# Towards Algebraic Independence based PITs over Arbitrary fields 

Prerona Chatterjee

TIFR, Mumbai

December 08, 2017

## A little about Algebraic Independence

## Definition: Algebraic Independence

A given set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

A little about Algebraic Independence

## Definition: Algebraic Independence

A given set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

- For a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$, the family of all algebraically independent subsets form a matroid. Thus, algrank $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is well defined.

A little about Algebraic Independence

## Definition: Algebraic Independence

A given set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

- For a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$, the family of all algebraically independent subsets form a matroid. Thus, algrank $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is well defined.
- [Kay09] The minimal "annihilating polynomial" is "hard".


## Checking Algebraic Independence efficiently

For $f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$,

$$
J_{\mathbf{x}}(\mathbf{f})=\left[\begin{array}{cccc}
\partial_{x_{1}}\left(f_{1}\right) & \partial_{x_{2}}\left(f_{1}\right) & \ldots & \partial_{x_{n}}\left(f_{1}\right) \\
\partial_{x_{1}}\left(f_{2}\right) & \partial_{x_{2}}\left(f_{2}\right) & \ldots & \partial_{x_{n}}\left(f_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{1}}\left(f_{m}\right) & \partial_{x_{2}}\left(f_{m}\right) & \ldots & \partial_{x_{n}}\left(f_{m}\right)
\end{array}\right]
$$

## Checking Algebraic Independence efficiently

For $f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathfrak{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$,

$$
\mathrm{J}_{\mathrm{x}}(\mathbf{f})=\left[\begin{array}{cccc}
\partial_{x_{1}}\left(f_{1}\right) & \partial_{x_{2}}\left(f_{1}\right) & \ldots & \partial_{x_{x_{n}}}\left(f_{1}\right) \\
\partial_{x_{1}}\left(f_{2}\right) & \partial_{x_{2}}\left(f_{2}\right) & \ldots & \partial_{x_{n}}\left(f_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{1}}\left(f_{m}\right) & \partial_{x_{2}}\left(f_{m}\right) & \ldots & \partial_{x_{n}}\left(f_{m}\right)
\end{array}\right]
$$

## The Jacobian Criterion

If $\mathbb{F}$ has characteristic zero, $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is algebraically independent if and only if its Jacobian matrix is full rank.

## How it helps in solving PITs

## Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank $k$, a map $\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left(y_{1}, y_{2}, \ldots, y_{k}\right)$
is said to be a faithful map if the algebraic rank of $\left\{f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right\}$ is also $k$.

## How it helps in solving PITs

## Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank $k$, a map $\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left(y_{1}, y_{2}, \ldots, y_{k}\right)$
is said to be a faithful map if the algebraic rank of $\left\{f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right\}$ is also $k$.

The PIT Question: Given a circuit $\mathcal{C}$, check whether it computes the identically zero polynomial.

## How it helps in solving PITs

## Definition: Faithful Maps

Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with algebraic rank $k$, a map

$$
\varphi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow \mathbb{F}\left(y_{1}, y_{2}, \ldots, y_{k}\right)
$$

is said to be a faithful map if the algebraic rank of $\left\{f_{1}(\varphi), f_{2}(\varphi), \ldots, f_{m}(\varphi)\right\}$ is also $k$.

The PIT Question: Given a circuit $\mathcal{C}$, check whether it computes the identically zero polynomial.

The Connection [BMS11, ASSS12]: Given a set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ and a faithful map $\varphi$; for any circuit $\mathcal{C}\left(z_{1}, \ldots, z_{m}\right)$,

$$
\mathcal{C}\left(f_{1}, f_{2}, \ldots, f_{m}\right) \neq 0 \Leftrightarrow\left(\mathcal{C}\left(f_{1}(\varphi), f_{2}(\varphi), \ldots f_{m}(\varphi)\right)\right) \neq 0 .
$$

## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$

## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$



## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$



## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$



What we need: $\varphi$ such that

1. $\operatorname{rank}\left(\mathrm{J}_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\left.\mathrm{J}_{\mathbf{x}}(\mathbf{f})\right|_{\varphi}\right)$

## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$





What we need: $\varphi$ such that

1. $\operatorname{rank}\left(J_{\mathbf{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\left.J_{\mathbf{x}}(\mathrm{f})\right|_{\varphi}\right)$ : Can be handled by choosing $a_{i} \mathrm{~S}$ correctly.

## The Strategy

$$
\varphi: x_{i}=\sum_{j=1}^{k} s_{i j} y_{j}+a_{i}
$$



What we need: $\varphi$ such that

1. $\operatorname{rank}\left(\mathrm{J}_{\mathrm{x}}(\mathbf{f})\right)=\operatorname{rank}\left(\left.\mathrm{J}_{\mathrm{x}}(\mathrm{f})\right|_{\varphi}\right)$
2. $\operatorname{rank}\left(\left.\mathrm{J}_{\mathrm{x}}(\mathrm{f})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathrm{J}_{\mathrm{x}}(\mathrm{f})\right|_{\varphi} \times M_{\varphi}\right)$

## Rank Extractors

## Definition: Rank Extractors

An n-rowed matrix $M$ is said to be a rank extractor if for every $m \times n$ matrix $A, \operatorname{rank}(A)=\operatorname{rank}(A M)$.

## Rank Extractors

## Definition: Rank Extractors

An n-rowed matrix $M$ is said to be a rank extractor if for every $m \times n$ matrix $A, \operatorname{rank}(A)=\operatorname{rank}(A M)$.


## Rank Extractors

## Definition: Rank Extractors

An n-rowed matrix $M$ is said to be a rank extractor if for every $m \times n$ matrix $A, \operatorname{rank}(A)=\operatorname{rank}(A M)$.


## Rank Extractors

## Definition: Rank Extractors

An n-rowed matrix $M$ is said to be a rank extractor if for every $m \times n$ matrix $A, \operatorname{rank}(A)=\operatorname{rank}(A M)$.


## A Faithful map



## A Faithful map



## A Faithful map

| Binet-Cauchy: |  |
| ---: | :--- |
| $x_{1}$ <br> $x_{2}$ <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> $x_{n}$ | $M$ |
| $\operatorname{det}(A M)=\sum_{B \subseteq\left\{x_{i}\right\},\|B\|=k} \operatorname{det}\left(A_{B}\right) \operatorname{det}\left(M_{B}\right)$. |  |
| Sufficient Properties |  |

## A Faithful map



## A Faithful map

Binet-Cauchy:


$$
\operatorname{det}(A M)=\sum_{B \subseteq\left\{x_{i}\right\},|B|=k} \operatorname{det}\left(A_{B}\right) \operatorname{det}\left(M_{B}\right) .
$$

## Sufficient Properties

1. Every $k \times k$ minor is full rank.
2. From among the $B s$ for which $\operatorname{det}\left(A_{B}\right) \neq 0$, there is a unique $B$ for which the $\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$ is maximum.

- Define wt $\left(x_{i}\right)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $w t(B)=\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$.


## A Faithful map

$$
\left[\begin{array}{ccc}
\left(s^{\mathrm{wt}(1)}\right)^{1} & \ldots & \left(s^{\mathrm{wt}(1)}\right)^{k} \\
\left(s^{\mathrm{wt}(2)}\right)^{1} & \ldots & \left(s^{\mathrm{wt}(2)}\right)^{k} \\
\vdots & & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & & \vdots \\
\left(s^{\mathrm{wt}(n)}\right)^{1} & \ldots & \left(s^{\mathrm{wt}(n)}\right)^{k}
\end{array}\right] \quad \begin{aligned}
& \operatorname{det}(A M)=\sum_{B \subseteq\left\{x_{i}\right\},|B|=k} \operatorname{det}\left(A_{B}\right) \operatorname{det}\left(M_{B}\right) . \\
& \\
&
\end{aligned}
$$

- Define wt $\left(x_{i}\right)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $w t(B)=\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$.


## A Faithful map

[GR05]: Vandermonde type matrices are rank extractors.

Binet-Cauchy:

$$
\operatorname{det}(A M)=\sum_{B \subseteq\left\{x_{i}\right\},|B|=k} \operatorname{det}\left(A_{B}\right) \operatorname{det}\left(M_{B}\right) .
$$

## Sufficient Properties

1. Every $k \times k$ minor is full rank.
2. From among the $B$ s for which $\operatorname{det}\left(A_{B}\right) \neq 0$, there is a unique $B$ for which the $\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$ is maximum.

- Define wt $\left(x_{i}\right)$ such that the weight of each row is distinct.
- Extend definition to minors cleverly: $w t(B)=\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$.


## A Faithful map

[GR05]: Vandermonde type matrices are rank extractors.

## Binet-Cauchy:

$$
\operatorname{det}(A M)=\sum_{B \subseteq\left\{x_{i}\right\},|B|=k} \operatorname{det}\left(A_{B}\right) \operatorname{det}\left(M_{B}\right) .
$$

$$
\left[\begin{array}{ccc}
s & \ldots & s^{k} \\
\left(s^{2}\right)^{1} & \ldots & \left(s^{2}\right)^{k} \\
\vdots & & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & & \vdots \\
\left(s^{n}\right)^{1} & \ldots & \left(s^{n}\right)^{k}
\end{array}\right]
$$

## Sufficient Properties

1. Every $k \times k$ minor is full rank.
2. From among the $B$ s for which $\operatorname{det}\left(A_{B}\right) \neq 0$, there is a unique $B$ for which the $\operatorname{deg}_{s}\left(\operatorname{det}\left(M_{B}\right)\right)$ is maximum.

$$
\varphi: x_{i}=\sum_{j=1}^{k} s^{i j} y_{j}+a_{i} \text { will work. }
$$

Failure of the Jacobian Criterion over Arbitrary fields
$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y:$ Algebraically Independent over $\mathbb{F}_{p}$.

## Failure of the Jacobian Criterion over Arbitrary fields

$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y$ : Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p} .
\end{gathered}
$$

Failure of the Jacobian Criterion over Arbitrary fields
$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y$ : Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p} .
\end{gathered}
$$

Reason: $\left(x, f_{1}, f_{2}\right): A_{x}(\alpha, \beta, \gamma)$

Failure of the Jacobian Criterion over Arbitrary fields
$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y:$ Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p}
\end{gathered}
$$

Reason: $\left(x, f_{1}, f_{2}\right): A_{x}(\alpha, \beta, \gamma) \quad\left(y, f_{1}, f_{2}\right): A_{y}(\alpha, \beta, \gamma)$

Failure of the Jacobian Criterion over Arbitrary fields
$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y:$ Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p} .
\end{gathered}
$$

Reason: $\left(x, f_{1}, f_{2}\right): A_{x}(\alpha, \beta, \gamma) \quad\left(y, f_{1}, f_{2}\right): A_{y}(\alpha, \beta, \gamma)$

$$
\partial_{\alpha}\left(A_{x}\right)=0=\partial_{\alpha}\left(A_{y}\right)
$$

Failure of the Jacobian Criterion over Arbitrary fields
$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y:$ Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p}
\end{gathered}
$$

Reason: $\left(x, f_{1}, f_{2}\right): A_{x}(\alpha, \beta, \gamma) \quad\left(y, f_{1}, f_{2}\right): A_{y}(\alpha, \beta, \gamma)$

$$
\begin{gathered}
\partial_{\alpha}\left(A_{x}\right)=0=\partial_{\alpha}\left(A_{y}\right) \\
A_{x}(\alpha, \beta, \gamma)=A_{x}^{\prime}\left(\alpha^{p^{k_{1}}}, \beta, \gamma\right), A_{y}(\alpha, \beta, \gamma)=A_{y}^{\prime}\left(\alpha^{p^{k_{2}}}, \beta, \gamma\right)
\end{gathered}
$$

## Failure of the Jacobian Criterion over Arbitrary fields

$f_{1}=x y^{p-1}, f_{2}=x^{p-1} y$ : Algebraically Independent over $\mathbb{F}_{p}$.

$$
\begin{gathered}
\mathbf{J}_{x, y}=\left[\begin{array}{cc}
y^{p-1} & (p-1) x y^{p-2} \\
(p-1) x^{p-2} y & x^{p-1}
\end{array}\right] \\
\operatorname{det}\left(\mathbf{J}_{x, y}\right)=(x y)^{p-1}-\left(p^{2}-2 p+1\right)(x y)^{p-1}=0 \text { over } \mathbb{F}_{p} .
\end{gathered}
$$

Reason: $\left(x, f_{1}, f_{2}\right): A_{x}(\alpha, \beta, \gamma) \quad\left(y, f_{1}, f_{2}\right): A_{y}(\alpha, \beta, \gamma)$

$$
\begin{gathered}
\partial_{\alpha}\left(A_{x}\right)=0=\partial_{\alpha}\left(A_{y}\right) \\
A_{x}(\alpha, \beta, \gamma)=A_{x}^{\prime}\left(\alpha^{p^{k_{1}}}, \beta, \gamma\right), A_{y}(\alpha, \beta, \gamma)=A_{y}^{\prime}\left(\alpha^{p^{k_{2}}}, \beta, \gamma\right)
\end{gathered}
$$

For $k=\max \left\{k_{1}, k_{2}\right\}, p^{k}:$ Inseparable degree of $\left\{f_{1}, f_{2}\right\}$.

## Hasse derivatives

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

## Hasse derivatives

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

For $f=x^{p}, f(x+z)-f(z)=x^{p}$ over $\mathbb{F}_{p}$.

## Hasse derivatives

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{x_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

For $f=x^{p}, f(x+z)-f(z)=x^{p}$ over $\mathbb{F}_{p}$.
Consider Hasse Derivatives:

$$
\partial_{x^{p}}^{h}\left(x^{p}\right)=\frac{1}{p!} \times p!=1
$$

## Hasse derivatives

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbf{z} \in \mathbb{F}^{n}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})=\underbrace{x_{1} \cdot \partial_{\times_{1}} f+\cdots+x_{n} \cdot \partial_{x_{n}} f}_{\text {Jacobian }}+\text { higher order terms }
$$

For $f=x^{p}, f(x+z)-f(z)=x^{p}$ over $\mathbb{F}_{p}$.
Consider Hasse Derivatives:

$$
\partial_{x^{p}}^{h}\left(x^{p}\right)=\frac{1}{p!} \times p!=1
$$

In general, the Hasse derivative of $f$ with respect to $x^{\mathbf{e}}$ is the coefficient of $\mathbf{x}^{\mathbf{e}}$ in $f(\mathbf{x}+\mathbf{z})-f(\mathbf{z})$.

## The Criterion over Arbitrary fields

## Definition: A new Operator

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

$$
\mathcal{H}_{t}(f)=\operatorname{deg}^{\leq t}(f(x+z)-f(z))
$$

## The Criterion over Arbitrary fields

## Definition: A new Operator

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

$$
\hat{\mathcal{H}}(\mathbf{f})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right) & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}\right) & \ldots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{m}\right) & \ldots
\end{array}\right]
$$

## The Criterion over Arbitrary fields

## Definition: A new Operator

For any $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

$$
\mathcal{H}_{t}(f)=\operatorname{deg}^{\leq t}(f(\mathbf{x}+\mathbf{z})-f(\mathbf{z}))
$$

$$
\hat{\mathcal{H}}(\mathbf{f})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right) & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}\right) & \ldots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{m}\right) & \ldots
\end{array}\right]
$$

## The [PSS16] Criterion

A given set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is algebraically independent if and only if for a random $\mathbf{z} \in \mathbb{F}^{n}$, $\left\{\mathcal{H}_{t}\left(f_{1}\right), \mathcal{H}_{t}\left(f_{2}\right), \ldots, \mathcal{H}_{t}\left(f_{m}\right)\right\}$ are linearly independent in

$$
\frac{\mathbb{F}(\mathbf{z})\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\mathcal{I}_{t}}
$$

where $t$ is the inseparable degree of $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ and $\mathcal{I}_{t}$ is some fixed ideal of $\mathbb{F}(\mathbf{z})\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

## Alternate Statement for the [PSS16] criterion

$\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is algebraically independent if and only if for every $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ with $v_{i} \sin \mathcal{I}_{t}$,

$$
\mathcal{H}(\mathbf{f}, \mathbf{v})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right)+v_{1} & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}\right)+v_{2} & \ldots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{k}\right)+v_{k} & \ldots
\end{array}\right] \text { has full rank over } \mathbb{F}(\mathbf{z})
$$

## What we want to show

$$
\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}(\varphi)\right)+u_{1} & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}(\varphi)\right)+u_{2} & \ldots \\
\vdots & \vdots \\
\ldots & \mathcal{H}_{t}\left(f_{m}(\varphi)\right)+u_{m} & \ldots
\end{array}\right]
$$

has full rank for every $u_{1}, u_{2}, \ldots, u_{k} \in \mathcal{I}_{t}(\varphi)$ whenever

## What we want to show

$$
\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}(\varphi)\right)+u_{1} & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}(\varphi)\right)+u_{2} & \ldots \\
\vdots & \vdots \\
\ldots & \mathcal{H}_{t}\left(f_{m}(\varphi)\right)+u_{m} & \ldots
\end{array}\right]
$$

has full rank for every $u_{1}, u_{2}, \ldots, u_{k} \in \mathcal{I}_{t}(\varphi)$ whenever

$$
\mathcal{H}(\mathbf{f}, \mathbf{v})=\left[\begin{array}{ccc}
\ldots & \mathcal{H}_{t}\left(f_{1}\right)+v_{1} & \ldots \\
\ldots & \mathcal{H}_{t}\left(f_{2}\right)+v_{2} & \ldots \\
& \vdots & \\
\ldots & \mathcal{H}_{t}\left(f_{k}\right)+v_{k} & \ldots
\end{array}\right]
$$

has full rank for every $v_{1}, v_{2}, \ldots, v_{k} \in \mathcal{I}_{t}$.

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

## 1. Every $u$ must have a $v$

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. Every $u$ must have a $v$ : There is a natural pre-image.

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. Every $u$ must have a $v$ : There is a natural pre-image.
2. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))=\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. Every $u$ must have a $v$ : There is a natural pre-image.
2. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))=\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ : True in general.

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. Every $u$ must have a $v$ : There is a natural pre-image.
2. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))=\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ : True in general.


## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s_{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s_{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right):$

labelled by monomials of degree up to $t$ in $\mathbf{y}$

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{i j} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{i j} w_{j}+a_{i}
$$

## Sufficient Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right): \operatorname{wt}\left(x_{i}\right)=i$


Not Block Vandermonde type
labelled by monomials of degree up to $t$ in $\mathbf{y}$

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

## Sufficient Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right): \operatorname{wt}\left(x_{i}\right)=(t+1)^{i}$


Block Vandermonde type
labelled by "pure" monomials of degree up to $t$ in $\mathbf{y}$

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right): \operatorname{wt}\left(x_{i}\right)=(t+1)^{i}$


## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right): \operatorname{wt}\left(x_{i}\right)=(t+1)^{i}$
unique minor with max. wt.



## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right): \operatorname{wt}\left(x_{i}\right)=(t+1)^{i}$


## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

where $t$ is the inseparable degree.

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$
4. $\operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v}))=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)$

## The Strategy

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} w_{j}+a_{i}
$$

where $t$ is the inseparable degree.

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$
4. $\operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v}))=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)$ : Can be handled by choosing the $a_{i} s$ correctly

## The Map

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p} w_{j}+a_{i}
$$

where $t$ is the inseparable degree.

## The Map

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p^{\prime}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p} w_{j}+a_{i}
$$

where $t$ is the inseparable degree.

## $\underline{\text { Properties }}$

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$.
4. $\operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v}))=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)$.

## The Map

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p^{\prime}} y_{j}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p} w_{j}+a_{i}
$$

where $t$ is the inseparable degree.

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$.
4. $\operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v}))=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)$.

Size bounds: $p=O\left(n^{3 t}\right), s=O(p)$.

## The Map

$$
\varphi: x_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i}} \bmod p_{y_{j}}+a_{i} \text { and } z_{i} \rightarrow \sum_{j=1}^{k} s^{j(t+1)^{i} \bmod p} w_{j}+a_{i} .
$$

where $t$ is the inseparable degree.

## Properties

1. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u})=\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$ for some appropriate $\mathbf{v}$.
2. $\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$.
3. $\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi} \times M_{\varphi}\right)$.
4. $\operatorname{rank}(\mathcal{H}(\mathbf{f}, \mathbf{v}))=\operatorname{rank}\left(\left.\mathcal{H}(\mathbf{f}, \mathbf{v})\right|_{\varphi}\right)$.

Size bounds: $p=O\left(n^{3 t}\right), s=O(p)$.
Choice of a: Depends on the model under consideration.

## An Application

Theorem: Extension of [BMS11]
If $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a set of sparse polynomials with transcendence degree $k$ and inseparable degree $t$, then there is a $n^{\text {poly }(k, t)}$ time PIT for circuits of the type $\mathcal{C}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$.

Thus if $k, t$ were constant, we have a poly $(n)$-time PIT.

## An Application

Theorem: Extension of [BMS11]
If $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a set of sparse polynomials with transcendence degree $k$ and inseparable degree $t$, then there is a $n^{\text {poly }(k, t)}$ time PIT for circuits of the type $\mathcal{C}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$.

Thus if $k, t$ were constant, we have a poly $(n)$-time PIT.

## Thank you!

## References I

Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.
Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas \& depth-3 transcendence degree-k circuits.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19-22, 2012, pages 599-614, 2012.
國 Malte Beecken, Johannes Mittmann, and Nitin Saxena.
Algebraic independence and blackbox identity testing. CoRR, abs/1102.2789, 2011.

Ariel Gabizon and Ran Raz.
Deterministic extractors for affine sources over large fields.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 407-418, 2005.

## References II

宔
Neeraj Kayal.
The complexity of the annihilating polynomial.
In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 184-193, 2009.

Anurag Pandey, Nitin Saxena, and Amit Sinhababu.
Algebraic independence over positive characteristic: New criterion and applications to locally low algebraic rank circuits.
In 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 74:1-74:15, 2016.

