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1 Introduction
The sum of squares problem can be stated as follows.

Suppose we are working over the field F. We want to find the complexity of n in
terms of k for which an identity of the following kind exists:

(x2
1 + x2

2 +⋯x2
k) ⋅ (y2

1 + y2
2 +⋯y2

k) = ( f 2
1 + f 2

2 +⋯ f 2
n)

where each fi is a bilinear form in {x1, x2, . . . , xk}, {y1, y2, . . . , yk} over F.

The main result in the paper then, is as follows.

If F = C, then showing n = Ω(k1+ε) with ε > 0 is enough to show that any
non-commutative circuit computing the n × n permanent requires exp(n) size.

1 The model we are working with: Non-Commutative Circuits
Non-commutative circuits are like normal algebraic circuits with the only dif-
ference being that each multiplication gate has a specified left child and a right
child. Note that this makes a big difference since in particular,

x2 − y2 ≠ (x + y)(x − y)

in the the non-commutative world.

Previous Works

We note that there is no better lower-bound known for general non-commutative
circuits than in the commutative setting. However, there have been some non-
trivial work in this area as well. A few important results known are as follows:

1. Nisan: Any non-commutative formula computing the n × n determinant
or permanent must have size Ω(2n).

2. Nisan: There exists an explicit polynomial over n variables that has an
O(n) sized non-commutative circuit, but any non-commutative formula
computing it requires size 2Ω(n).
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1. Introduction

3. Chien Sinclair et al.: The permanent can be approximated well efficiently if
the determinant of some corresponding matrix can be computed efficiently.

4. Arvind-Srinivasan: In the non-commutative world, computing the deter-
minant is as hard as computing the permanent.

These are however not directly related to the result we will present here. So
before going any further, let us look at the Sum-of-Squares more carefully.

2 The Sum of Squares Problem
Consider the polynomial

SOSk = (x2
1 + x2

2 +⋯x2
k) ⋅ (y2

1 + y2
2 +⋯y2

k) .

Let SF(k) denote the minimum value of n for which

SOSk = z2
1 + z2

2 +⋯+ z2
n,

where each zi is a bilinear form in {x1, x2, . . . , xk} ,{y1, y2, . . . , yk} over F. The
Sum of Squares problem is to find SF(k).

Note: If F has charcteristic 2, then n = 1 and for any other field, the trivial
bounds are: k ≤ SF(k) ≤ k2.

The Sum of Squares problem over Reals

The sum of squares problem over reals has been studied for a long time by
mathematicians. Let us first look at some non-trivial cases for which SR(k) = k.

1. For k = 1, x2
1y2

1 = (x1y1)2.
Note that this is the same as saying ∣α∣2 ∣β∣2 = ∣αβ∣2 for α = x1 and β = y1.

2. For k = 2, (x2
1 + y2

1) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.
Note that this is the same as saying ∣z1∣

2 ∣z2∣2 = ∣z1z2∣2 when we view z1 =
(x1, x2) and z2 = (y1, y2) as complex numbers.

3. For k = 4, Euler showed that SR(4) = 4.
A similar interpretation can be made as before if we view z1 = (x1, x2, x3, x4)
and z2 = (y1, y2, y3, y4) as quarternions — defined by Hamilton after Euler’s
proof.

4. For k = 8 again, a similar interpretation is possible by viewing z1 =
(x1, x2, . . . , x8) and z2 = (y1, y2, . . . , y8) as octonions

After this, people tried to show that SR(16) = 16. However, in 1898, Hurwitz
showed that SR(k) > k for every k ∉ {1, 2, 4, 8}. Using topological and algebraic
tools, it was shown that

SR(k) ≥ (2− o(1))k

2



1. Introduction

which is the current best lower-bound. The current best upperbound was given
by Radon-Hurwitz. They showed that

SR(k) ≤ O( k2

log k
) .

Their proof also works over Z. Thus,

SZ(k) ≤ O( k2

log k
) .

In this paper, Hrubes-Wigderson-Yehudayoff show that

SR(k) ≥ Ω (k6/5) .

We will however, not be seeing the proof here.

3 The connection between Non-commutative Circuits and SOS
As noted before the main result in the paper shows that a sufficiently strong
super-linear lower-bound for SC(k) implies an exponential lowerbound for Non-
commutative circuits computing the n × n permanent.

Now in the non-commutative setting, one can define the permanent in many
ways. We define it in a row-by-row manner as follows:

Permn(X) = ∑
σ∈Sn

n
∏
i=1

xiσ(i).

Formally, the main theorem in the paper is as follows:
Theorem 1.1. Let F be a field which contain

√
−1. Assume that SF(k) ≥ Ω(k1+ε) for

some constant ε > 0. Then, any non-commutative circuit computing Permn requires
size 2Ω(n).

Sum of Squares Complexity and Bilinear Complexity

We now define a few operators which we will use in the proof of Theorem 1.1.

Definition 1.2. Let f be a commutative polynomial of degree 4 over a field F. f is said
to be bi-quadratic in X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}, if every monomial
in f has the form xi1 xi2 yj1 yj2 . ◊

Definition 1.3. For a commutative bi-quadratic polynomial over X = {x1, x2, . . . , xk}
and Y = {y1, y2, . . . , yk}, define:

• Sum of Squares Complexity: SF( f )
Smallest n (possibly infinite) so that f can be written as f = z2

1 +⋯+ z2
n

• Bilinear Complexity: BF( f )
Smallest n (possibly infinite) so that f can be written as f = z1z′1 +⋯+ znz′n

3



2. The Proof Strategy

where each zi, z′i are bilinear forms in X, Y. ◊

Note: SF(SOSk) = SF(k).

Relation between SF(k) and BF(k)

We want to prove Theorem 1.1 by using BF instead of SF. For that we need to
see how the two relate to each other. Clearly,

BF(k) ≤ SF(k).

Now, assume
√
−1 ∈ F. Then

2zz′ = (z + z′)2 + (
√
−1z)2 + (

√
−1z′)2

and so SF( f ) ≤ 3BF( f ). Thus if
√
−1 ∈ F, then BF(k) = Θ(SF(k)).

using the above observation, the following theorem is clearly enough to show
Theorem 1.1.
Theorem 1.4. For any field F, assume BF(k) ≥ Ω(k1+ε) for some constant ε > 0. Then,
any non-commutative circuit computing Permn requires size 2Ω(n).

2 The Proof Strategy
Theorem 1.4 will be proved in broadly three parts:

Part I: This part will consist of two steps.
1. Homogenise the circuit for Permn: Note that the usual homogenisation

respects non-commutativity. Thus if there exists a non-commutative
circuit computing Permn of size s, there is a corresponding homoge-
neous non-commutative circuit computing Permn of size s′ = O(n2s).

2. Define ”width” of a non-commutative polynomial and show that
width(Permn) = O(ns′).

Thus at this point, it is enough to show the following statement:
BF(SOSk) = Ω(k1+ε) ⇒ width(Permn) = 2Ω(n).

Part II: If IDk = ∑i,j∈[k] xiyjxiyj, then show that

width(IDk) = Θ(BF(SOSk)).

Thus at this point, it is enough to show the following statement:
width(IDk) = Ω(k1+ε) ⇒ width(Permn) = 2Ω(n).

Part III: This part will consist of three steps.
1. Show that width(IDk) = width(ID′

k) for ID′

k = ∑i,j∈[k] xixjxixj.
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3. A Sufficient condition for Proving Non-commutative circuit Lower-bounds

2. Show that width(LIDr) = Ω(2−r width(ID′

k)) for LIDr = ∑e∈{0,1}2r zeze if
k = 2r and ze = ∏2r

j=1 zej where e = (e1, e2, . . . , e2r) ∈ {0, 1}.
3. Show that LIDr = Perm4r.

Thus,
width(Perm4r) = width(LIDr) = Ω(2−r width(ID′

k))

= Ω(2−r width(IDk)) = Ω(2−r ⋅ 2r(1+ε))

= Ω(2rε) = 2Ω(r).

We will now look at the proof of each part separately. From now on, the term
”polynomial” will be used to mean non-commutative polynomial, unless men-
tioned otherwise.

3 A Sufficient condition for Proving Non-commutative circuit
Lower-bounds

Intuitively, we want to say that if a homogeneous polynomial has a small circuit
computing it, then its monomials can be grouped into not too many groups
where each group share a common central part.

More formally, let us call a homogeneous polynomial f central, if ∃m, d0, d1, d2
such that

f =
m
∑
i=1

high′i

where d = deg( f ), d
3 ≤ d0 ≤ 2d

3 , d0 + d1 + d2 = d and

• g is a homogeneous polynomial of degree d0

• ∀i, hi is a homogeneous polynomial of degree d1

• ∀i, h′i is a homogeneous polynomial of degree d2

As there is no bound on ′M′ as such, we can assume that hi is a scalar times a
monomial for every i and that h′i is a monomial for every i.

Further, a homogeneous polynomial f is said to have ”width” n, denoted by

width( f ) = n

if n is the smallest number for which

f =
n
∑
i=1

fi

and each fi is a central polynomial.

Clearly, the following is be enough to to show what was required to be shown
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3. A Sufficient condition for Proving Non-commutative circuit Lower-bounds

in the part.

If s is the size of a homogeneous circuit computing a polynomial f , then

width( f ) = O(ds)

where d = deg( f ).

Let f be a homogeneous polynomial of degree d, and let s be the size of a
homogeneous circuit C computing it. We want to show that width( f ) ≤ ds. We
will do so by showing the following claim.

Claim 3.1. Let {g1, g2, . . . , gt} be the set of polynomials being computed at the various
gates in C of degree in the range [ d

3 , 2d
3 ]. Then any polynomial g, that is computed by

any of the gates in C must have the form

g = ∑
i∈[t]

⎛
⎝ ∑j∈[m]

hijgih
′

ij
⎞
⎠

if deg(g) ≥ d
3 .

It is not too hard to see why this is enough. Taking g = f , we get

f = ∑
i∈[t],j∈[m]

hijgih
′

ij

= ∑
i∈[t],j∈[m]

d−deg(gi)

∑
k=0

h(k)
ij gih

′(d−k−deg(gi))

ij

= ∑
i∈[t]

d−deg(gi)

∑
k=0

⎛
⎝ ∑j∈[m]

h(k)
ij gih

′(d−k−deg(gi))

ij
⎞
⎠

where ∑j∈[m]
h(k)

ij gih′
(d−k−deg(gi))

ij is a central polynomial and k ≤ d.

Just to clarify notation, for any polynomial p and any integer r ≤ deg(p), p(r)

denotes the homogeneous degree r part of p.

Let us now look at the proof of Claim 3.1.
Proof of Claim 3.1. Let g be any polynomial with deg(g) ≥ d

3 that is computed
by some gate in C. Then,

Case 1: deg(g) ≤ 2d
3

Set m = 1 and hi1, h′i1 = { 1 if gi = g
0 otherwise

Case 2: deg(g) > 2d
3

We prove this case by induction on the depth at which g is calculated.
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3. A Sufficient condition for Proving Non-commutative circuit Lower-bounds

Let g be calculated at a vertex which is a + gate. Then, g = g′ + g” where

deg(g′), deg(g”) > 2d
3

.

By induction, ∃m and

{hij}i∈[t],j∈[m]
,{h′ij}i∈[t],j∈[m]

,{h̄ij}i∈[t],j∈[m]
,{h̄′ij}i∈[t],j∈[m]

such that
g′ = ∑

i∈[t]

⎛
⎝ ∑j∈[m]

hijgih
′

ij
⎞
⎠

and
g” = ∑

i∈[t]

⎛
⎝ ∑j∈[m]

h̄ijgi h̄
′

ij
⎞
⎠

.

Thus,
g = ∑

i∈[t]

⎛
⎝ ∑j∈[m]

(hijgih
′

ij + h̄ijgi h̄
′

ij)
⎞
⎠

.

Next, let g be calculated at a vertex which is a × gate. Then, g = g′ × g”
where

deg(g′) > d
3

or deg(g”) > d
3

.

Without loss, assume it is g′. By induction, ∃m,{hij}i∈[t],j∈[m]
,{h′ij}i∈[t],j∈[m]

such that
g′ = ∑

i∈[t]

⎛
⎝ ∑j∈[m]

hijgih
′

ij
⎞
⎠

.

Thus,
g = g′g” = ∑

i∈[t]

⎛
⎝ ∑j∈[m]

(hijg”)gi(h′ijg”)
⎞
⎠

.

This completes the proof of Claim 3.1.

Hence, for any size s homogeneous circuit computing a polynomial f ,

width( f ) = O(ds)

where d = deg( f ). In particular this proves that if s is the size of any homoge-
neous non-commutative circuit computing Permn, then

width(Permn) = O(ns).

Thus, finding a lower-bound for non-commutative circuit size computing Permn
is reduced to finding a lower-bound for width(Permn).

Now note that SOSk is a commutative polynomial. In the next section we will
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Complexity of the Commutative counterparts

define a non-commutative analogue of SOSk and show that the ”width” of that
polynomial is the same as BF(SOSk).

4 Width of degree-four Non-commutative polynomials and
Bilinear Complexity of the Commutative counterparts

We begin by defining a non-commutative analogue of the SOSk polynomial,
namely

IDk = ∑
i,j∈[k]

xiyjxiyj.

We want to show that width(IDk) = BF(SOSk). However before we go into that,
let us fix some notations.

1 Some Notations and Observations
Let X = {x1, x2, . . . , xn} be the variables on which the polynomials of our interest
depends, and let X1, X2, . . . , Xr be (not necessarily disjoint) subsets of X. For a
polynomial f , let f [X1, X2, . . . , Xr] be a homogeneous degree r polynomial of
the following type:

coeffα( f [X1, X2, . . . , Xr]) = { coeffα( f ) if α = x1x2 . . . xr with xi ∈ Xi for every i
0 otherwise

With the above definition, the following observation is not too hard.

Observation 4.1. If f is a central polynomial such that

f = f [X1X2X3X4],

then either f = g[X1, X2]h[X3, X4] or f = ∑i∈[m]
hi[X1]g[X2, X3]h′i[X4]. Here g, h,

hi, h′i are some appropriate polynomials.

Sketch of Proof. It is not hard to show that f = g[X1, X2]h[X3, X4] when d1 = 0
or d2 = 0. Similarly, f = ∑i∈[m]

hi[X1]g[X2, X3]h′i[X4] when d1 = 1 = d2.

The above observation immediately proves the following lemma.

Lemma 4.2. If f = F[X1, X2, X3, X4], then width( f ) is the smallest n such that f can
be written as f = f1 + f2 +⋯+ fn, where for every t ∈ [n] one of the following two is
true:

• ft = gt[X1, X2]ht[X3, X4]

• ft = ∑i∈[m]
hti[X1]gt[X2, X3]h′ti

[X4]

Here gt, ht, hti , h′ti
are some appropriate polynomials.
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2 Connection between degree-4 non-commutative polynomials and Bilinear
Complexity

Let f be a polynomial on variables X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}
such that f = F[X, Y, X, Y]. Then, f will look like

f = ∑
i1,i2,j1,j2∈[k]

ai1 j1i2 j2 xi1 yj1 xi2 yj2 .

f is said to be (X, Y)-symmetric if for every (i1, j1, i2, j2) ∈ [k]4,

ai1 j1i2 j2 = ai2 j1i1 j2 = ai1 j2i2 j1 = ai2 j2i1 j1 .

The following theorem relates the ”width” of a non-commutative polynomial
and the bilinear complexity of its commutative counterpart.
Notation 4.3. For a non-commutative polynomial g, let g(c) denote its commutative
counterpart. ◊

Theorem 4.4. Let f be a homogeneous non-commutative polynomial of degree 4 such
that f = f [X, Y, X, Y]. Then,

1. B ( f (c)) ≤ width( f )

2. If the characteristic of F is not 2 and f is (X, Y)-symmetric, then

width( f ) ≤ 4BF( f (c)).

Proof. The first part is easy to see. The second part is slightly non-trivial.
1. As f = F[X, Y, X, Y], by Lemma 4.2 if width( f ) = n then f = f1 + f2 +⋯+ fn

where each ft looks like

ft = gt[X1, X2]ht[X3, X4] or ft = ∑
i∈[m]

hti[X1]gt[X2, X3]h′ti
[X4].

Thus, f (c) = f (c)
1 + f (c)

2 +⋯+ f (c)
n where each f (c)

t looks like

f (c)
t = g(c)

t [X1, X2]h
(c)
t [X3, X4]

or
f (c)
t = g(c)

t [X2, X3] ∑
i∈[m]

h(c)
ti

[X1]h′
(c)
ti

[X4].

Viewing ∑i∈[m]
h(c)

ti
[X1]h′

(c)
ti

[X4] as h(c)
t , we have that if width( f ) = n then

f (c) = ∑
i∈[n]

f (c)
t

where each f (c)
t is a product of two bilinear forms in X and Y. Thus,

BF ( f (c)) ≤ width( f ).
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2. To see the opposite direction, let B ( f (c)) = n. Then,

f (c) = z1z′1 +⋯+ znz′n

where each zi, z′i is a bilinear form in X, Y. Thus,

zi =
n
∑
j=1

xjgij(Y) and z′i =
n
∑
j=1

xjg
′

ij(Y)

where each gij, g′ij are homogeneous degree-one polynomials in Y. Define

fi =
⎛
⎝

n
∑
j=1

xjgij(Y)
⎞
⎠
⎛
⎝

n
∑
j=1

xjg
′

ij(Y)
⎞
⎠
+
⎛
⎝

n
∑
j=1

xjg
′

ij(Y)
⎞
⎠
⎛
⎝

n
∑
j=1

xjgij(Y)
⎞
⎠

+
n
∑
j=1

xj
⎛
⎝

n
∑
k=1

gik(Y)xk
⎞
⎠

g′ij(Y) +
n
∑
j=1

xj
⎛
⎝

n
∑
k=1

g′ik(Y)xk
⎞
⎠

gij(Y).

Clearly, every fi is the sum of four central polynomials. Thus, to show that
width( f ) ≤ 4n, it is enough to show that

f = 1
4

n
∑
i=1

fi.

Firstly, it is easy to see that f (c)
i = ziz′i and hence f = 1

4 ∑
n
i=1 fi. Also, as f is

(X, Y)-symmetric, for any monomial α = xi1 yj1 xi2 yj2 ,

coeffα( f ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

coeffα ( f (c)) if i1 = i2 and j1 = j2
2 coeffα ( f (c)) if i1 = i2 & j1 ≠ j2 or i1 ≠ i2 & j1 = j2
4 coeffα ( f (c)) if i1 ≠ i2 and j1 ≠ j2

Further, we have constructed the fi in such a way that they are (X, Y)-
symmetric and thus a similar relation will hold between coeffα( fi) and
coeffα(c)( f (c)

i ). This shows that

f = 1
4

n
∑
i=1

fi

which is what we wanted.

Clearly for f = IDk, the above theorem shows that

width(IDk) = Θ(BF(SOSk)).

Thus at this point, it is enough to show that a sufficiently strong lower-bound on
width(IDk) will imply an exponential lower-bound on width(Permn) and hence
on non-commutative circuits computing Permn.

We will now proceed to show that a sufficiently strong super-linear lower-bound
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5. Super-linear lower-bound for the width of degree four polynomials imply
Exponential lower-bound for the width of a related high degree polynomial

for the width of degree four polynomials imply exponential lower-bounds for
the width of a related high degree polynomial. It will turn out that for IDk, the
related high degree polynomial is Perm4r if k = 2r.

5 Super-linear lower-bound for the width of degree four
polynomials imply Exponential lower-bound for the width of

a related high degree polynomial
Firstly, we note that there is a natural way to go from a homogeneous degree 4r
polynomial in 2 variables to a homogeneous degree 4 polynomial in 2r variables
and vice-versa (upto renaming of variables).

So let f be a homogeneous polynomial of degree 4r in two variables, say z0,
z1. For every monomial α of degree r in z0, z1, define a new variable xα and
define a homogeneous polynomial g of degree 4 over variables {xα}α as follows:

coeffxα1 xα2 xα3 xα4
(g) = coeffα1α2α3α4( f ).

Conversely, for a homogeneous degree 4 polynomial g over 2r variables, define
f to be a homogeneous polynomial of degree 4r over two variables as follows:

coeffz
(i1)

z
(i2)

z
(i3)

z
(i4)

( f ) = coeffxi1
xi2

xi3
xi4

(g).

Here, (i) is the binary representation of i and

z
(i) = ∏

j∈[r]
zij

where (i) = (i1, i2, . . . , ir) ∈ {0, 1}r.

For a polynomial f of degree 4r in two variables, let f (λ) denote the corre-
sponding polynomial of degree 4 in 2r variables. We want to relate the width of
f and f (λ). The reason is as follows.

Even though IDk is a polynomial of degree 4 in 2k variables, since we are in
the non-commutative setting, the position of a variable is more important than
its name. Thus, we can define another polynomial ID′

k, which is a degree 4
polynomial in only k variables but has the property that

width(IDk) = width(ID′

k).

Formally, we define ID′

k as follows:

ID′

k = ∑
i,j∈[k]

xixjxixj.

Thus if f is the polynomial for which f (λ) = ID′

k, then the problem is now reduced
to showing the following things:

11
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1. width(IDk) = width(ID′

k)

2. width( f ) = Ω(2−r width( f (λ))) if k = 2r

3. f = Perm(M) for some suitable matrix.

First, let us see what the polynomial f looks like. Using the process described,

f = ∑
i,j∈[k]

z
(i)z

(j)z
(i)z

(j)

where z
(i) = ∏r

k=1 zik if (i) ∈ {0, 1}r and (i) = (i1, i2, . . . , ir) ∈ {0, 1}r.

Clearly for k = 2r, f (λ) = ID′

k. We will call the polynomial f as LIDr. Formally,

LIDr = ∑
e∈{0,1}2r

zeze.

We will now proceed to prove the three statements noted above.

Proof of 1. Clearly width(ID′

k) ≤ width(IDk). To see the opposite inequality,
let

ID′

k = f ′1 +⋯+ f ′n

and let
IDk = ∑

i,j∈[k]
xiyjxiyj = ∑

i,j∈[k]
xi,0xj,1xi,0xj,1.

We know that each fi is a homogeneous degree 4 polynomial. Thus for any i,

f ′i = g′h′ or f ′i = ∑
j∈[m]

h′ijg
′

i h̄
′

ij

where g′, h′, g′i are homogeneous polynomials of of degree 2 and h′ij, h̄′ij are ho-
mogeneous degree 1 polynomials.

Now if
g′ = ∑ αkxk1

xk2 , h′ = ∑ βkxk1
xk2 , g′i = ∑γkxk1

xk2

and h′ij = ∑ δkxk, h̄′ij = ∑ ρkxk,

let us define

g = ∑ αkxk1
xk2 , h = ∑ βkxk1

xk2 , gi = ∑γkxk1
xk2

and hij = ∑ δkxk, h̄ij = ∑ ρkxk.

With these definitions, let us define

fi = {
gh if f ′i = g′h′

∑j∈[m]
hijgi h̄ij if f ′i = ∑j∈[m]

h′ijg
′

i h̄
′

ij

Then, IDk = ∑i∈[n] fi where each fi is central and thus

width(IDk) ≤ width(ID′

k).
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Exponential lower-bound for the width of a related high degree polynomial

Proof of 2. We want to show that for any polynomial f of degree 4r over two
variables, width( f ) = Ω(2−r width( f (λ))).

Note that f (λ) is a degree 4 polynomial over 2r variables and f is connected to
f (λ) in the following way. f has 4 blocks of homogeneous polynomials of degree
r, one block each for the 4 variables in a monomial of f (λ).

It was easy to work with degree 4 polynomials beacuse central polynomials of
degree 4 have a nice structure. It is natural to try and work in a similar way on
f (λ) because of its connection to f .

To do so, we define block-central polynomials:
Definition 5.1. A homogeneous polynomial f of degree 4r is said to be block-central if
either of the following is true:

• f = gh where g, h are homogeneous polynomials with deg(g) = 2r = deg(h).
• f = ∑i∈[m]

high̄i where for every i, hi, g, h̄i are homogeneous polynomials with
degrees r, 2r and r respectively. ◊

Clearly, every block-central polynomial is central. We will show that every cen-
tral polynomial can be written as a sum of 2r block-central polynomials. This
will allow us to prove the required result. Let us first see why this is the case.

Let f be a homogeneous polynomial of degree 4r over two variables. Further, let
f = f1 + f2 +⋯+ fn where each fi is a central polynomial. Then

f = f1 + f2 +⋯+ fn′ where n′ ≤ 2rn and
each fi is a block central polynomial

⇒ f = f1 + f2 +⋯+ fn′ where each f (λ)
i is a central polynomial

by making the same natural transition in g, g, gi, h̄i

⇒ width( f (λ)) = O(2r width( f ))

So now, the only thing left to prove is to show that every central polynomial can
be written as the sum of 2r block-central polynomials. Let f be a homogeneous
central polynomial of degree 4r. Then,

f = ∑
α∈M(d1),ω∈M(d2)

c(α, ω)αGω

for some fixed d0, d1, d2 such that 4r
3 ≤ d0 ≤ 8r

3 and d0 + d1 + d2 = d. Here G is a
homogeneous polynomial of degree d0, αs are monomials of degree d1 and ωs
are monomials of degree d2. Further, c(α, ω) is a scalar depending on α, ω and
M(k) is the set of all monomials of degree k over z0, z1.

We want to write f as the sum of at most 2r block central polynomials. To
do so, we basically want to write a similar expression for f , but this time with
each of d0, d1, d2 being multiples of r.

13



5. Super-linear lower-bound for the width of degree four polynomials imply
Exponential lower-bound for the width of a related high degree polynomial

Case 1: d0 + d1 ≤ 2r

0r 1r 2r 3r 4r

αG ω

t

f = ∑
α∈M(d1)
ω1∈M(t)

ω2∈M(d2−t)

c(α, ω1ω2)αGω1ω2

= ∑
α∈M(d1)
ω1∈M(t)

⎛
⎝
(αGω1)

⎛
⎝ ∑

ω2∈M(d2−t)
c(α, ω1ω2)ω2

⎞
⎠
⎞
⎠

= ∑
α∈M(d1)
ω1∈M(t)

(gα,ω1 hα,ω1)

Thus, f can be written as a sum of 2d1+t ≤ 2
2r
3 block central polynomials of

the type gh.
Case 2: d0 + d2 ≤ 2r

0r 1r 2r 3r 4r

Gωα

t

Similar to last case and f can be written as a sum of 2d2+t ≤ 2
2r
3 block central

polynomials of the type gh.
Case 3: d1, d2 ≤ r

0r 1r 2r 3r 4r

ωα G

t1 t2

A similar natural way of grouping terms to make blocks of length that is a
multiple of r will allow us to write f as the sum of 2t1+t2 ≤ 2

2r
3 block central

polynomials of the type ∑ high′i .
Case 4: d1, d2 ≥ r

0r 1r 2r 3r 4r

ωα G

t2 t2

Similar to the last case and f can be written as the sum of 2t1+t2 ≤ 2
2r
3 block

central polynomials of the type ∑ high′i .
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Case 5: d1 ≤ r, d2 ≥ r

0r 1r 2r 3r 4r

ωα G

t1 t2t

A similar natural way of grouping terms to make blocks of length that is a
multiple of r will allow us to write f as the sum of

{ 2d1+t if d0 + 2d1 ≤ 3r
2t1+t2 if d0 + 2d1 ≥ 3r

block central polynomials of the type { gh if d0 + 2d1 ≤ 3r
∑ higi h̄i if d0 + 2d1 ≥ 3r

In the case when d0 + 2d1 = 3r, f is written as a sum of exactly 2r block
central polynomials.

Case 6: d1 ≥ r, d2 ≤ r

0r 1r 2r 3r 4r

ωα G

t1 t2t

Similar to last case and f can be written as the sum of

{ 2d2+t if d0 + 2d2 ≤ 3r
2t1+t2 if d0 + 2d2 ≥ 3r

block central polynomials of the type { gh if d0 + 2d2 ≤ 3r
∑ higi h̄i if d0 + 2d2 ≥ 3r

Similar to last time, f is written as a sum of exactly 2r block central poly-
nomials when d0 + 2d2 = 3r.

This completes the proof.

Proof of 3. We want to show that LIDr = Perm(M) where M is a matrix of
dimension 4r × 4r whose non-zero entries are variables z0, z1.

For j ∈ {0, 1}, let Dj be a 2r × 2r matrix with zj on the diagonal and zero ev-
erywhere else. The matrix M is defined as:

M = [D0 D1
D1 D0

] .

Then
Perm(M) = ∑

σ
M1σ(1) . . . M4rσ(4r).
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5. Super-linear lower-bound for the width of degree four polynomials imply
Exponential lower-bound for the width of a related high degree polynomial

Further, the σs for which M1,σ(1) . . . M4r,σ(4r) ≠ 0 have the following property:

σ(i) = i⇒ σ(2r + i) = 2r + i

and σ(i) = 2r + i⇒ σ(2r + i) = i.

Thus by the structure of M, for every i ∈ [2r] Mi,σ(i) = M2r+i,σ(2r+i) and as we go
over all possible values of σ, every value of {ze}e∈{0,1}2r is covered. This gives
the required result: LIDr = Perm(M).
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