1 6= m2 such that m1 = m2 (mod r) and so m1 = m2 + rk for some k ∈ Z.

So, ∀f ∈ G, f(x)m1 = f(xm1) = f(xm2+rk) = f(xm2xrk) = f(xm2) = f(x)m2

as xr = 1. So, f(x) is a root of g = xm1 − xm2 ∀f ∈ G.

However, deg(g) = max{m1,m2} = n
√
tp
√
2 < n

√
tn
√
t = n2

√
t. Thus, the

number of roots of g = n2
√
t and so | G | ≤ n2

√
t.

Now, we have 2t−1 ≤ | G | ≤ n2
√
t. However, as t > 4 log2n, the bounds

for | G | are contradictory. We thus have the required contradiction if we

assume n to be composite.

5.3 Running Time Analysis

Before we start the running time analysis, we need the following lemma:

Lemma 5.3.1. Let LCM(m) denote the lcm of the first m numbers. For m

odd, LCM(m) ≥ 2m−1.

29

Proof. Let m = 2n+ 1. Consider the following integral:

∫ 1

0

xn(1 + x)ndx

We note that as x ∈ [0, 1], the function x(1 − x) attains its maximum at

x = 1
2
. Thus x(1 − x) < 1

4
, and so the integral is upper bounded by 2−2n.

But if we expand (1− x)n using binomial theorem, then we have

2−2n ≥
∫ 1

0

xn(1− x)n =

∫ 1

0

n∑
k=0

(−1)k
(
n

k

)
xn+k

=
n∑

k=0

(−1)k
(
n

k

)∫ 1

0

xn+k

=
n∑

k=0

(−1)k
(
n

k

)
1

n+ k + 1
=
M

N

Then clearly N is atmost LCM(m) and M is atleast 1.

Hence, LCM(m)2−2n > N2−2n ≥ 1 and so LCM(m) ≥ 22n = 2m−1

Using this, we can show the following result.

Lemma 5.3.2. There exists an r ≤ 16lg5n, such that or(n) > 4lg2n.

Proof. Suppose T is such that for all 1 ≤ r ≤ T , or(n) ≤ 4lg2n. Then, for

every r, there exists a j < 4lg2n such that r divides nj − 1.

Thus, for each 1 ≤ r ≤ T , r divides the product (taking k = 4lg2n),∏k
j=1(n

j − 1) <
∏k

j=1 n
j = n

∑k
i=1 = n

k(k+1)
2 = n

k2+k
2 < n

k2+k2

2 = nk2 .

Thus, the lcm of the first T numbers divides the product which is strictly

less than n16lg4
n = 216lg5

n (∵ 2lg(n) = n). The bound from Lemma 5.3.1 will

force T < 16lg5n.

30

Now, we are ready to start the running time analysis. If n is the input,

we have already seen in Section 2.2, that isPower(n) takes O(log2 n) time.

Next, we must find an r such that or(n) > 4 log2 n. This can be done by

trying out successive values of r and testing if nk 6= 1 (mod r) for every

k ≤ 4 log2 n. So, for a particular r, this will involve at most O(log2 n)

multipications modulo r and so will take time O∼(log2 n log r). By Lemma

5.3.2, we know that only O(log5 n) different r’s need to be checked. Thus the

total complexity of this step is polynomial in log n.

Next we have to check the gcd of r numbers. Each gcd computation takes

time O(log2 n) as we have seen in Section 5.3.2 and since r is of O(log5 n),

this will also be taking only time O(log7 n).

Finally, we have to verify l equations where l = or(n)−1 < or(n) which di-

vides φ(r) and hence, l < φ(r) < r is O(log5 n). Each equation takes O(log n)

multipications of r degree polynomials with coefficients of size O(log n). So,

each equation can be verified in time O∼(r log2 n) steps. Thus the time taken

for this step is O(r2 log2 n) = O(log12n). As we can see, this step dominates

all the other steps.

Hence the time complexity for the AKS algorithm is O(log12n) which is

polynomial in log n. The time complexity of this algorithm can be improved

slightly, the current best being about O(log6 n)

31

Chapter 6

Conclusion

In this project, we have covered some of the polynomial time Primality test-

ing Algorithms. Our main goal was the AKS algorithm which we covered in

Chapter 5. It gives an unconditional deterministic polynomial time algorithm

that determines whether a given input number is prime or not. However be-

fore that, in Chapters 3 and 4, we saw two of its precursers, namely, the

Miller-Rabin test and Agrawal-Biswas test, which give probablistic polyno-

mial time algorithms to check for primality.

In conclusion, we now look at some related topics of research. We have

noted that the the Agrawal-Biswas test reduces primality testing to Polyno-

mial Identity testing which is already active area of research. However, no

deterministic polynomial time algorithm has been found for it as yet, even

though a probabilistic polynomial time algorithm has been found for polyno-

mials over a field. However if we consider polynomials over a ring, not even

a probabilistic polynomial time algorithm is known yet.

Primality testing is a decision problem, and so the most natural way

32

forward would be to find an algorithm which can factorise a given integer n.

However, even for this problem no probabilistic polynomial time algorithm

is known yet. There is, however, a quantum probabilistic polynomial time

algorithm to factorise a given integer.

33

Bibliography

[1] Manindra Agrawal and Somenath Biswas. Primality and identity testing

via chinese remaindering. Journal of the ACM (JACM), 50(4):429–443,

2003.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p.

Annals of mathematics, pages 781–793, 2004.

[3] Leiserson Coremen. Rivest, stein introduction to algorithm. PHI publi-

cation.

[4] David Steven Dummit and Richard M Foote. Abstract algebra, volume

1984. Wiley Hoboken, 2004.

[5] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and

their applications. Cambridge University Prepp, 1986.

[6] Gary L Miller. Riemann’s hypothesis and tests for primality. Journal of

computer and system sciences, 13(3):300–317, 1976.

[7] Michael O Rabin. Probabilistic algorithm for testing primality. Journal

of number theory, 12(1):128–138, 1980.

34

