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Introduction

Polynomials are important!

Algebraic Circuit Complexity Identity Testing and Algebraic Independence

How efficiently can a given

computational model compute the

given polynomial?

Given a set of polynomials, how efficiently can one check

whether they are algebraically independent?

Given an algebraic circuit as input, how efficiently can

one check if it computes the identically zero

polynommial?
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Part 1: Lower Bounds in

Algebraic Circuit Complexity



Algebraic Models of Computation
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.
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Some Remarks

1. If the edges are allowed to be polynomials of degree ≤ ∆, we get an Ω(nd/∆) lower

bound.

2. In the unlayered case, if the edges are labelled by polynomials of degree at most ∆, the

lower bound we get is Ω(n log n/∆ log log n).

3. The lower bound is also true for a multilinear polynomial

ESYMn,0.1n(x) =
∑

i1<···<i0.1n∈[n]

n∑
j=1

xij .

6
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Lower Bounds for General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) vertices.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) vertices.

[C-Kumar-She-Volk]: Any formula computing ESymn,0.1n(x) requires Ω(n
2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .
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Some Remarks

1. • SY had shown that any formula computing
∑n

i=1

∑n
j=1 x

j
i yj requires Ω(n

2) wires.

• But it is trivial to show an nd lower bound for polynomials over n variables that have

individual degree at least d .

• Multilinearising the SY polynomial gives an Ω(n2/ log n) lower bound.

2. Kalorkoti’s method can not give a better bound against multilinear polynomials [Jukna].

3. Our result also shows a super-linear separation between the computational powers of

circuits and formulas when computing multilinear polynomials.
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Proof Overview: The ABP Lower Bound

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f =
n∑

i=1

xdi +
r∑

i=1

Ai (x) · Bi (x) + δ(x)

where Ai (0) = 0 = Bi (0) and deg(δ(x)) < d , has at least

((n/2)− r) · (d − 1) vertices.
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Proof Overview: The ABP Lower Bound

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

• the number of layers is reduced by a constant fraction,

• the size does not increase,

• the polynomial being computed continues to look like

fℓ+1 =
n∑

i=1

xdi +

rℓ+1∑
i=1

Ai (x) · Bi (x) + δℓ+1(x)

where Ai (0) = 0 = Bi (0) and deg(δℓ+1(x)) < d ,

• number of error terms collected is small.
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Questions?
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The Non-Commutative Setting

f (x , y) = (x + y)2 = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

+

× ×

+ + +

x1 x2 x3 α

α1
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× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α
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Lower Bounds for General Non-Commutative Models

Is there an explicit polynomial that is outside VPnc?

What about VFnc?

Circuits [Baur - Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

13
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The ABP vs Formula Question

The Question [Nisan]: Is VFnc = VBPnc?

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

X1

= {x1} X2 = {x2}

x1x1x2 x2 x1x2x1

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.
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Proof Idea

The Statement: There is an explicit n2-variate, degree-d abcd-polynomial fn,d(x) such that

• abcd-ABP Upper Bound: the abcd-ABP complexity of fn,d(x) is Θ(nd);

• abcd-Formula Lower Bound: the abcd-formula complexity of fn,log n(x) is nΘ(log log n).

The Proof Idea:

1. Use low degree to make the abcd-formula structured.

2. Use the structured formula to amplify degree while keeping the structure intact.

3. Convert the structured abcd-formula into a homogeneous multilinear formula.

4. Use known lower bound against homogeneous multilinear formulas [HY11].
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Questions?

16



Part 2: Identity Testing and

Algebraic Independence



Algebraic Independence

In the vector space R3 over R,

1×

(1, 0, 1)

+ 2×

(0, 1, 0)

− 1×

(1, 2, 1)

= 0

are linearly dependent.

In the space of bi-variate polynomials over C,

x2

×

y2

− (

xy

)2 = 0

are algebraically dependent.
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Algebraic Independence

A set of polynomials {f1, . . . , fk} ⊆ F[x1, x2, . . . , xn] are said to be algebraically dependent if

there exists A ∈ F[y1, . . . , yk ]

such that

A(y1, . . . , yk) ̸= 0; A(f1, . . . , fk) = 0.

Otherwise, they are said to be algebraically independent.

Note: The underlying field is very important. For any prime p,

xp + yp x + y

• are algebraically independent over C.

• are algebraically dependent over Fp, since xp + yp = (x + y)p.

18
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Algebraic Rank

R3

• Linear rank of S = {v1, . . . , vm} ⊆ V is the size of the largest

linearly independent subset of S .

• Linear rank of {(1, 0, 1), (0, 1, 0), (1, 2, 1)} is 2.

• Algebraic rank of S = {f1, . . . , fm} ⊆ F[x] is the size of the

largest algebraically independent subset of S .

Fp[x , y ]

19
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Rank Preserving Maps

Basis in Linear Algebra

Given a set of vectors {v1, v2, . . . , vm} with linear rank k, there is a basis of size k.

Faithful Maps

Given a set of polynomials {f1, f2, . . . , fm} with algebraic rank k, a map

φ : {x1, x2, . . . , xn} → F[y1, y2, . . . , yk ]

is said to be a faithful map if the algebraic rank of {f1 ◦ φ, f2 ◦ φ, . . . , fm ◦ φ} is also k.

Question: Can we construct faithful maps efficiently?

Bonus: Helps in polynomial identity testing.

20
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Polynomial Identity Testing

Given: Circuit C that computes an n-variate, degree d polynomial

Goal: Check whether C ∼= Zero Polynomial.

C

×

+

x1 x2 · · · · · · xn

C′

f1 · · ·· · · fm

· · · · · ·
· · · · · ·x1 x2 xn

Trivial Upperbound: (d + 1)n

Approach: Reduce no. of variables

Keep degree under control

Preserve non-zeroness

Special Case: C = C′(f1, f2, . . . , fm) where algebraic rank of

{f1, . . . , fm} = k, and

k ≪ n

Question: Can the upperbound be made ≈ (d + 1)k?
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Faithful Maps & Polynomial Identity Testing

C

C′

f1 · · ·· · · fm

· · · · · ·
· · · · · ·x1 x2 xn

Question: Suppose C = C′(f1, f2, . . . , fm) where algebraic rank of

{f1, . . . , fm} = k, and k ≪ n.

Can the upper bound be made ≈ (d + 1)k?

[Beecken-Mittman-Saxena, Agrawal-Saha-Saptharishi-Saxena]

If φ : {x!, . . . , xn} → F[y1, . . . , yk ] is a faithful map, then

C(f1, f2, . . . , fm) ̸= 0 if and only if

(C(f1(φ), f2(φ), . . . fm(φ))) ̸= 0.
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The Question

Given a set of polynomials {f1, f2, . . . , fm} ⊆ F[x1, . . . , xn], we want to construct a map

φ : {x1, x2, . . . , xn} → F[y1, y2, . . . , yk ]

such that

algrank(f1(φ), f2(φ), . . . , fm(φ)) = algrank(f1, f2, . . . , fm)

Fact: A random affine transformation is a faithful map

φ : xi =
k∑

j=1

sijyj + ai

Question: Can we construct faithful maps deterministically?
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Characteristic Zero Fields [B-M-S, A-S-S-S]

Step 1: Capture algebraic rank via linear rank

of the Jacobian

For {f1, f2, . . . , fm} ⊆ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =


∂x1(f1) ∂x1(f2) . . . ∂x1(fn)

∂x2(f1) ∂x2(f2) . . . ∂x2(fn)
...

...
. . .

...

∂xn(f1) ∂xn(f2) . . . ∂xn(fm)



The Jacobian Criterion [Jacobi]

If F has characteristic zero, the algebraic rank of {f1, f2, . . . , fm} is equal to the linear rank of

its Jacobian matrix.
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Characteristic Zero Fields [B-M-S, A-S-S-S]

Step 2: Start with a generic linear transformation. φ : xi =
∑k

j=1 sijyj + ai

 Jy(f(φ))

 =

 φ(Jx(f))

×


Mφ


What we need: φ such that

• rank(Jx(f)) = rank(φ(Jx(f))) : Can be done if fi s are structured (ai s are responsible)

• Mφ preserves rank
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A Rank Preserving Matrix and a Faithful Map [BMS13]

φ : xi =
k∑

j=1

sijyj + ai

Chain Rule ⇒ Mφ[i , j ] = sij

For every m × n matrix A, rank(A) = rank(AMφ).

Family of matrices or one matrix parameterised by s:
{
Mφ(s)

}
s∈F

φ : xi =
k∑

j=1

s ijyj + ai will work.

[GR05]: Vandermonde type

matrices preserve rank.



s s2 . . . sk

s2 s4 . . . s2k

...
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

sn s2n . . . skn


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What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion: For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x+ z)− f (z) = x1 · ∂x1 f + · · ·+ xn · ∂xn f︸ ︷︷ ︸
Jacobian

+ higher order terms

[Pandey-Saxena-Sinhababu]: Look up till the inseparable degree in the expansion.

A New Operator: For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x+ z)− f (z))
Ĥ(f) =


. . . Ht(f1) . . .

. . . Ht(f2) . . .
...

. . . Ht(fk) . . .



27



What happens over Finite Characteristic Fields?

The Jacobian Criterion is false over finite characteristic fields.

Taylor Expansion: For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x+ z)− f (z) = x1 · ∂x1 f + · · ·+ xn · ∂xn f︸ ︷︷ ︸
Jacobian

+ higher order terms

[Pandey-Saxena-Sinhababu]: Look up till the inseparable degree in the expansion.

A New Operator: For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x+ z)− f (z))
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Taylor Expansion: For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x+ z)− f (z) = x1 · ∂x1 f + · · ·+ xn · ∂xn f︸ ︷︷ ︸
Jacobian

+ higher order terms

[Pandey-Saxena-Sinhababu]: Look up till the inseparable degree in the expansion.
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Alternate Criterion for the General Case [Pandey-Saxena-Sinhababu]

f1, f2, . . . , fk ∈ F[x] are algebraically independent if and only if for every (v1, v2, . . . , vk) with

vi s in It ,

H(f, v) =


. . . Ht(f1) + v1 . . .

. . . Ht(f2) + v2 . . .
...

. . . Ht(fk) + vk . . .

 has full rank over F(z)

where t is the inseparable degree of {f1, f2, . . . , fk} and

It = ⟨Ht(f1),Ht(f2), . . . ,Ht(fk)⟩≥2
F(z) mod ⟨x⟩t+1 ⊆ F(z)[x].
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Our Result

Suppose ◦ f1, . . . , fm ∈ F[x1, . . . , xn]
◦ algebraic rank of {f1, . . . , fm} = k

◦ inseparable degree of {f1, . . . , fm} = t

Then, we can construct

Φ : F[x] → F(s)[y0, y1, . . . , yk ]

such that

algrankF(f1 ◦ Φ, . . . , fm ◦ Φ) = k

whenever

• each of the fi ’s are sparse polynomials,

• each of the fi ’s are products of variable disjoint, multilinear, sparse polynomials.
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Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x → F(s)[y1, . . . , yk ], write PSS Jy(f ◦ Φ) in terms of

PSS Jx(f). This can be described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that

• rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f’s are some structured

polynomials (for example, sparse).

• MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).

30



Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x → F(s)[y1, . . . , yk ], write PSS Jy(f ◦ Φ) in terms of

PSS Jx(f).

This can be described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that

• rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f’s are some structured

polynomials (for example, sparse).

• MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).

30



Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x → F(s)[y1, . . . , yk ], write PSS Jy(f ◦ Φ) in terms of

PSS Jx(f). This can be described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that

• rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f’s are some structured

polynomials (for example, sparse).

• MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).

30



Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x → F(s)[y1, . . . , yk ], write PSS Jy(f ◦ Φ) in terms of

PSS Jx(f). This can be described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that

• rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f’s are some structured

polynomials (for example, sparse).

• MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).

30



Proof Overview

Step 1: Capture algebraic rank via linear rank of the PSS-Jacobian

Step 2: For a generic linear map Φ : x → F(s)[y1, . . . , yk ], write PSS Jy(f ◦ Φ) in terms of

PSS Jx(f). This can be described succinctly as

PSS Jy(f ◦ Φ) = Φ(PSS Jx(f)) ·MΦ.

What we need: Φ such that

• rank(Φ(PSS Jx(f))) = rank(PSS Jx(f)): Can be done if f’s are some structured

polynomials (for example, sparse).

• MΦ preserves rank. That is,

rank(Φ(PSS Jx(f)) ·MΦ) = rank(Φ(PSS Jx(f))).

30



The Faithful Map

xe

yd

1

2

. . .

. . .

t

MΦ(xe, yd) = coeffyd(Φ(x
e))

Taking inspiration from the previous case:

MΦ(xi , yj) = swt(i)j

For the correct definition of wt(i), things work out.

Φ(xi ) = ai · y0 +
∑
j∈[k]

swt(i)j · yj
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Questions?
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Thankyou!
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