Towards Algebraic Independence based PITs over Arbitrary fields

Prerona Chatterjee

TIFR, Mumbai

December 08, 2017

A little about Algebraic Independence

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

A little about Algebraic Independence

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

For a set of polynomials {f₁, f₂,..., f_m}, the family of all algebraically independent subsets form a matroid. Thus, algrank(f₁, f₂,..., f_m) is well defined.

A little about Algebraic Independence

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

- For a set of polynomials {f₁, f₂,..., f_m}, the family of all algebraically independent subsets form a matroid. Thus, algrank(f₁, f₂,..., f_m) is well defined.
- [Kay09] The minimal "annihilating polynomial" is "hard".

Checking Algebraic Independence efficiently

For
$$f_1, f_2, ..., f_m \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $f = (f_1, f_2, ..., f_m)$

$$\mathbf{J}_{\mathbf{x}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \dots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \dots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \dots & \partial_{x_n}(f_m) \end{bmatrix}$$

Checking Algebraic Independence efficiently

For
$$f_1, f_2, ..., f_m \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $f = (f_1, f_2, ..., f_m)$,

$$\mathbf{J}_{\mathbf{x}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \dots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \dots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \dots & \partial_{x_n}(f_m) \end{bmatrix}$$

The Jacobian Criterion

If $\mathbb F$ has characteristic zero, $\{f_1,f_2,\ldots,f_m\}$ is algebraically independent if and only if its Jacobian matrix is full rank.

Prerona Chatterjee

How it helps in solving PITs

Definition: Faithful Maps

Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}(y_1, y_2, \ldots, y_k)$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

How it helps in solving PITs

Definition: Faithful Maps Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}(y_1, y_2, \ldots, y_k)$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

The PIT Question: Given a circuit C, check whether it computes the identically zero polynomial.

How it helps in solving PITs

Definition: Faithful Maps Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}(y_1, y_2, \ldots, y_k)$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

The PIT Question: Given a circuit C, check whether it computes the identically zero polynomial.

The Connection [BMS11, ASSS12]: Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ and a faithful map φ ; for any circuit $C(z_1, \ldots, z_m)$, $C(f_1, f_2, \ldots, f_m) \neq 0 \Leftrightarrow (C(f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi))) \neq 0.$

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

$$\varphi : x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$
$$\begin{bmatrix} \mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \end{bmatrix}$$

Prerona Chatterjee

Prerona Chatterjee

What we need: φ such that

1. rank(
$$J_x(f)$$
) = rank($J_x(f)|_{\varphi}$)

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

$$\begin{bmatrix} J_{\mathbf{y}}(\mathbf{f}(\varphi)) \end{bmatrix} = \begin{bmatrix} J_{\mathbf{x}}(\mathbf{f})|_{\varphi} \end{bmatrix} \times \begin{bmatrix} M_{\varphi} \end{bmatrix}$$

What we need: φ such that

1. $rank(J_x(f)) = rank(J_x(f)|_{\varphi})$: Can be handled by choosing a_i s correctly.

$$\varphi: x_i = \sum_{j=1}^{\kappa} s_{ij} y_j + a_i$$

What we need: φ such that

1.
$$\operatorname{rank}(J_{x}(f)) = \operatorname{rank}(J_{x}(f)|_{\varphi})$$

2. $\operatorname{rank}(J_{x}(f)|_{\varphi}) = \operatorname{rank}(J_{x}(f)|_{\varphi} \times M_{\varphi})$

Definition: Rank Extractors

An *n*-rowed matrix *M* is said to be a rank extractor if for every $m \times n$ matrix *A*, rank(*A*) = rank(*AM*).

Definition: Rank Extractors

An *n*-rowed matrix *M* is said to be a rank extractor if for every $m \times n$ matrix *A*, rank(*A*) = rank(*AM*).

Definition: Rank Extractors

An *n*-rowed matrix *M* is said to be a rank extractor if for every $m \times n$ matrix *A*, rank(*A*) = rank(*AM*).

$$\begin{bmatrix} & A' & \\ & & \end{bmatrix}_{k \times n}$$

Definition: Rank Extractors

An *n*-rowed matrix *M* is said to be a rank extractor if for every $m \times n$ matrix *A*, rank(*A*) = rank(*AM*).

$$A' \qquad \left] \times \left[\qquad M_s \qquad \right] = \left[\qquad A' M_s \qquad \right]$$

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields

Prerona Chatterjee

Binet-Cauchy:

$$\det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B).$$

Binet-Cauchy:

 $\det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B).$

Sufficient Properties 1. Every $k \times k$ minor is full rank.

Binet-Cauchy:

$$\det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B).$$

- **1.** Every $k \times k$ minor is full rank.
- From among the Bs for which det(A_B) ≠ 0, there is a unique B for which the deg_s(det(M_B)) is maximum.

Binet-Cauchy: $det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} det(A_B) det(M_B).$

- **1.** Every $k \times k$ minor is full rank.
- 2. From among the Bs for which $det(A_B) \neq 0$, there is a unique B for which the $deg_s(det(M_B))$ is maximum.
- Define $wt(x_i)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $wt(B) = \deg_s(det(M_B))$.

Binet-Cauchy:

A Faithful map

$$\begin{bmatrix} \left(s^{\text{wt}(1)}\right)^1 & \dots & \left(s^{\text{wt}(1)}\right)^k \\ \left(s^{\text{wt}(2)}\right)^1 & \dots & \left(s^{\text{wt}(2)}\right)^k \\ \vdots & & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & & \vdots \\ \left(s^{\text{wt}(n)}\right)^1 & \dots & \left(s^{\text{wt}(n)}\right)^k \end{bmatrix}$$

$$\det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B).$$

- **1.** Every $k \times k$ minor is full rank.
- 2. From among the Bs for which $det(A_B) \neq 0$, there is a unique B for which the $deg_s(det(M_B))$ is maximum.
- Define $wt(x_i)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $wt(B) = \deg_s(det(M_B))$.

[GR05]: Vandermonde type matrices are rank extractors.

Binet-Cauchy:
$$det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} det(A_B) det(M_B).$$

$\begin{bmatrix} s & \dots & s^{k} \\ (s^{2})^{1} & \dots & (s^{2})^{k} \\ \vdots & & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ (s^{n})^{1} & \dots & (s^{n})^{k} \end{bmatrix}$

- 1. Every $k \times k$ minor is full rank.
- 2. From among the Bs for which $det(A_B) \neq 0$, there is a unique B for which the $deg_s(det(M_B))$ is maximum.
- Define $wt(x_i)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $wt(B) = \deg_s(det(M_B))$.

[GR05]: Vandermonde type matrices are rank extractors.

$$\begin{bmatrix} s & \dots & s^k \\ (s^2)^1 & \dots & (s^2)^k \\ \vdots & & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ (s^n)^1 & \dots & (s^n)^k \end{bmatrix}$$

Binet-Cauchy:
$$det(AM) = \sum_{B \subseteq \{x_i\}, |B|=k} det(A_B) det(M_B).$$

- **1.** Every $k \times k$ minor is full rank.
- 2. From among the Bs for which $det(A_B) \neq 0$, there is a unique B for which the $deg_s(det(M_B))$ is maximum.

$$\varphi: x_i = \sum_{j=1}^k s^{ij} y_j + a_i$$
 will work.

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Reason: $(x, f_1, f_2) : A_x(\alpha, \beta, \gamma)$

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Reason: $(x, f_1, f_2) : A_x(\alpha, \beta, \gamma)$ $(y, f_1, f_2) : A_y(\alpha, \beta, \gamma)$

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Reason: $(x, f_1, f_2) : A_x(\alpha, \beta, \gamma)$ $(y, f_1, f_2) : A_y(\alpha, \beta, \gamma)$ $\partial_\alpha(A_x) = 0 = \partial_\alpha(A_y)$

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Reason: $(x, f_1, f_2) : A_x(\alpha, \beta, \gamma)$ $(y, f_1, f_2) : A_y(\alpha, \beta, \gamma)$ $\partial_\alpha(A_x) = 0 = \partial_\alpha(A_y)$ $A_x(\alpha, \beta, \gamma) = A'_x(\alpha^{p^{k_1}}, \beta, \gamma), A_y(\alpha, \beta, \gamma) = A'_y(\alpha^{p^{k_2}}, \beta, \gamma)$

Prerona Chatterjee

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$

$$det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Reason: $(x, f_1, f_2) : A_x(\alpha, \beta, \gamma)$ $(y, f_1, f_2) : A_y(\alpha, \beta, \gamma)$ $\partial_\alpha(A_x) = 0 = \partial_\alpha(A_y)$ $A_x(\alpha, \beta, \gamma) = A'_x(\alpha^{p^{k_1}}, \beta, \gamma), A_y(\alpha, \beta, \gamma) = A'_y(\alpha^{p^{k_2}}, \beta, \gamma)$

For $k = \max \{k_1, k_2\}$, p^k : Inseparable degree of $\{f_1, f_2\}$.

Prerona Chatterjee

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $z \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $z \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

For
$$f = x^p$$
, $f(x + z) - f(z) = x^p$ over \mathbb{F}_p .

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $z \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

For
$$f = x^p$$
, $f(x + z) - f(z) = x^p$ over \mathbb{F}_p .

Consider Hasse Derivatives:

$$\partial_{x^p}^h(x^p) = \frac{1}{p!} \times p! = 1$$

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $z \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

For
$$f = x^p$$
, $f(x + z) - f(z) = x^p$ over \mathbb{F}_p .

Consider Hasse Derivatives:

$$\partial_{x^p}^h(x^p) = \frac{1}{p!} \times p! = 1$$

In general, the Hasse derivative of f with respect to x^e is the coefficient of x^e in f(x + z) - f(z).

Prerona Chatterjee

Towards Algebraic Independence based PITs over Arbitrary fields

The Criterion over Arbitrary fields

Definition: A new Operator For any $f \in \mathbb{F}[x_1, x_2, ..., x_n]$, $\mathcal{H}_t(f) = \deg^{\leq t} (f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}))$

The Criterion over Arbitrary fields

Definition: A new Operator For any $f \in \mathbb{F}[x_1, x_2, ..., x_n]$, $\mathcal{H}_t(f) = \deg^{\leq t} (f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}))$

$$\hat{\mathcal{H}}(\mathbf{f}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) & \dots \\ \dots & \mathcal{H}_t(f_2) & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_m) & \dots \end{bmatrix}$$

The Criterion over Arbitrary fields

Definition: A new Operator	$\begin{bmatrix} \dots & \mathcal{H}_t(f_1) & \dots \end{bmatrix}$	1
For any $f \in \mathbb{F}[x_1, x_2, \ldots, x_n]$,	$\hat{\mathcal{H}}(\mathbf{f}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_2) & \dots \\ \vdots & \vdots \end{bmatrix}$.
$\mathcal{H}_t(f) = \deg^{\leq t} \left(f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) \right)$	$ \qquad \qquad$	

The [PSS16] Criterion

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ is algebraically independent if and only if for a random $z \in \mathbb{F}^n$, $\{\mathcal{H}_t(f_1), \mathcal{H}_t(f_2), \ldots, \mathcal{H}_t(f_m)\}$ are linearly independent in

$$\frac{\mathbb{F}(\mathbf{z})[x_1, x_2, \dots, x_n]}{\mathcal{I}_t}$$

where *t* is the inseparable degree of $\{f_1, f_2, \ldots, f_m\}$ and \mathcal{I}_t is some fixed ideal of $\mathbb{F}(\mathbf{z})[x_1, x_2, \ldots, x_n]$.

Alternate Statement for the [PSS16] criterion

 $\{f_1, f_2, \ldots, f_m\}$ is algebraically independent if and only if for every (v_1, v_2, \ldots, v_k) with v_i s in \mathcal{I}_t ,

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix} \text{ has full rank over } \mathbb{F}(\mathbf{z}).$$

What we want to show

$$\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1(\varphi)) + u_1 & \dots \\ \dots & \mathcal{H}_t(f_2(\varphi)) + u_2 & \dots \\ & \vdots \\ \dots & \mathcal{H}_t(f_m(\varphi)) + u_m & \dots \end{bmatrix}$$

has full rank for every $u_1, u_2, \ldots, u_k \in \mathcal{I}_t(\varphi)$ whenever

What we want to show

$$\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1(\varphi)) + u_1 & \dots \\ \dots & \mathcal{H}_t(f_2(\varphi)) + u_2 & \dots \\ & \vdots \\ \dots & \mathcal{H}_t(f_m(\varphi)) + u_m & \dots \end{bmatrix}$$

has full rank for every $u_1, u_2, \ldots, u_k \in \mathcal{I}_t(\varphi)$ whenever

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix}$$

has full rank for every $v_1, v_2, \ldots, v_k \in \mathcal{I}_t$.

$$\varphi: x_i \to \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s_{ij}w_j + a_i$$

Prerona Chatterjee

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

1. Every u must have a v

Prerona Chatterjee

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

1. Every *u* must have a *v*: There is a natural pre-image.

Prerona Chatterjee

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

Every u must have a v: There is a natural pre-image.
 H(f(φ), v(φ)) = H(f, v)|_φ × M_φ

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

Every u must have a v: There is a natural pre-image.
 H(f(φ), v(φ)) = H(f, v)|_φ × M_φ : True in general.

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

- 1. Every *u* must have a *v*: There is a natural pre-image.
- **2.** $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi)) = \mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$: True in general.

$$\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi)) \qquad \left] = \left[\qquad \mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \quad \left| \times \right[\qquad M_{\varphi} \quad M_{\varphi} \quad$$

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. $\operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi})$

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_i$$

Sufficient Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. $\operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi})$:

labelled by monomials of degree up to t in y

$$\varphi: x_i \to \sum_{j=1}^k s^{ij} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{ij} w_j + a_i$$

Sufficient Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. rank $(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}) : \operatorname{wt}(x_i) = i$

Not Block Vandermonde type

labelled by monomials of degree up to t in y

$$\varphi: x_i \rightarrow \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \rightarrow \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i$$

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. rank $(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi}) : \operatorname{wt}(x_i) = (t+1)^i$

Arbitrary Fields

The Strategy

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i$$

Properties

- 1. $\mathcal{H}(f(\varphi), \mathbf{u}) = \mathcal{H}(f(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. rank $(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi}) : \operatorname{wt}(x_i) = (t+1)^i$

Prerona Chatterjee

Arbitrary Fields

The Strategy

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i$$

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. rank $(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi}) : \operatorname{wt}(x_i) = (t+1)^i$

Prerona Chatterjee

Arbitrary Fields

The Strategy

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i$$

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. rank $(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi}) : \operatorname{wt}(x_i) = (t+1)^i$

Prerona Chatterjee

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i.$$

where t is the inseparable degree.

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 3. $\operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi})$
- **4.** $rank(\mathcal{H}(\mathbf{f}, \mathbf{v})) = rank(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi})$

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i} w_j + a_i.$$

where t is the inseparable degree.

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- **3.** $\operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f},\mathbf{v})|_{\varphi} \times M_{\varphi})$
- 4. rank $(\mathcal{H}(\mathbf{f}, \mathbf{v})) = \operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi})$: Can be handled by choosing the a_i s correctly

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} w_j + a_j.$$

where t is the inseparable degree.

Prerona Chatterjee

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} w_j + a_j.$$

where t is the inseparable degree.

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
- **3.** rank $(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}).$
- 4. $rank(\mathcal{H}(\mathbf{f}, \mathbf{v})) = rank(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}).$

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} w_j + a_j.$$

where t is the inseparable degree.

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
- **3.** rank $(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}).$
- **4.** rank($\mathcal{H}(\mathbf{f}, \mathbf{v})$) = rank($\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}$).

Size bounds:
$$p = O(n^{3t})$$
, $s = O(p)$.

$$\varphi: x_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} y_j + a_i \text{ and } z_i \to \sum_{j=1}^k s^{j(t+1)^i \mod p} w_j + a_j.$$

where t is the inseparable degree.

Properties

- 1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate \mathbf{v} .
- 2. $\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
- **3.** rank $(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}) = \operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi} \times M_{\varphi}).$
- **4.** rank($\mathcal{H}(\mathbf{f}, \mathbf{v})$) = rank($\mathcal{H}(\mathbf{f}, \mathbf{v})|_{\varphi}$).

Size bounds: $p = O(n^{3t})$, s = O(p).

<u>Choice of a</u>: Depends on the model under consideration.

An Application

Theorem: Extension of [BMS11]

If $\{f_1, f_2, \ldots, f_m\} \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ is a set of sparse polynomials with transcendence degree k and inseparable degree t, then there is a $n^{\text{poly}(k,t)}$ time PIT for circuits of the type $\mathcal{C}(f_1, f_2, \ldots, f_m)$.

Thus if k, t were constant, we have a poly(n)-time PIT.

An Application

Theorem: Extension of [BMS11]

If $\{f_1, f_2, \ldots, f_m\} \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ is a set of sparse polynomials with transcendence degree k and inseparable degree t, then there is a $n^{\text{poly}(k,t)}$ time PIT for circuits of the type $\mathcal{C}(f_1, f_2, \ldots, f_m)$.

Thus if k, t were constant, we have a poly(n)-time PIT.

Thank you!

Prerona Chatterjee

References I

Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.

Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits.

In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 599–614, 2012.

Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox identity testing. *CoRR*, abs/1102.2789, 2011.

Ariel Gabizon and Ran Raz.

Deterministic extractors for affine sources over large fields. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 407–418, 2005.

References II

Neeraj Kayal.

The complexity of the annihilating polynomial.

In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 184–193, 2009.

Anurag Pandey, Nitin Saxena, and Amit Sinhababu.

Algebraic independence over positive characteristic: New criterion and applications to locally low algebraic rank circuits.

In 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 74:1–74:15, 2016.