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Introduction Characteristic Zero Fields Arbitrary Fields

A little about Algebraic Independence

Definition: Algebraic Independence

A given set of polynomials {f1, f2, . . . , fm} ⊆ F[x1, x2, . . . , xn]
is said to be algebraically dependent if there is a non-zero
polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

▸ For a set of polynomials {f1, f2, . . . , fm}, the family of all
algebraically independent subsets form a matroid. Thus,

algrank(f1, f2, . . . , fm) is well defined.

▸ [Kay09] The minimal "annihilating polynomial" is "hard".
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Introduction Characteristic Zero Fields Arbitrary Fields

Checking Algebraic Independence efficiently

For f1, f2, . . . , fm ∈ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(f1) ∂x2(f1) . . . ∂xn(f1)
∂x1(f2) ∂x2(f2) . . . ∂xn(f2)
⋮ ⋮ ⋱ ⋮

∂x1(fm) ∂x2(fm) . . . ∂xn(fm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The Jacobian Criterion

If F has characteristic zero, {f1, f2, . . . , fm} is algebraically inde-
pendent if and only if its Jacobian matrix is full rank.
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Introduction Characteristic Zero Fields Arbitrary Fields

How it helps in solving PITs

Definition: Faithful Maps

Given a set of polynomials {f1, f2, . . . , fm} with algebraic rank k ,
a map ϕ ∶ {x1, x2, . . . , xn} → F(y1, y2, . . . , yk)

is said to be a faithful map if the algebraic rank of
{f1(ϕ), f2(ϕ), . . . , fm(ϕ)} is also k .

The PIT Question: Given a circuit C, check whether it computes
the identically zero polynomial.

The Connection [BMS11, ASSS12]: Given a set of polynomials
{f1, f2, . . . , fm} and a faithful map ϕ; for any circuit C(z1, . . . , zm),

C(f1, f2, . . . , fm) ≠ 0⇔ (C(f1(ϕ), f2(ϕ), . . . fm(ϕ))) ≠ 0.
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Introduction Characteristic Zero Fields Arbitrary Fields

The Strategy

ϕ ∶ xi =
k
∑
j=1

sijyj + ai
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ϕ ∶ xi =
k
∑
j=1

sijyj + ai
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Jy(f(ϕ))
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×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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ϕ ∶ xi =
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Jy(f(ϕ))
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Jx(f)∣ϕ
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Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
What we need: ϕ such that

1. rank(Jx(f)) = rank(Jx(f)∣ϕ)
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The Strategy

ϕ ∶ xi =
k
∑
j=1

sijyj + ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jy(f(ϕ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jx(f)∣ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
What we need: ϕ such that

1. rank(Jx(f)) = rank(Jx(f)∣ϕ) : Can be handled by choosing ai s
correctly.
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ϕ ∶ xi =
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∑
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Introduction Characteristic Zero Fields Arbitrary Fields

Rank Extractors

Definition: Rank Extractors

An n-rowed matrix M is said to be a rank extractor if for every
m × n matrix A, rank(A) = rank(AM).
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m × n matrix A, rank(A) = rank(AM).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦m×n
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Rank Extractors

Definition: Rank Extractors

An n-rowed matrix M is said to be a rank extractor if for every
m × n matrix A, rank(A) = rank(AM).

⎡⎢⎢⎢⎢⎢⎣
A′

⎤⎥⎥⎥⎥⎥⎦k×n
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Rank Extractors

Definition: Rank Extractors

An n-rowed matrix M is said to be a rank extractor if for every
m × n matrix A, rank(A) = rank(AM).

⎡⎢⎢⎢⎢⎢⎣
A′

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ms

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

A′Ms

⎤⎥⎥⎥⎥⎥⎦
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Introduction Characteristic Zero Fields Arbitrary Fields

A Faithful map

x1
x2
⋮
⋮
⋮
⋮

xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Binet-Cauchy:

det(AM) = ∑
B⊆{xi}, ∣B ∣=k

det(AB)det(MB).

Sufficient Properties
1. Every k × k minor is full rank.
2. From among the Bs for which

det(AB) ≠ 0, there is a unique B for
which the degs(det(MB)) is maximum.
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A Faithful map

x1
x2
⋮
⋮
⋮
⋮

xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

swt(1)

swt(2)

⋮
⋮
⋮
⋮

swt(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Binet-Cauchy:

det(AM) = ∑
B⊆{xi}, ∣B ∣=k

det(AB)det(MB).

Sufficient Properties
1. Every k × k minor is full rank.
2. From among the Bs for which

det(AB) ≠ 0, there is a unique B for
which the degs(det(MB)) is maximum.

▸ Define wt(xi) such that the weight of each row is distinct.
▸ Extend definition to minors cleverly: wt(B) = degs(det(MB)).
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Introduction Characteristic Zero Fields Arbitrary Fields

A Faithful map

[GR05]: Vandermonde
type matrices are rank
extractors.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s . . . sk

(s2)1
. . . (s2)k

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋮

(sn)1 . . . (sn)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Binet-Cauchy:

det(AM) = ∑
B⊆{xi}, ∣B ∣=k

det(AB)det(MB).

Sufficient Properties
1. Every k × k minor is full rank.
2. From among the Bs for which
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A Faithful map

[GR05]: Vandermonde
type matrices are rank
extractors.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s . . . sk

(s2)1
. . . (s2)k

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋮

(sn)1 . . . (sn)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Binet-Cauchy:

det(AM) = ∑
B⊆{xi}, ∣B ∣=k

det(AB)det(MB).

Sufficient Properties
1. Every k × k minor is full rank.
2. From among the Bs for which

det(AB) ≠ 0, there is a unique B for
which the degs(det(MB)) is maximum.

ϕ ∶ xi =
k
∑
j=1

s ijyj + ai will work.
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Introduction Characteristic Zero Fields Arbitrary Fields

Failure of the Jacobian Criterion over Arbitrary fields

f1 = xyp−1, f2 = xp−1y : Algebraically Independent over Fp.

Jx ,y = [ yp−1 (p − 1)xyp−2

(p − 1)xp−2y xp−1 ]

det(Jx ,y) = (xy)p−1 − (p2 − 2p + 1)(xy)p−1 = 0 over Fp.

Reason: (x , f1, f2) ∶ Ax(α,β, γ) (y , f1, f2) ∶ Ay(α,β, γ)

∂α(Ax) = 0 = ∂α(Ay)

Ax(α,β, γ) = A′x(αpk1 , β, γ),Ay(α,β, γ) = A′y(αpk2 , β, γ)

For k = max{k1, k2}, pk ∶ Inseparable degree of {f1, f2}.
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det(Jx ,y) = (xy)p−1 − (p2 − 2p + 1)(xy)p−1 = 0 over Fp.

Reason: (x , f1, f2) ∶ Ax(α,β, γ) (y , f1, f2) ∶ Ay(α,β, γ)

∂α(Ax) = 0 = ∂α(Ay)

Ax(α,β, γ) = A′x(αpk1 , β, γ),Ay(α,β, γ) = A′y(αpk2 , β, γ)

For k = max{k1, k2}, pk ∶ Inseparable degree of {f1, f2}.
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Introduction Characteristic Zero Fields Arbitrary Fields

Hasse derivatives

For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x + z) − f (z) = x1 ⋅ ∂x1 f +⋯ + xn ⋅ ∂xn f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jacobian

+ higher order terms

For f = xp, f (x + z) − f (z) = xp over Fp.

Consider Hasse Derivatives:

∂h
xp(xp) = 1

p!
× p! = 1

In general, the Hasse derivative of f with respect to xe is the
coefficient of xe in f (x + z) − f (z).
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Introduction Characteristic Zero Fields Arbitrary Fields

The Criterion over Arbitrary fields

Definition: A new Operator

For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x + z) − f (z))

Ĥ(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) . . .

. . . Ht(f2) . . .
⋮

. . . Ht(fm) . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The [PSS16] Criterion

A given set of polynomials {f1, f2, . . . , fm} ∈ F[x1, x2, . . . , xn] is
algebraically independent if and only if for a random z ∈ Fn,
{Ht(f1),Ht(f2), . . . ,Ht(fm)} are linearly independent in

F(z)[x1, x2, . . . , xn]
It

where t is the inseparable degree of {f1, f2, . . . , fm} and It is some
fixed ideal of F(z)[x1, x2, . . . , xn].
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Introduction Characteristic Zero Fields Arbitrary Fields

Alternate Statement for the [PSS16] criterion

{f1, f2, . . . , fm} is algebraically independent if and only if for every
(v1, v2, . . . , vk) with vi s in It ,

H(f,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) + v1 . . .

. . . Ht(f2) + v2 . . .
⋮

. . . Ht(fk) + vk . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

has full rank over F(z).
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Introduction Characteristic Zero Fields Arbitrary Fields

What we want to show

H(f(ϕ),u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1(ϕ)) + u1 . . .

. . . Ht(f2(ϕ)) + u2 . . .
⋮

. . . Ht(fm(ϕ)) + um . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
has full rank for every u1,u2, . . . ,uk ∈ It(ϕ) whenever

H(f,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) + v1 . . .

. . . Ht(f2) + v2 . . .
⋮

. . . Ht(fk) + vk . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
has full rank for every v1, v2, . . . , vk ∈ It .
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Introduction Characteristic Zero Fields Arbitrary Fields

The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. Every u must have a v : There is a natural pre-image.

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields



Introduction Characteristic Zero Fields Arbitrary Fields

The Strategy

ϕ ∶ xi →
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∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. Every u must have a v

: There is a natural pre-image.
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The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. Every u must have a v : There is a natural pre-image.
2. H(f(ϕ),v(ϕ)) = H(f,v)∣ϕ ×Mϕ
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The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. Every u must have a v : There is a natural pre-image.
2. H(f(ϕ),v(ϕ)) = H(f,v)∣ϕ ×Mϕ : True in general.
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The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. Every u must have a v : There is a natural pre-image.
2. H(f(ϕ),v(ϕ)) = H(f,v)∣ϕ ×Mϕ : True in general.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(f(ϕ),v(ϕ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(f,v)∣ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ)
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The Strategy

ϕ ∶ xi →
k
∑
j=1

sijyj + ai and zi →
k
∑
j=1

sijwj + ai

Sufficient Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

labelled by monomials of degree up to t in y
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The Strategy

ϕ ∶ xi →
k
∑
j=1

s ijyj + ai and zi →
k
∑
j=1

s ijwj + ai

Sufficient Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) : wt(xi) = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

labelled by monomials of degree up to t in y

Not Block Vandermonde type
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The Strategy

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai

Sufficient Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) : wt(xi) = (t + 1)i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

labelled by "pure" monomials of degree up to t in y

Block Vandermonde type
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The Strategy
ϕ ∶ xi →

k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) : wt(xi) = (t + 1)i

labelled by xe

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎣

A′
⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

A′Mϕ

⎤⎥⎥⎥⎥⎥⎦
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The Strategy
ϕ ∶ xi →

k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) : wt(xi) = (t + 1)i

⎡⎢⎢⎢⎢⎢⎣
A′

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

A′Mϕ

⎤⎥⎥⎥⎥⎥⎦

unique minor with max. wt.
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The Strategy
ϕ ∶ xi →

k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ) : wt(xi) = (t + 1)i

⎡⎢⎢⎢⎢⎢⎣
A′

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

A′Mϕ

⎤⎥⎥⎥⎥⎥⎦

unique minor with max. wt.

wt = degs
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Introduction Characteristic Zero Fields Arbitrary Fields

The Strategy

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ)
4. rank(H(f,v)) = rank(H(f,v)∣ϕ)
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The Strategy

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i yj + ai and zi →
k
∑
j=1

s j(t+1)iwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ)
4. rank(H(f,v)) = rank(H(f,v)∣ϕ) : Can be handled by choosing

the ai s correctly
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The Map

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i mod pyj + ai and zi →
k
∑
j=1

s j(t+1)i mod pwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ)).
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ).
4. rank(H(f,v)) = rank(H(f,v)∣ϕ).

Size bounds: p = O(n3t), s = O(p).
Choice of a: Depends on the model under consideration.

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields



Introduction Characteristic Zero Fields Arbitrary Fields

The Map

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i mod pyj + ai and zi →
k
∑
j=1

s j(t+1)i mod pwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ)).
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ).
4. rank(H(f,v)) = rank(H(f,v)∣ϕ).

Size bounds: p = O(n3t), s = O(p).
Choice of a: Depends on the model under consideration.

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields



Introduction Characteristic Zero Fields Arbitrary Fields

The Map

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i mod pyj + ai and zi →
k
∑
j=1

s j(t+1)i mod pwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ)).
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ).
4. rank(H(f,v)) = rank(H(f,v)∣ϕ).

Size bounds: p = O(n3t), s = O(p).

Choice of a: Depends on the model under consideration.

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields



Introduction Characteristic Zero Fields Arbitrary Fields

The Map

ϕ ∶ xi →
k
∑
j=1

s j(t+1)i mod pyj + ai and zi →
k
∑
j=1

s j(t+1)i mod pwj + ai .

where t is the inseparable degree.

Properties

1. H(f(ϕ),u) = H(f(ϕ),v(ϕ)) for some appropriate v.
2. H(f,v)∣ϕ ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ)).
3. rank(H(f,v)∣ϕ) = rank(H(f,v)∣ϕ ×Mϕ).
4. rank(H(f,v)) = rank(H(f,v)∣ϕ).

Size bounds: p = O(n3t), s = O(p).
Choice of a: Depends on the model under consideration.

Prerona Chatterjee Towards Algebraic Independence based PITs over Arbitrary fields



Introduction Characteristic Zero Fields Arbitrary Fields

An Application

Theorem: Extension of [BMS11]

If {f1, f2, . . . , fm} ∈ F[x1, x2, . . . , xn] is a set of sparse polynomials
with transcendence degree k and inseparable degree t, then there
is a npoly(k,t) time PIT for circuits of the type C(f1, f2, . . . , fm).

Thus if k , t were constant, we have a poly(n)-time PIT.

Thank you!
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