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Introduction 1

Theory of Computation is the study of formalising the notion of computation. In
the early years of the field, the focus was on trying to understand what problems
can or cannot be solved computationally. However, it quickly became clear that
this division is too coarse. It may be the case that a certain problem can be solved
algorithmically but by the time the algorithm outputs the answer, the answer is no
longer useful. This led to the birth of Computational Complexity Theory.

The aim of complexity theory is to understand efficient computation in terms of the
resources (like time or space) required by natural computational models to solve the
given problem. The work in this thesis belongs to a subfield of complexity theory
that deals with problems which are algebraic in nature. Problems in Algebraic
Complexity Theory are typically of the form "How hard is it to perform a given
computational task Y on a given algebraic object X?" In this thesis, we are interested
in some specific questions of this type.

The thesis is divided into two parts. In the first part, we ask how hard it is to compute
a given polynomial for a given computational model, whereas in the second part we
consider the following two questions and see how they are related. The first is how
hard it is to check whether a given set of polynomials are algebraically independent
or not, and the second is how hard it is to check whether a given computational
model computes the zero polynomial or not.

Before stating the questions more formally, let us define the models of computation
that we will be studying. An algebraic circuit is a very natural (and the most
general) algebraic computational model. Informally, it is a computational device
which is given a set of indeterminates {x1, . . . , xn}, and it can use additions and
multiplications (as well as field scalars) to compute a polynomial f œ F[x1, . . . , xn]

(see Figure 1.1). The underlying structure is that of a rooted directed acyclic graph
and the size of a circuit is defined to be the number of operations the circuit performs
(or the number of nodes in the underlying graph). If the underlying graph is only
allowed to be a tree, then the model of computation is that of an algebraic formula.

Another important model of computation is that of an algebraic branching program,
or ABP (see Figure 1.2). The computational power of ABPs lie in between that of for-
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Figure 1.1.: Algebraic circuits and formulas. The polynomial being computed in both cases is
–1(x1 + x2)(x3 + –) + (x1 + x2)(–2x2 + –) where –, –1, –2 are field constants.

s
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Figure 1.2.: Algebraic Branching Programs (ABPs). Layered graph with designated start (s) and
target (t) vertices in which every edge is labelled by an affine linear form in the
underlying variables. The polynomial being computed by an s – t path is the product
of its edge labels (for example, the highlighted path computes 10(2x + 1)(x + 3y)(y +

5)(x + y + 7)). The polynomial computed by the ABP is the sum of the polynomials
computed by the various s – t paths.

mulas and circuits, and therefore can be used as an intermediate step for extending
results that are known for formulas to circuits. Its importance is further enhanced
because several important polynomials, including the determinant polynomial, is
complete for the class of polynomials that can be computed efficiently by ABPs.

Lower Bounds in Algebraic Circuit Complexity The sub-area of algebraic circuit
complexity forms an integral part of algebraic complexity theory. In it, the central
question asks whether there is an explicit n-variate, degree d polynomial that can
not be computed by algebraic circuits of size poly(n, d). In other words, can we give
a super-polynomial lower bound on the size of any algebraic circuit computing some
explicit polynomial? This is the algebraic analogue of the famed P vs NP problem.

In the first part of the thesis, we are interested in questions of a similar flavour.
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Concretely, we address the following questions.

1. Does there exist an explicit n-variate, degree d polynomial that cannot be
computed by algebraic branching programs of size poly(n, d)?

2. Does there exist an explicit n-variate, degree d polynomial that cannot be
computed by algebraic formulas of size poly(n, d)?

3. In the multilinear setting, strong lower bounds are known against formulas
but only weak bounds are known against circuits. Is there a reason for this?

4. Does there exist an n-variate, degree d polynomial that can be computed by
algebraic branching programs of size poly(n, d) but cannot be computed by
algebraic formulas of size poly(n, d) in the non-commutative setting?

With respect to the first two questions, we show a quadratic lower bound against
both algebraic branching programs and algebraic formulas. On the other hand, with
respect to the second question, we show that lower bounds in the setting mentioned
that are just slightly stronger than the ones known have surprising implications.
Finally, with respect to the last question, we show a tight separation between the
powers of ABPs and some structured formulas in the setting mentioned.

Formal statements of these questions and our results are described in section 1.2.

Algebraic Independence and Faithful Homomorphisms A given set of polynomials
{f1, . . . , fm} is said to be algebraically dependent if there is some non-zero poly-
nomial combination of them that is zero. For example, if f1 = x, f2 = y and
f3 = x2

+ y2, then A = z2
1 + z2

2 ≠ z3 is an annihilator.

A natural question at this point is whether there is an efficient algorithm to check
whether a given set of polynomials are algebraically independent or not. Apart from
this being an interesting question in its own right, the concept of algebraic indepen-
dence has a connection with another important problem in algebraic complexity
theory, namely the problem of Polynomial Identity Testing or PIT.

Given an algebraic circuit as input, the PIT problem asks whether the polynomial
computed by it is identically zero. It is well known that this problem has an efficient
randomised polynomial-time algorithm. A central algorithmic question in Algebraic
Complexity Theory is whether this can be derandomised.

In section 1.3 we discuss the results known with respect to efficiently testing alge-
braic independence of a given set of polynomials and study its connections to the
derandomising the problem of PIT via the concept of faithful homomorphisms.
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Before moving to the details, let us go over some preliminary notions that we will
require throughout the thesis.

1.1 Notations and Preliminaries

We denote by x the vector of variables (x1, . . . , xn), where n is understood from the
context. Similarly we use 0 to denote the n-dimensional vector (0, 0, . . . , 0).

Algebraic Models of Computation

Let us recall the definitions of the models of computation we are interested in.

Algebraic Circuits and Formulas. An algebraic circuit is a rooted directed acyclic
graph in which the leaves are labelled by indeterminates or field constants and the
internal nodes are labelled by addition (+) or multiplication (◊). Thus every node
in the circuit naturally computes a polynomial and the polynomial computed at the
root is said to be the polynomial computed by the circuit. The size of a circuit is the
number of operations the circuit performs. If the underlying graph is only allowed
to be a tree, then the model of computation is that of an algebraic formula.

Algebraic Branching Programs. An algebraic branching program is a layered graph
in which the first and the last layer only contains a single vertex each called s and
t respectively. Edges in an ABP are present between consecutive layers and each
edge is labelled by an affine linear polynomial over the underlying variables. The
polynomial computed by any s–t path is the product of the edge labels on that path
and the polynomial computed by the ABP is the sum of the polynomials computed
by the various s–t paths. The size of the ABP is the number of vertices in it.

Multilinear Models of Computation Multilinear polynomials are those in which the
individual degree of every variable in any monomial is at most one. Many of the well-
studied polynomials have this property, and therefore one of the natural restrictions
that is studied in the field is that of multilinearity.

A multilinear circuit is one in which the polynomial computed at each of its gate is
multilinear. A multilinear formula can be defined in a similar way. Another syntactic
way of defining multilinear models is the following. A syntactically multilinear circuit
is one in which for any multiplication gate v = v1 ◊ v2, there is no variable that has
a path to both v1 and v2. Similarly syntactically multilinear formulas are those which
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have the above property. Raz [Raz09] showed that any multilinear formula is also
syntactically multilinear, but this is not clear in the case for circuits.

Multilinear algebraic branching programs are those in which the polynomial computed
between any two of its vertices is multilinear. Whereas syntactically multilinear ABPs
are those in which no variable occurs more than once in any s – t path.

Non-Commutative Models of Computation Given an algebraic circuit, if the mul-
tiplication gate is additionally given an order in which its inputs are multiplied,
then the model of computation is that of a non-commutative circuit. That is, in
this setting, the circuit cannot assume that xy = xy for indeterminates x and y.
Therefore polynomials computed by such circuits belong to the non-commutative
polynomial ring denoted by F Èx1, . . . , xnÍ. Non-commutative formulas and ABPs
can be defined analogously.

Constant Depth Circuits The depth of any circuit is defined to be the length of the
longest path between any leaf and its root. Constant depth circuits, as the name
suggests, are those circuits whose depth is constant.

Important Algebraic Classes

Similar to any other branch in complexity theory, in algebraic circuit complexity
we define various classes of polynomials depending on how efficiently they can be
computed. We mention the classes that are relevant to us.

The set of n-variate, degree poly(n) polynomials that can be computed by circuits of
size poly(n) form the class VP — the algebraic analogue of the class P. Similarly, the
class VBP consists of n-variate, degree d polynomials that can be computed by ABPs
of size poly(n, d). Finally, the class VF is the set of n-variate, degree d polynomials
that can be computed by formulas of size poly(n, d).

Analogous to the class NP, the class VNP is defined to be the set of all polynomial
f(x1, . . . , xn) such that there exists a polynomial g(x1, . . . , xn, y1, . . . , ym) œ VP with
m = poly(n) such that

f(x1, . . . , xn) =

ÿ

(y1,...,ym)œ{0,1}m

g(x1, . . . , xn, y1, . . . , ym).

In particular, Valiant [Val79] showed that for a polynomial f , given a monomial, if
we can compute its coefficient in f polynomial time, then f is in VNP.

1.1 Notations and Preliminaries 9



Both VP (the class of efficiently computable polynomials) and VNP (the class of
efficiently definable polynomials) were formally defined by Valiant [Val79].

Non-commutative analogues of these classes, denoted by VPnc, VBPnc, VFnc and
VNPnc respectively, are defined in a similar way.

1.2 Lower Bounds in Algebraic Circuit Complexity

The central question in Algebraic Circuit Complexity is that of proving lower bounds
for explicit polynomials against various algebraic models of computation. In the
most general form, this is the well-known VP vs. VNP question, which asks whether
every explicit polynomial has a polynomial-size algebraic circuit.

Before we start looking for explicit lower bounds, let us ask ourselves whether hard
polynomials exist. The answer to this question is yes. In fact most polynomials
are hard. Over finite fields, it can be shown using usual counting techniques that
the number of n-variate, degree d polynomials that have poly(n, d)-sized circuits is
much smaller than the total number of such polynomials. On the other hand, over
infinite fields, such a statement is shown by counting dimensions.

In fact, it can also be shown that over every field, for any n, d, there exist n-variate,
degree d polynomials with zero-one coefficients that cannot be computed by circuits
of size poly(n, d) [SY10, Theorem 3.1]. Therefore, as mentioned earlier, the ultimate
goal in algebraic circuit complexity is to find such a hard polynomial explicitly. Even
though we have made great progress in restricted settings, in the general setting we
seem to be quite far from achieving this goal.

General Models of Computation

It is trivial to give an explicit n-variate polynomial which requires circuits of size
�(n). It is also not hard to show that a degree-d polynomial requires fan-in two
circuits of size �(log d), since the degree can at most double in each operation. Thus
a lower bound of max{n, log d} = �(n + log d) for an n-variate degree-d polynomial
can be obtained easily. A major result of Baur and Strassen [Str73a; BS83] gives
an explicit n-variate degree-d polynomial which requires circuits of size at least
�(n · log d).

On the one hand, this is impressive since when d = poly(n), this gives a lower
bound which is super-linear in n. Such lower bounds for explicit functions in the
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analogous model of boolean circuits are a long-standing and important open problem
in boolean circuit complexity. On the other hand, this lower bound is barely super-
linear, when ideally we hope to prove super-polynomial or even exponential lower
bounds. Despite decades of work, however, this lower bound has not been improved,
even though it has been reproved (using different techniques [Smo97; Ben83]).

In the case of formulas, we know slightly better lower bounds. Kalorkoti [Kal85]
has shown how to adapt Nechiporuk’s method [Nec66], originally developed for
boolean formulas, to prove an �(n2/ log n) lower bound for an n-variate multilinear
polynomial. We study the model of formulas in greater detail in chapter 3, where
we show an �(n2

) lower bound. In particular, we show the following statement.

Theorem 1.2.1. Let n œ N and let F be a field of characteristic greater than 0.1n.
Then any algebraic formula over F computing the elementary symmetric polynomial

ESYMn,0.1n(x) =

ÿ

S™[n],|S|=0.1n

Ÿ

jœS

xj ,

is of size �(n2
).

Even though the improvement is only logarithmic, it is interesting to note that the
techniques of Nechiporuk and Kalorkoti cannot be used to give a lower bound better
than �(n2/ log n).

Another point to note is that Baur and Strassen [BS83] proved an upper bound of
O(n log n)

1 on the circuit complexity of the elementary symmetric polynomials. So
our lower bound implies a super-linear separation between the formula complexity
and the circuit complexity of an explicit multilinear polynomial family.

For the intermediate model of algebraic branching programs, however, the result
of Baur and Strassen continued to be the best lower bound known till before our
work. A detailed discussion can be found in chapter 2, where we show a quadratic
lower bound against algebraic branching programs for a very simple polynomial.
The formal statement is as follows.

Theorem 1.2.2. Let F be a field and n œ N such that char(F) - n. Then any algebraic
branching program over F computing the polynomial

q
n

i=1 xn
i

is of size at least �(n2
).

1The key step in the proof refers to a paper that is written in German and we were unable to
reconstruct it. Ramprasad, however, told us about an O(n log

2
n) upper bound which can also be

found on cs.stackexchange.
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With a lack of techniques known to work against general models of computation,
most of the works in algebraic circuit complexity deals with restricted models of
computation. In this regard, great progress has been made by the community. For
many natural restricted models, exponential or at least super-polynomial lower
bounds are known.

We refer the reader to some excellent surveys [SY10; Sap15] for a comprehensive
overview of lower bounds in algebraic complexity. Here we mention some of the
widely studied restrictions that are relevant to our work.

Multilinear Models of Computation

In the multilinear setting, we know very good lower bounds against formulas.
Raz [Raz09] showed that any multilinear formula computing the permanent or
determinant of an n ◊ n matrix must have size at least n�(log n).

Subsequently, Raz [Raz06] showed an explicit polynomial that can be computed
by a polynomial size syntactically multilinear circuit but any multilinear formula
computing it must have size at least n�(log n). Later Dvir, Malod, Perifel and Yehu-
dayoff [Dvi+12] showed that in fact there exists an explicit polynomial that can be
computed by polynomial size multilinear algebraic branching programs, but cannot
be computed by multilinear formulas of size no(log n). A point to note, however, is
that it is not clear whether the polynomial defined by Dvir et al. can be computed by
a syntactically multilinear algebraic branching program.

Our understanding of multilinear circuits, on the other hand, is not as good. The best
known lower bound is due to a recent result of Alon, Kumar and Volk [AKV20], where
they gave an explicit polynomial such that any syntactically multilinear computing it
must have size at least �(n2/ log

2 n). Alon et al. expand and improve upon the result
by Raz, Shpilka and Yehudayoff [RSY08] who showed an �(n4/3/ log

2 n) lower
bound against the same model for the same polynomial.

In chapter 4, we try to give a “reason” as to why showing lower bounds against
multilinear circuits might be hard. We do so by showing that weak lower bounds
against multilinear circuits can be used to show strong lower bounds against another
well studied model of computation, namely non-commutative circuits.

Formally, we show the following.
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Theorem 1.2.3. For any Á > 0, assume that there exists an explicit n-variate com-
mutative multilinear polynomial of degree poly(n), such that any multilinear circuit
computing it requires size �(n3+(Ê/2)+Á

). Then for any c > 1, there exists another
explicit m-variate polynomial of degree poly(m), such that any non-commutative circuit
computing it requires size �(mc

).

Non-Commutative Models of Computation

In the non-commutative setting, the order of multiplication is crucial and therefore,
atleast intuitively, the task of proving lower bounds becomes easier in this setting.
And indeed, more is known in this setting as compared to the commutative setting.

Even though the best lower bound known against circuits in this setting is still
the barely super linear bound by Baur Strassen [Str73a; BS83], which was shown
for the general case, in the case of formulas we know exponential lower bounds
due to Nisan [Nis91]. In his work, Nisan showed that any formula computing the
non-commutative determinant or permanent polynomial must have size 2

�(n), thus
giving an exponential separation between circuits and formulas in this setting.

The proof, in fact, proceeds via a characterisation for the size of the smallest algebraic
branching program computing a given non-commutative polynomial, and then
giving a lower bound on the size of any ABP computing the non-commutative
determinant. Therefore a natural question to ask at this point is whether there is
a super-polynomial separation between the powers of formulas and ABPs in the
non-commutative setting.

We address this question in chapter 5, where we make progress towards its resolution
by showing a tight super-polynomial separation between ABPs and some structured
formulas, which we call syntactically abecedarian formulas.

Note that in the non-commutative setting, any monomial in a polynomial can be
thought of as a string over the underlying variables. With that in mind, abecedarian
polynomials can be defined succinctly using the notion of regular expressions from
Automata Theory. For a non-commutative polynomial f œ F Èx1, . . . , xnÍ, suppose
the variables can been partitioned into buckets {X1, . . . , Xm}. Then f is said to be
abecedarian with respect to the partition {X1, . . . , Xm} if the monomials in it are
words that can be generated using the regular expression Xú

1 · · · Xú
m.

Syntactically abecedarian formulas are simply formulas that have some additional
syntactic restrictions that compels them to compute abecedarian polynomials. We

1.2 Lower Bounds in Algebraic Circuit Complexity 13



construct a n-variate degree d polynomial that can be computed by efficient ABPs
but cannot be computed by syntactically abecedarian formulas of size no(log d).

The formal statement is as follows.

Theorem 1.2.4. Define

linked_CHSYM
n,d

(x) =

nÿ

i0=1

Q

a
ÿ

i0Æi1Æ...ÆidÆn

xi0,i1 · xi1,i2 · · · xid≠1,id

R

b

to be the linked complete homogeneous polynomial over n-variables of degree d.

The polynomial linked_CHSYM
n,d

(x) is abecedarian with respect to the partition
{Xi : i œ [n]} where Xi = {xi,j : i Æ j Æ n}. With respect to this partition,

1. linked_CHSYM
n,d

(x) has an abecedarian ABP of size O(nd);

2. any syntactically abecedarian formula computing linked_CHSYM
n/2,log n

(x) has
size at least n�(log log n).

Recently, Limaye, Srinivasan and Tavenas [LST21a] also made progress towards
Nisan’s question by showing a super-polynomial separation between ABPs and
homogeneous formulas. Their work is incomparable to the one presented here since
syntactically abecedarian formulas need not be homogeneous.

Constant Depth Circuits

Even though we do not study this restriction in this thesis directly, we do give a
summary of some major results for constant depth algebraic circuits since any write
up on lower bounds in algebraic circuit complexity would be incomplete if it did not
mention them. This is because, unlike the boolean setting, extremely strong depth
reduction statements are known in the algebraic world.

The simplest form of such a statement is for formulas. Brent [Bre74] showed that
any n-variate, degree d polynomial that is computable by a formula of size s is also
computable by a formula of size poly(s, n, d) and depth O(log s). A similar statement
is also known in the boolean setting due to Spira [Spi71].

Applying techniques similar to those by Brent, Hyafil [Hya79] showed that any
polynomial computed by a size s circuit can be equivalently computed by a circuit
of depth O(log d) and size sO(log d). This was then improved by Valiant, Skyum,
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Berkowitz and Rackoff [Val+83], who showed that any n-variate degree d polyno-
mial that can be computed by a circuit of size s can also be computed by a circuit
of depth O(log d) and size poly(s, n, d). This implied that proving super-polynomial
lower bounds for O(log d) depth circuits is sufficient to prove super-polynomial
lower bounds for general arithmetic circuits.

Agrawal and Vinay [AV08] further strengthened this to obtain a depth reduction to
depth-4 circuits. They showed that any n-variate degree d polynomial that can be
computed by a 2

o(n) sized circuit can be equivalently computed by homogeneous
depth 4 circuit of size 2

o(n). Their result was strengthened by Koiran [Koi12] and
Tavenas [Tav15] to show that any circuit of size s that computes an n-variate degree
d polynomial can be computed by a homogeneous depth 4 circuit of size sO(

Ô
d),

and in fact the resulting depth 4 circuits have all multiplication fan-ins bounded by
O(

Ô
d). These results hold over all fields.

Over fields of characteristic zero, Gupta, Kamath, Kayal and Saptharishi [Gup+16]
showed that any n-variate degree d polynomial computed by a size s circuit can be
equivalently computed by a non-homogeneous depth-3 circuit of size sO(

Ô
d). Thus,

these results formally show that proving good enough lower bounds on circuits of
bounded depth is sufficient for proving lower bounds for general circuits.

Therefore much of the focus on proving lower bounds for algebraic circuits shifted
towards proving bounds for constant depth circuits [NW97; GK98; GR00; SW01;
Raz08; Gup+14; KS15; Fou+15; KS16; Kay+17; CM17; KS17b; KS19; GST20],
culminating to a very recent breakthrough result by Limaye, Srinivasan and Tavenas
[LST21b] where the showed the first super-polynomial lower bound against any
constant depth over fields of characterisic zero. They show that there is an explicit
n-variate polynomial which can be computed by efficient algebraic circuits but has
no algebraic circuits of depth � and size at most nd

exp(≠O(�)) . In fact, for � = 3, 4,
their lower bound of n�(

Ô
d) matches the upper bound given by the depth reduction

results [Koi12; Tav15; Gup+16].

Organisation of Part I

There are four chapters in the first part of the thesis, where we describe our work
on lower bounds in greater detail. The first two chapters (chapter 2, chapter 3)
are based on work done with Mrinal Kumar (IIT Bombay), Adrian She (University
of Toronto) and Ben Lee Volk (IDC Herzliya), where we show a quadratic lower
bound against algebraic branching programs and formulas. The work appears in
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the proceedings of CCC 2020 [Cha+20] and the journal version will appear in
Computational Complexity.

Following that, in chapter 4, we give a detailed introduction to non-commutative
models of computation. Then in chapter 5 we show a tight lower bound against some
structured non-commutative formulas and in the process give a super-polynomial
separation between the powers of ABPs and these structured formulas. The work
appears in the proceedings of CCC 2021 [Cha21].

1.3 Algebraic Independence and Faithful Maps

In the second part of the thesis, we focus on questions related to the notion algebraic
independence. Recall that a set of polynomials f = {f1, . . . , fm} µ F[x] is said to be
algebraically dependent if and only if there is some nonzero polynomial combination
of {f1, . . . , fm} that is zero. Such a nonzero polynomial A(z1, . . . , zm) œ F[z], if one
exist, for which A(f1, . . . , fm) = 0 is called the annihilating polynomial for the set
{f1, . . . , fm}.

We note that the underlying field is very important. For example the polynomials
x + y and xp

+ yp are algebraically dependent over Fp but algebraically independent
over a characteristic zero field like R or C.

Algebraic independence is very well-studied and it is known that algebraically
independent subsets of a given set of polynomials form a matroid (see [Oxl92]).
Hence the size of the maximum algebraically independent subset of f is well-defined
and is called the algebraic rank or transcendence degree of f . We denote it by
algrank(f) = algrank(f1, . . . , fm). A natural question therefore is whether given a set
of polynomials, there exists an efficient algorithm to compute their algebraic rank.

One natural approach could be to find the annihilating polynomial of the given
set of polynomials. However, it turns out that even checking if the constant term
of the annihilating polynomials is zero or not is NP-hard ([Kay09; GSS19]). This
effectively rules out any attempt to compute the algebraic rank via properties of the
annihilating polynomials. Despite this, over fields of characteristic zero, algebraic
rank has an alternate characterisation via the Jacobian criterion.

Jacobi [Jac41] showed that the algebraic rank of a set of polynomials f(™ F[x]) is
given by the linear rank (over the rational function field F(x)) of the Jacobian of
these polynomials. This immediately yields a randomized polynomial time algorithm
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to compute the algebraic rank of a given set of polynomials by computing the rank
of the Jacobian evaluated at a random point [Ore22; Sch80; Zip79; DL78].

Algebraic Independence over Finite Characteristic. The Jacobian criterion, how-
ever, does not continue to hold over fields of finite characteristic unless the poly-
nomials are all quadratics and the underlying field is not of characteristic two2. A
standard example to exhibit the failure of the Jacobian criterion over fields of charac-
teristic p is

)
xp≠1y, yp≠1x

*
— these polynomials are algebraically independent over

Fp but the Jacobian is not full-rank over Fp. Pandey, Saxena and Sinhababu [PSS18]
characterised the extent of failure of the Jacobian criterion for {f1, . . . , fm} by a
notion called the inseparable degree (Definition 6.3.4) associated with this set.

Over characteristic zero fields, the inseparable degree is always 1 but over fields
of characteristic p this is a power of p. In their work, Pandey et al. presented a
Jacobian-like criterion to capture algebraic independence. Informally, each row
of the generalized Jacobian matrix is obtained by taking the Taylor expansion of
fi(x + z) about a generic point, and truncating to just the terms of degree up to the
inseparable degree. Since the inseparable degree is 1 over characteristic zero, this is
just the vector of first order partial derivatives and therefore it corresponds to the
Jacobian matrix. The formal statement is as follows.

Theorem 1.3.1 ([PSS18]). Let {f1, . . . fk} be a set of n-variate polynomials over a
field F with inseparable degree t. Also, for a generic point z, let Ht(fi) = degÆt(fi(x +

z) ≠ fi(z)). Then, they are algebraically dependent if and only if there exists a non-zero
vector (–1, . . . , –k) œ F(z)

k such that

kÿ

i=1
–i · Ht(fi) = 0 mod ÈHt(f1), . . . , Ht(fk)Í

Ø2
F(z) + ÈxÍ

t+1 .

In the setting when the inseparable degree is constant, this characterisation yields a
randomized polynomial time algorithm to compute the algebraic rank.

Whether there exists a randomised polynomial time algorithm to compute the
algebraic rank when the inseparable degree is non-constant continues to remain an
outstanding open problem. As mentioned earlier, apart from being interesting in
its own right, this question also has a connection with the problem of Polynomial
Identity Testing via the concept of faithful homomorphisms.

2Unpublished joint work with Abhibhav Garg, Nitin Saxena and Ramprasad Saptharishi while
Ramprasad and I were visiting IIT Kanpur.
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Faithful Homomorphisms and Polynomial Identity Testing

Algebraic independence shares a lot of similarities with linear independence due to
the matroid structure. One natural task is to find a rank-preserving transformation in
this setting. This is defined by what are called faithful homomorphisms.

Definition 1.3.2 ([BMS13]). Let f = {f1, . . . , fm} ™ F[x] be a set of polynomials.
If K is an extension field of F, a homomorphism � : F[x] æ K[y] is said to be an
F-faithful homomorphism for {f1, . . . , fm} if

algrankF {f1, . . . , fm} = algrankF {�(f1), . . . , �(fm)} . ⌃

Ideally, we would like a faithful homomorphism with |y| ¥ algrank {f} and K = F.
Beecken, Mittmann and Saxena [BMS13] showed that a generic F-linear homomor-
phism to algrank(f) many variables would be an F-faithful homomorphism with high
probability. One important consequence of faithful homomorphisms is that they
preserve nonzeroness of any polynomial composition of f1, . . . , fm.

Lemma 1.3.3 ([BMS13; Agr+16]). Suppose f1, . . . , fm œ F[x1, . . . , xn] and � is
an F-faithful homomorphism for {f1, . . . , fm}. Then, for any circuit C(z1, . . . , zm) œ

F[z1, . . . , zm], we have

C(f1, . . . , fm) = 0 … C(�(f1), . . . , �(fm)) = 0.

Thus constructing explicit faithful homomorphisms can also be used for polynomial
identity testing (PIT), which is the task of checking if a given algebraic circuit C com-
putes the identically zero polynomial. For PIT, the goal is to design a deterministic
algorithm that runs in time polynomial in the size of the circuit.

There are two types of PIT algorithms, whitebox and blackbox. In the blackbox setting,
we are only provided evaluation access to the circuit and some of its parameters
(such as degree, number of variables, size etc.). Thus blackbox PIT algorithms for a
class C is equivalent to constructing a hitting set, which is a list of points in S µ Fn

such that any nonzero polynomial f œ C is guaranteed to evaluate to a nonzero
value on some a œ S. In the whitebox setting we are additionally provided access to
the internal structure of the circuit to carry out the same task.

It follows from Lemma 1.3.3 that if we can construct explicit F-faithful homomor-
phisms for a set {f1, . . . , fm} whose algebraic rank is k π n, then we have a variable
reduction that preserves the nonzeroness of any composition C(f1, . . . , fm). This
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approach was used by Beecken, Mittmann and Saxena [BMS13] and Agrawal, Saha,
Saptharishi, Saxena [Agr+16], in the characteristic zero setting, to design iden-
tity tests for several subclasses by constructing faithful maps for {f1, . . . , fm} with
algebraic rank at most k = O(1), when

• each fi is a sparse polynomial,

• each fi is a product of multilinear, variable disjoint, sparse polynomials,

• each fi is a product of linear polynomials,

and further generalisations.

All the above constructions crucially depend on the fact that the rank of the Jacobian
captures algebraic independence. However, this fact is true only over fields of
characteristic zero and hence all the above results no longer hold over fields of
positive characteristic. Thus, a natural question is whether the criterion of Pandey,
Saxena and Sinhababu ([PSS18]) can be used to construct faithful homomorphisms
for similar classes of polynomials over fields of finite characteristic.

We answer this question in the affirmative for some restricted settings.

Theorem 1.3.4. Let f1, . . . , fm œ F[x1, . . . , xn] be such that algrank {f1, . . . , fm} = k

and the inseparable degree is t. If t and k are bounded by a constant, then we can
construct a polynomial (in the input length) sized list of homomorphisms of the form
� : F[x] æ F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be
F-faithful for the set {f1, . . . , fm}, in the following two settings:

• When each of the fi’s are sparse polynomials,

• When each of the fi’s are products of variable disjoint, multilinear, sparse polyno-
mials.

Prior to this, construction of faithful homomorphisms over finite fields was known
only in the setting when each fi has small individual degree [BMS13]. Over charac-
teristic zero fields, the inseparable degree is always 1 and hence the faithful maps
constructed in [BMS13], [Agr+16] over such fields can be viewed as special cases
of our constructions.

The above theorem also holds for a few other models studied by Agrawal et al.
[Agr+16] (for instance, occur-k products of sparse polynomials). We mention the
above two models just as an illustration of lifting the recipe for faithful maps from
[BMS13; Agr+16] to the finite characteristic setting. As corollaries, we get efficient
PIT algorithms for these models.
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Organisation of Part II

We begin with a detailed survey of the results known with respect to efficiently
testing algebraic independence of a given set of polynomials in chapter 6. We also
show an efficient randomised algorithm to test algebraic independence of quadratic
polynomials over fields of odd characteristic. This is an unpublished joint work with
Abhibhav Garg (University of Waterloo), Nitin Saxena (IIT Kanpur) and Ramprasad
Saptharishi (TIFR Mumbai).

We then, in chapter 7, study its connections to polynomial identity testing and finally
give a detailed proof of our work on constructing faithful homomorphisms in various
restricted settings thereby giving deterministic algorithms for PIT in certain related
settings. This is joint work with Ramprasad Saptharishi (TIFR Mumbai) and the
work appears in the proceedings of FSTTCS 2019 [CS19].
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Part I

Lower Bounds Against Some Algebraic
Models of Computation





Lower Bounds Against General

Algebraic Branching Programs

2

In this chapter, we study the model of Algebraic Branching Programs (ABPs, for short).
They are an intermediate model between algebraic formulas and algebraic circuits.
To within polynomial factors, algebraic formulas can be simulated by ABPs, and ABPs
can be simulated by circuits. It is believed that each of the reverse transformations
requires a super-polynomial blow-up in the size (for some restricted models of
computation, this is a known fact [Nis91; Raz06; RY08; Dvi+12; HY16]).

Polynomial families that can be efficiently computed by algebraic branching pro-
grams form the complexity class VBP, and the determinant is a complete polynomial
for this class under an appropriate notion of reductions. Thus, the famous Permanent
vs. Determinant problem is in fact equivalent to showing super-polynomial lower
bound for ABPs. Here we focus on the question of proving lower bounds on the size
of algebraic branching programs for explicit polynomials.

2.1 Algebraic Branching Programs

We begin by formally defining an algebraic branching program.

Definition 2.1.1 (Algebraic Branching Programs). An Algebraic Branching Program
(ABP) is a layered graph where each edge is labelled by an affine linear form in the
underlying variables {x1, . . . , xn} and the first and the last layer have one vertex each,
called the “start” and the “end” vertex respectively.

The polynomial computed by an ABP is equal to the sum of the weights of all paths
from the start vertex to the end vertex in the ABP, where the weight of a path is equal
to the product of the labels of all the edges on it.

The size of an ABP is the number of vertices in it. ⌃

While Definition 2.1.1 is quite standard, there are some small variants of it in the
literature which we now discuss. These distinctions make no difference as far as
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super-polynomial lower bounds are concerned, since each variant can be simulated
by the other to within polynomial factors, and thus the issues described here are
usually left unaddressed. However, it seems that we are far from proving super-
polynomial lower bounds for general algebraic branching programs, and in this
paper we focus on proving polynomial (yet still super-linear) lower bounds. In this
setting, these distinctions do matter.

Layered vs. Unlayered. In Definition 2.1.1, we have required the graph to be
layered. We also consider in this paper ABPs whose underlying graphs are unlayered,
which we call unlayered ABPs. We are able to prove super-linear lower bounds for
this model as well.

One motivation for considering layered graph as the “standard” model is given by the
following interpretation. From the definition, it can be observed that any polynomial
computable by an ABP with d layers and ¸i vertices in the i-th layer can be written as
the (only) entry of the 1 ◊ 1 matrix given by the product M :=

r
d≠1
i=1 Mi, where Mi

is an ¸i ◊ ¸i+1 matrix with affine forms as entries. One natural complexity measure
of such a representation is the total number of non-zero entries in those matrices,
which is the number of edges in the ABP. Another natural measure, which can only
be smaller, is the sums of dimensions of the matrices involved in the product, which
is the same as the number of vertices in the underlying graph.

Branching programs are also prevalent in boolean complexity theory, and in particu-
lar in the context of derandomising the class RL. In this setting again it only makes
sense to talk about layered graphs.

Unlayered ABPs can also be thought of as (a slight generalization of) skew circuits.
These are circuits in which on every multiplication gate, at least one of the operands
is a variable (or more generally, a linear function).

Edge labels. In Definition 2.1.1 we have allowed each edge label to be an arbitrary
affine linear form in the variables. This is again quite standard, perhaps inspired by
the characterization due to [Nis91], of the ABP complexity of a non-commutative
polynomial as the rank of an associated coefficients matrix.

A more restrictive definition would only allow each edge to be labelled by a linear
function in 1 variable. On the other hand, an even more general definition, which
we sometimes adopt, is to allow every edge to be labelled by an arbitrary polynomial
of degree at most �. In this case we refer to the model as an ABP with edge labels of
degree at most �. Thus, the common case is � = 1, but our results are meaningful
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even when � = Ê(1). Note that this is quite a powerful model, which is allowed to
use polynomials with super-polynomial standard circuit complexity “for free”.

We will recall some of these distinctions in section 3.1, where we discuss previous
results and some of these apply to several of the variants discussed here.

2.2 Our Results

Our first result is a quadratic lower bound on the size of any algebraic branching
program computing some explicit polynomial.

Theorem 2.2.1. Let F be a field and n œ N such that char(F) - n. Then any algebraic
branching program over F computing the polynomial

q
n

i=1 xn
i

is of size �(n2
). When

the ABP’s edge labels are allowed to be polynomials of degree at most �, our lower
bound is �(n2/�).

Note that there also exists an algebraic branching program for
q

n

i=1 xn
i

of size
O(n2/�), which shows that our bound is in fact tight.

A rough sketch of the construction is as follows. The ABP essentially consists of n

parallel paths from the source vertex to the target vertex, with the ith path computing
xn

i
. If the labels on the edges are allowed to have degree Æ �, then each path consists

of n/� edges (Án/�Ë to be more precise), with all the edges on the ith path being
labelled by x�

i
(except possibly the last edge, which is labelled by xn≠�((n/�)≠1)

i
).

For the unlayered case, we prove a weaker superlinear lower bound on the number
of edges. Note that this is weaker than proving a lower bound on the size (defined
to be the number of vertices).

Theorem 2.2.2. Let F be a field and n œ N such that char(F) - n. Then any unlayered
algebraic branching program over F that computes the polynomial

q
n

i=1 xn
i

and has
edges labels of degree at most � must have at least �(n log n/(log log n + log �)) edges.

Previous Work

The best lower bound known for ABPs prior to this work is a lower bound of
�(n log n) on the number of edges for the same polynomial

q
n

i=1 xn
i
. This follows

from the classical lower bound of �(n log n) by [Str73a; BS83] on the number of
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multiplication gates in any algebraic circuit computing the polynomial
q

n

i=1 xn
i

and
the observation that when converting an ABP to an algebraic circuit, the number of
product gates in the resulting circuit is at most the number of edges in the ABP.

Theorem 2.2.1 improves upon this bound quantitatively, and also qualitatively, since
the lower bound is on the number of vertices in the ABP. Further, it is also not
hard to show that

q
n

i=1 xn
i

can be computed by algebraic circuits of size O(n log n).
Therefore, Theorem 2.2.1 gives a super-linear separation between the relative powers
of algebraic circuits and ABPs.

For the case of homogeneous ABPs1 however, a quadratic lower bound for the
polynomial

q
n

i=1 xn
i

was shown by [Kum19]. In a nutshell, the Kumar’s result is
equivalent to a lower bound for ABPs computing the polynomial

q
n

i=1 xn
i

when the
number of layers in the ABP is at most n. In this work, we generalize this to proving
essentially the same lower bound for ABPs with an unbounded number of layers.

In general, an ABP computing an n-variate homogeneous polynomial of degree
poly(n) can be homogenized with a polynomial blow-up in size. This is proved in a
similar manner to the standard classical result of [Str73b] which shows this state-
ment for algebraic circuits. Thus, much like the discussion following Definition 2.1.1,
homogeneity is not an issue when one considers polynomial vs. super-polynomial
sizes, but becomes relevant when proving polynomial lower bounds. In other con-
texts in algebraic complexity this distinction is even more sharp. For example,
exponential lower bounds for homogeneous depth-3 circuits are well known due
to [NW97], but strong enough exponential lower bounds for non-homogeneous
depth-3 circuits would separate VP from VNP (as shown by [Gup+16]).

For unlayered ABPs, the situation is more complex. If the edge labels are only
functions of one variable, then we need to only consider multilinear polynomials
for the lower bound to be non-trivial. It is possible to adapt the techniques of
[Nec66] in order to obtain a lower bound of �̃(n3/2

) for a multilinear polynomial
in this model. This is an argument attributed to Pudlák and sketched by [KW93]
for the boolean model of parity branching programs, but can be applied to the
algebraic setting. However, this argument does not extend to the case where the
edge labels are arbitrary linear or low-degree polynomials in the n variables. The
crux of Nechiporuk’s argument is to partition the variables into m disjoint sets, to
argue (using counting or dimension arguments) that the number of edges labelled by

1An ABP is homogeneous if the polynomial computed between the start vertex and any other vertex is
a homogeneous polynomial. This condition is essentially equivalent to assuming that the number
of layers in the ABP is upper bounded by the degree of the output polynomial.
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variables from each set must be somewhat large,2 and then to sum the contributions
over all m sets. This is hard to implement in models where a single edge can have a
“global” access to all variables, since it is not clear how to avoid over-counting in this
case.

As mentioned above, the lower bound of [BS83; Str73a] does hold in the unlayered
case, assuming the edge labels are linear functions in the variables. However, when
we allow edge labels of degree at most � for some � Ø 2, their technique does not
seem to carry over. Indeed, a key step in the Baur-Strassen proof is the claim that
if a polynomial f has a circuit of size · , then there is a circuit of size O(·) which
computes all its first order partial derivatives. This statement does not seem to hold
if we equip the circuit with the ability to compute such low-degree polynomials “for
free”.

By suitably extending the techniques of [Ben83; Ben94], however, it is possible
to get an �(n log n/ log �) lower bound for this model for a different polynomial.
Our lower bounds are weaker by at most a doubly-logarithmic factor; however, the
techniques are completely different. Ben-Or’s proofs rely on strong modern results
in algebraic geometry, whereas our proofs are elementary.

Proof Overview

The first part in the proof of Theorem 2.2.1 is an extension of the lower bound proved
by [Kum19] for ABPs with at most n layers. This straightforward but conceptually
important adaptation shows that a similar lower bound holds for any polynomial of
the form

nÿ

i=1
xn

i + Á(x) ,

where the suggestively named Á(x) should be thought of as an “error term” which
is “negligible” as far as the proof in [Kum19] is concerned. The exact structure we
require is that Á(x) is of the form

q
r

i=1 PiQi + R, where Pi, Qi are polynomials with
no constant term and deg(R) Æ n ≠ 1. The parameter r measures the “size” of the
error, which we want to keep small, and the lower bound holds if, for example,
r Æ n/10.

2This is usually guaranteed by constructing a function or a polynomial with the property that given a
fixed set S in the partition, there are many subfunctions or subpolynomials on the variables of S

that can be obtained by different restrictions of the variables outside of S.

2.2 Our Results 27



To argue about ABPs with d layers, with d > n, we use a notion of depth reduction
which is reminiscent of similar statements in the context of matrix rigidity. We show
that unless the size · of the ABP is too large to begin with (in which case there is
nothing to prove), it is possible to find a small set of vertices (of size about ÷ = ·/d)
whose removal adds a small error term Á(x) as above with at most ÷ summands, but
also reduces the depth of the ABP by a constant factor. Repeatedly applying this
operation O(log n) times eventually gives an ABP of depth at most n while ensuring
that we have not accumulated too much “error”,3 so that we can apply the lower
bound from the previous paragraph. In the full proof we have to be a bit more
careful when arguing about the ABP along the steps of the proof above. The details
are presented in section 2.4.

The proof of Theorem 2.2.2 follows the same strategy, although the main impediment
is that general undirected graphs can have much more complex structure than
layered graphs. One of the main ingredients in our proof is (a small variant of) a
lemma of [Val77], which shows that every graph of depth 2

k with m edges contains
a set of < m/k edges whose removal reduces the depth of the graph to 2

k≠1. This
lemma helps us identify a small set of vertices which can reduce the depth of the
graph by a constant factor while again accumulating small error terms.

Interestingly, Valiant originally proved this lemma in a different context, where he
showed that linear algebraic circuits of depth O(log n) and size O(n) can be reduced
to a special type of depth-2 circuits (and thus strong lower bounds on such circuits
imply super-linear lower bounds on circuits of depth O(log n)). This lemma can
be also used to show that boolean circuits of depth O(log n) and size O(n) can be
converted to depth-3 circuits of size 2

o(n), and thus again strong lower bounds on
depth-3 circuits will imply super-linear lower bounds on circuits of depth O(log n).
Both of these questions continue to be well known open problems in algebraic and
boolean complexity, and to the best of our knowledge, our proof is the first time
Valiant’s lemma is successfully used in order to prove circuit lower bounds for explicit
functions or polynomials.

Elementary Symmetric vs Power Symmetric Polynomials. We remark that the
lower bound in Theorem 2.4.1 also holds for elementary symmetric polynomials
of degree 0.1n on n variables. However, the proof seems a bit simpler and more
instructive for the case of power symmetric polynomials and so we state and prove

3It takes some care in showing that the total number of error terms accumulated is at most n/10

as opposed to the obvious upper bound of O(n log n). In particular, we observe that the number
of error terms can be upper bounded by a geometric progression with first term roughly ·/n and
common ratio being a constant less than 1.
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the theorem for these polynomials. In general, these lower bounds hold for any
family of polynomials of high enough degree whose zeroes of multiplicity at least
two lie in a low dimensional variety, or more formally, an analogue of Claim 2.4.7 is
true. In particular, such a statement is true for the elementary symmetric polynomial
(see, for example, Lemma 3.2.5).

2.3 Preliminaries

All logarithms in this chapter are base 2.

We use some standard graph theory terminology: If G is a directed graph and (u, v)

is an edge, v is called the head of the edge and u the tail. The directed graphs
studied here are always acyclic with a designated source vertex s and a sink vertex t.
The depth of a vertex v, denoted depth(v), is the length (in edges) of a longest path
from s to v. The depth of the graph, denoted by depth(G), is the depth of t.

For any two vertices u and v in an ABP, the polynomial computed between u and
v is the sum of weights of all paths between u and v in the ABP. We denote this by
[u, v].

The formal degree of a vertex u in an ABP denoted fdeg(u), is defined inductively as
follows: If s is the start vertex of the ABP, fdeg(s) = 0. If u is a vertex with incoming
edges from u1, . . . , uk, labelled by non-zero polynomials ¸1, . . . , ¸k, respectively,
then

fdeg(u) = max
iœ[k]

{deg(¸i) + fdeg(ui)} .

It follows by induction that for every vertex u, deg([s, u]) Æ fdeg(u) (however,
cancellations can allow for arbitrary gaps between the two). Also, note that the
formal degree of vertices is monotonically non-decreasing along any path from the
source vertex to the sink vertex. The formal degree of the ABP is the formal degree
of the sink vertex.

We sometimes denote by x the vector of variables (x1, . . . , xn), where n is under-
stood from the context. Similarly we use 0 to denote the n-dimensional vector
(0, 0, . . . , 0).
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Variety and its Dimension

An important notion we will use in our proofs is that of an affine algebraic variety.
Given a set of polynomials, the algebraic variety defined by these polynomials is
defined to be the set of their common zeros. That is, if S is a set of polynomials on n

variables over a field F, then

V(S) = {a œ Fn
: ’f œ S, f(a) = 0} .

Given a variety, an important property that is studied is its dimension. Intuitively,
it is an appropriate generalisation of the notion of dimension for linear spaces and
roughly captures the degrees of freedom of the variety.

We will not be defining it formally here and refer the interested reader to the book
by Cox, Little and O’Shea [CLO07]. However we state formally the properties, of
dimensions of varieties, that we will be using in our proofs.

Lemma 2.3.1 (Section 2.8 in [Smi14]). Let S be a set of polynomials in n variables
over an algebraically closed field F such that |S| Æ n. Let V = V(S) be the set of
common zeros of polynomials in S. If V is non-empty, then the dimension of V is at
least n ≠ |S|.

Lemma 2.3.2 (Chapter 4 in [CLO07]). Let F be an algebraically closed field, and let
V1 ™ Fn and V2 ™ Fn be two affine varieties such that V1 ™ V2. Then, the dimension of
V1 is at most the dimension of V2.

We now move on to proving our main theorems. In section 2.4 we prove Theo-
rem 2.4.1 whereas in section 2.5 we prove Theorem 2.2.2.

2.4 A Lower Bound Against ABPs

In this section we prove Theorem 2.2.1. We start by restating it.

Theorem 2.4.1. Let F be a field and n œ N such that char(F) - n. Then any algebraic
branching program over F computing the polynomial

q
n

i=1 xn
i

is of size at least �(n2
).

When the ABP’s edge labels are allowed to be polynomials of degree at most �, our
lower bound is �(n2/�).
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For technical reasons, we work with a slightly more general model which we call
multilayered ABPs, which we now define.

Definition 2.4.2 (Multilayered ABP). Let A1, . . . , Ak be k ABPs with d1, . . . , dk layers
and ·1, . . . , ·k vertices, respectively. A multilayered ABP A, denoted by A =

q
k

i=1 Ai,
is the ABP obtained by placing A1, A2, . . . , Ak in parallel and identifying their start
and end vertices respectively. Thus, the polynomial computed by A is

q
k

i=1[Ai], where
[Ai] is the polynomial computed by Ai.

The number of layers of A is d := max {d1, . . . , dk}. The size of A is the number of
vertices in A, and thus equals

|A| := 2 +

ÿ

i

(·i ≠ 2) . ⌃

Note that this model is an intermediate model between (layered) ABPs and unlayered
ABPs: given a multilayered ABP of size · it is straightforward to construct an
unlayered ABP of size O(·) which computes the same polynomial.

A Decomposition Lemma

The following lemma gives a decomposition of a (possibly unlayered) ABP in terms
of the intermediate polynomials it computes. Its proof closely resembles that of
Lemma 3.5 in [Kum19]. For completeness we prove it here for a slightly more
general model.

Lemma 2.4.3 ([Kum19]). Let B be a (possibly unlayered) algebraic branching program
which computes a degree d polynomial P œ F[x1, . . . xn], and has formal degree d.
Further, assume that the edges of B are labelled by arbitrary polynomials of degree
at most �, where 1 Æ � Æ d/2. Set dÕ

= Âd/�Ê. For any i œ {1, 2, . . . , dÕ
≠ 1}, let

Si = {ui,1, ui,2, . . . , ui,m} be the set of all vertices in B whose formal degree is in the
interval [i�, (i + 1)�).

Then, there exist polynomials Qi,1, Qi,2, . . . , Qi,m and Ri, each of degree at most d ≠ 1

such that

P =

mÿ

j=1
[s, ui,j ] · Qi,j + Ri .
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Proof. Fix i as above and set Si = {ui,1, ui,2, . . . , ui,m} as above (observe that since
each edge label is of degree at most �, Si is non empty). Further suppose, without
loss of generality, that the elements of Si are ordered such that there is no directed
path from ui,j to ui,jÕ for jÕ > j.

Consider the unlayered ABP B1 obtained from B by erasing all incoming edges to
ui,1, and multiplying all the labels of the outgoing edges from ui,1 by a new variable
y1. The ABP B1 now computes a polynomial of the form

P Õ
(y1, x1, . . . , xn) = y1 · Qi,1 + Ri,1

where P = P Õ
([s, ui,1], x1, . . . , xn). Ri,1 is the polynomial obtained from B1 by

setting y1 to zero, or equivalently, removing ui,1 and all its outgoing edges.

The same step is similarly applied on B1 with ui,2 to obtain B2 and so on till we
obtain the ABP Bm that computes

P =

mÿ

j=1
[s, ui,j ] · Qi,j + Ri.

(See Figure 2.1 for an illustration of this decomposition). Indeed, observe that since
there is no path from ui,j to ui,jÕ for jÕ > j, removing ui,j does not change [s, ui,jÕ ].
The bound on the degrees of Qi,j is immediate from the fact that the formal degree
of the ABP is at most d and fdeg(ui,j) Ø 1. It remains to argue the deg(Ri) Æ d ≠ 1.

The polynomial Ri is obtained from B by erasing all the vertices in Si and the edges
touching them. We will show that every path in the corresponding ABP computes a
polynomial of degree at most d ≠ 1. Let s = v1, v2, . . . , vr = t be such a path, which
is also a path in B. Let vk be the minimal vertex in the path whose degree (in B)
is at least (i + 1)� (if no such vk exists, the proposition follows). As vk≠1 ”œ Si, the
formal degree of vk≠1 is at most i� ≠ 1. The degree of the polynomial computed by
this path is thus at most i� ≠ 1 + � + D = (i + 1)� ≠ 1 + D, where D is the degree
of product of the labels on the path vk, vk+1, . . . , t. To complete the proof, it remains
to be shown that D Æ d ≠ (i + 1)�.

Indeed, if D Ø d ≠ (i + 1)� + 1 then since the degree of vk is at least (i + 1)�, there
would be in B a path of formal degree at least (i + 1)� + D Ø d + 1, contradicting
the assumption on B.
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s

ui,1

ui,2

...

ui,m

t

[s, ui,1]

[s, ui,2]

[s, ui,m]

Qi,1

Qi,2

Qi,m

v w

[s, ui,1]

Figure 2.1.: Decomposing an ABP by expanding an intermediate layer as in Lemma 2.4.3. Zigzag
edges represent paths in the graph and not necessarily a single edge. The gray path
does not pass through any vertex in Si. Note that paths from ui,j to ui,jÕ for j

Õ
< j are

possible, but are not depicted for simplicity.

A Robust Lower Bound for ABPs of Formal Degree At Most n

In this section, we prove a lower bound for the case where the formal degree of
every vertex in the ABP is at most n. In fact, [Kum19] has already proved a quadratic
lower bound for this case.

Theorem 2.4.4 ([Kum19]). Let n œ N and let F be a field such that char(F) - n.
Then any algebraic branching program of formal degree at most n which computes the
polynomial

q
n

i=1 xn
i

has at least �(n2
) vertices.

However, to prove Theorem 2.4.1, we need the following more “robust” version of
Theorem 2.4.4, which gives a lower bound for a larger class of polynomials. For
completeness, we also sketch an argument for the proof which is a minor variation
of the proof of Theorem 2.4.4.

Theorem 2.4.5. Let n œ N and let F be field such that char(F) - n. Further, let
A1(x), . . . , Ar(x), B1(x), . . . , Br(x) and R(x) be polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R is a polynomial of degree at most n ≠ 1. Then, any (possibly
unlayered) algebraic branching program over F, of formal degree at most n and edge
labels of degree at most � Æ n/10, which computes the polynomial

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R
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has at least (n/2≠r)n
2� vertices.

The proof of the theorem follows from Lemma 2.4.3 and the following lemma
which is a slight generalization of [Kum19, Lemma 3.1]. We include a proof for
completeness.

Lemma 2.4.6. Let n œ N, and let F be an algebraically closed field such that char(F) - n.
Let {P1, . . . , Pm, Q1, . . . , Qm} and {A1, . . . , Ar, B1, . . . , Br} be a set of polynomials in
F[x1, . . . , xn] such that the set of their common zeros

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br) ™ Fn

is non-empty. Finally, suppose R is a polynomial in F[x] of degree at most n ≠ 1, such
that

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj = R +

mÿ

i=1
Pi · Qi.

Then, m Ø
n

2 ≠ r.

Proof. By Lemma 2.3.1, since V ”= ÿ, dim(V ) Ø n ≠ 2m ≠ 2r. Now note that every
element of V is also a zeros with multiplicity two of

q
n

i=1 xn
i

≠ R, since

nÿ

i=1
xn

i ≠ R =

mÿ

i=1
Pi · Qi ≠

rÿ

j=1
Aj · Bj .

Therefore, the set of zeroes of multiplicity two of
q

n

i=1 xn
i

≠ R has dimension at
least n ≠ 2m ≠ 2r. In other words, if S is the set of common zeros of the set of all
first order partial derivatives of

q
n

i=1 xn
i

≠ R, then dim(S) Ø n ≠ 2m ≠ 2r. Up to
scaling by n (which is non-zero in F, by assumption), the set of all first order partial
derivatives of

q
n

i=1 xn
i

≠ R is given by

;
xn≠1

i
≠

1

n
ˆxi

R
<

iœ[n]
.

Thus, the statement of this lemma immediately follows from the following claim.

Claim 2.4.7 (Lemma 3.2 in [Kum19]). Let F be an algebraically closed field, and D a
positive natural number. For every choice of polynomials g1, g2, . . . gn œ F[x] of degree
at most D ≠ 1, the dimension of the variety

V(xD

1 ≠ g1, xD

2 ≠ g2, . . . , xD

n ≠ gn)
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is zero.

Indeed, the above claim shows that 0 = dim(S) Ø n ≠ 2m ≠ 2r, and so it must be
the case that m Ø

n

2 ≠ r. This completes the proof of Lemma 2.4.6.

We now use Lemma 2.4.3 and Lemma 2.4.6 to complete the proof of Theorem 2.4.5.

Proof of Theorem 2.4.5. Let B be an algebraic branching program of formal degree
at most n, edge labels of degree at most � Æ n/10, and with start vertex s and end
vertex t, which computes

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R.

We may assume without loss of generality that F is algebraically closed, by interpret-
ing B as an ABP over the algebraic closure of F, if necessary.

Let nÕ
= Ân/�Ê and k œ {1, 2, . . . , nÕ

≠ 1} be a arbitrarily fixed. Further, let Vk =

{vk,1, vk,2, . . . , vk,m} be the set of all vertices in B whose formal degree lies in
the interval [k�, (k + 1)�). Letting P Õ

j
= [s, vk,j ], by Lemma 2.4.3, there exist

polynomials QÕ
1, QÕ

2, . . . , QÕ
m and RÕ, each of degree at most n ≠ 1 such that

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R =

mÿ

j=1
P Õ

j · QÕ
j + RÕ .

Let –j , —j be the constant terms in P Õ
j
, QÕ

j
respectively. Then by defining

Pj = P Õ
j ≠ –j and Qj = QÕ

j ≠ —j ,

we have that

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj = RÕÕ

+

mÿ

j=1
Pj · Qj .

Here, RÕÕ
= ≠R + RÕ

+
q

m

j=1(–j · QÕ
j

+ —j · P Õ
j

+ –j—j). We now have that for every
i, the constant terms of Pi, Qi are zero and deg(RÕÕ

) Æ n ≠ 1. Let

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br).

Then 0 œ V, and so V ”= ÿ. Thus by Lemma 2.4.6, we know that m Ø
n

2 ≠ r.
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Finally, for k ”= kÕ
œ {1, 2, . . . , nÕ

≠ 1}, Vk fl VkÕ = ÿ. Thus, the number of vertices in
B must be at least

3
n

2
≠ r

4
· (nÕ

≠ 1) Ø

3
n

2
≠ r

4
·

n

2�
.

A Lower Bound for The General Case

The following lemma shows how, given an ABP with d layers which computes
a polynomial F , we can obtain a multilayered ABP whose number of layers is
significantly smaller and computes F plus a small “error term”.

Lemma 2.4.8. Let A be an ABP over a field F with d layers that computes the
polynomial F and has m vertices. Let s, t be the start, end vertices of A respectively
and let L =

Ó
u1, u2, . . . , u|L|

Ô
be the set of vertices in the ¸-th layer of A.

For every i œ {1, 2, . . . , |L|}, let –i and —i be the constant terms of [s, ui] and [ui, t]

respectively. Furthermore, let Pi and Qi be polynomials such that [s, ui] = Pi + –i and
[ui, t] = Qi + —i.

Then there is a multilayered ABP A
Õ computing the polynomial

F ≠

|L|ÿ

i=1
Pi · Qi +

|L|ÿ

i=1
–i · —i

that has size at most |A| and at most max {¸, d ≠ ¸ + 1} layers.

Figure 2.2 gives an intuition for the proof of this lemma. A formal proof is as
follows.

Proof. Let u1, u2, . . . , u|L| be the vertices in L as described, so that

F = [s, t] =

|L|ÿ

i=1
[s, ui] · [ui, t] .

Further, for every i œ {1, 2, . . . , |L|}, [s, ui] = Pi + –i and [ui, t] = Qi + —i, where the
constant terms of Pi and Qi are zero (by definition). Having set up this notation, we
can thus express the polynomial F computed by A as

F = [s, t] =

|L|ÿ

i=1
(Pi + –i) · (Qi + —i) .
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A = f1 · f2

s t
a1 a2

f1 = f Õ
1 + – f2 = f Õ

2 + —

A
Õ
= — · f1 + – · f2 = A¸ ≠ f Õ

1 · f Õ
2 + – · —

s t

a1
—

a2–

s t

— · a1

– · a2

Figure 2.2.: Proof of Lemma 2.4.8 when |L| = 1. When |L| is larger, the proof follows similarly.
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On further rearrangement, this gives

F ≠

Q

a
|L|ÿ

i=1
Pi · Qi

R

b +

Q

a
|L|ÿ

i=1
–i · —i

R

b

=

Q

a
|L|ÿ

i=1
–i · (Qi + —i)

R

b +

Q

a
|L|ÿ

i=1
(Pi + –i) · —i

R

b .

This is equivalent to the following expression.

F ≠

Q

a
|L|ÿ

i=1
Pi · Qi

R

b +

Q

a
|L|ÿ

i=1
–i · —i

R

b

=

Q

a
|L|ÿ

i=1
–i · [ui, t]

R

b +

Q

a
|L|ÿ

i=1
[s, ui] · —i

R

b .

Now, observe that the polynomial
q|L|

i=1[s, ui] · —i is computable by an ABP B with
¸ + 1 layers, obtained by just keeping the vertices and edges within first ¸ layers of
A and the end vertex t, deleting all other vertices and edges, and connecting the
vertex ui in the ¸-th layer to t by an edge of weight —i. Similarly, the polynomial
q|L|

i=1 –i · [ui, t] is computable by an ABP C with at most (d ≠ ¸ + 1) + 1 layers, whose
set of vertices is s along the vertices in the layers ¸, ¸ + 1, ¸ + 2, . . . , d of A. From the
definition of B and C, it follows that the multilayered ABP Ã obtained by taking the
sum of B and C has at most max {¸ + 1, d ≠ ¸ + 2} layers.

We are almost done with the proof of the lemma, except for the upper bound on the
number of vertices of the resulting multilayered ABP Ã, and the fact that the upper
bound on the depth is slightly weaker than claimed. Both these issues can be solved
simultaneously.

The vertices in L appear in both the ABP B and the ABP C and are counted twice in
the size of Ã. However, every other vertex is counted exactly once. Hence,

|B| + |C| = |A| + |L| . (2.4.9)

In order to fix this issue, we first observe that the edges between the vertices in the
¸-th layer of B and the end vertex t are labelled by —1, —2, . . . , —|L|, all of which are
field constants. In the following claim, we argue that for ABPs with this additional
structure, the last layer is redundant and can be removed.
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Claim 2.4.10. Let M be an ABP over F with k + 1 layers and edge labels of degree at
most � such that the labels of all the edges between the k-th layer of M and its end
vertex are scalars in F. Then, there is an ABP M

Õ with k layers computing the same
polynomial as M, with edge labels of degree at most �, such that

--MÕ-- Æ |M| ≠ |V | ,

where V is the set of vertices in the k-th layer of M.

An analogous statement, with an identical proof, is true if we assume that all edge
labels between the first and second layer are scalars in F.

We first use Claim 2.4.10 to complete the proof of the lemma. As observed above,
the edge labels between the last layer L of B and its end vertex are all constants.
Hence, by Claim 2.4.10, there is an ABP B

Õ which computes the same polynomial as
B such that |B

Õ
| Æ |B| ≠ |L|, and B

Õ has only ¸ layers. Similarly, we can obtain an
ABP C

Õ with at most d ≠ ¸ + 1 layers.

We consider the multilayered ABP A
Õ by taking the sum of B

Õ and C
Õ. Clearly, the

number of layers in A
Õ is at most max{¸, d ≠ ¸ + 1} and the size is at most

--AÕ-- Æ
--BÕ-- +

--CÕ-- Æ (|B| ≠ |L|) + (|C| ≠ |L|) Æ |A| .

Here, the second inequality follows by Claim 2.4.10 and the last one follows by
Equation 2.4.9. To complete the proof of the lemma, we now prove Claim 2.4.10.

Proof of Claim 2.4.10. For the proof of the claim, we focus on the k-th and (k ≠ 1)-st
layer of M. To this end, we first set up some notation. Let {v1, v2, . . . , vr} be the set
of vertices in the k-th layer of M, {u1, u2, . . . , urÕ} be the set of vertices in (k ≠ 1)-st
layer of M, and a, b denote the start and the end vertices of M respectively. Then,
the polynomial computed by M, can be decomposed as

[a, b] =

rÿ

i=1
[a, vi] · [vi, b] .

Note that (vi, b) is an edge in the ABP. Similarly, the polynomial [a, vi] can be written
as

[a, vi] =

r
Õÿ

j=1
[a, uj ] · [uj , vi] .
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Before After

Figure 2.3.: Illustration of the removal the last layer of the ABP when all the edges to the sink
vertex are constants, as in Claim 2.4.10. The figure only shows the last layers of the
ABP. For every i œ [r], the label [vi, b] is a field constant.

Combining the two expressions together, we get

[a, b] =

rÿ

i=1
[vi, b] ·

Q

a
r

Õÿ

j=1
[uj , vi] · [a, uj ]

R

b ,

which on further rearrangement, gives us

[a, b] =

r
Õÿ

j=1

A
rÿ

i=1
[vi, b][uj , vi]

B

· [a, uj ] . (2.4.11)

From the hypothesis of the claim, we know that for every i œ [r], the edge label [vi, b]

is a field constant, and the edge label [uj , vi] is a polynomial of degree at most �.
Thus, for every j œ [rÕ

], the expression (
q

r

i=1[ui, b][uj , vi]) is a polynomial of degree
at most �.

This gives us the following natural construction for the ABP M
Õ from M. We delete

the vertices v1, v2, . . . , vr in M (and hence, all edges incident to them), and for every
j œ {1, 2, . . . , rÕ

}, we connect the vertex uj with the end vertex b using an edge with
label (

q
r

i=1[vi, b][uj , vi]) (see also Figure 2.3). The upper bound on the size and the
number of layers of M

Õ is immediate from the construction, and that it computes
the same polynomial as M follows from Equation 2.4.11.

We now prove a simple generalization of Lemma 2.4.8 for a multilayered ABP.

Lemma 2.4.12. Let A =
q

m

i=1 Ai be a multilayered ABP with d layers over a field F
computing the polynomial F , such that each Ai is an ABP with di layers. Also, let ¸i,j

be the number of vertices in the j-th layer of Ai (¸i,j = 0 if Ai has fewer than j layers),
and ¸ = minjœ(d/3,2d/3) {

q
m

i=1 ¸i,j}.
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Then, there is a multilayered ABP with at most 2d/3 layers and size at most |A| that
computes a polynomial of the form

F ≠

¸ÿ

i=1
Pi · Qi + ” ,

where {P1, . . . , P¸, Q1, . . . , Q¸} is a set of non-constant polynomials with constant term
zero and ” œ F.

Proof. Let j0 œ (d/3, 2d/3) be the natural number which minimizes the quantity
q

m

i=1 ¸i,j , and let S ™ [m] be the set of all indices i such that Ai has at least j0 layers.
Let A

Õ
=

q
iœS Ai and A

ÕÕ
=

q
i/œS Ai. Thus,

A = A
Õ
+ A

ÕÕ.

Here, A
ÕÕ

=
q

i/œS Ai is a multilayered ABP with at most 2d/3 layers. Moreover,
|A| = |A

Õ
| + |A

ÕÕ
|.

The idea now is to apply Lemma 2.4.8 to every ABP in A
Õ. For every i œ S, we know

that there exist some polynomials Pi,1, . . . , Pi,¸i,j0
, Qi,1, . . . , Qi,¸i,j0

with constant
terms zero and a constant ”i, such that

Fi ≠

¸i,j0ÿ

r=0
Pi,rQi,r + ”i

can be computed by a multilayered ABP. Let us denote this multilayered ABP by Bi.

From Lemma 2.4.8, we know that Bi has at most max{j0, di ≠ j0 + 1} Æ 2d/3 layers
and size at most |Ai|. Taking a sum over all i œ S and re-indexing the summands,
we get that there exist polynomials P1, . . . , P¸, Q1, . . . , Q¸ with constant terms zero
and a constant ” such that the polynomial

ÿ

iœS

Fi ≠

¸ÿ

r=0
PrQr + ”

is computable by a multilayered ABP B =
q

iœS Bi with at most 2d/3 layers and size
at most

q
iœS |Ai| Æ |A

Õ
|. Now, by combining the multilayered ABPs B and A

ÕÕ, we
get that the polynomial

F ≠

¸ÿ

r=0
PrQr + ”

is computable by a multilayered ABP of size at most |A| and at most 2d/3 layers.

2.4 A Lower Bound Against ABPs 41



We now use Lemma 2.4.12 to prove the following claim.

Claim 2.4.13. Let Ak be a multilayered ABP with edge labels of degree at most �,
dk Ø n/� layers and size at most · that computes a polynomial of the form

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R.

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that for every j,
Aj(0) = Bj(0) = 0 and R(x) is a polynomial of degree at most n ≠ 1.

If · Æ 0.001n2/�, then there exists a multilayered ABP Ak+1 with at most 2dk/3 layers
and size at most · which computes a polynomial of the form

nÿ

i=1
xn

i +

r
Õÿ

j=1
AÕ

j · BÕ
j + RÕ ,

such that rÕ
Æ r + 0.005

n
2

�·dk
, AÕ

1(x), . . . , AÕ
rÕ(x), BÕ

1(x), . . . , BÕ
rÕ(x) are polynomials

such that for every i, AÕ
i
(0) = BÕ

i
(0) = 0 and RÕ

(x) is a polynomial of degree at most
n ≠ 1.

Proof. Let Ak =
q

m

i=1 Ak,i, and for j œ [dk], let ¸i,j be the number of vertices in layer
j of Ak,i. Recall that if the number of layers in Ak,i is strictly less than j, then we set
¸i,j = 0. Let ¸ be the total number of vertices in the middle layers of Ak, defined as

¸ =

mÿ

i=1

Q

a
ÿ

jœ(dk/3,2dk/3)
¸i,j

R

b .

Since ¸ Æ · Æ
0.001n

2
� , by averaging, we know that there is a j0 œ (dk/3, 2dk/3), such

that

¸j0 =

mÿ

i=1
¸i,j0 Æ

¸

dk/3
Æ

0.001n2

�
·

1

dk/3
Æ 0.005

n2

� · dk

.

This condition, together with Lemma 2.4.12, tells us that there is a multilayered ABP
A

Õ
k+1 with at most 2dk/3 layers and size at most · that computes a polynomial of

the form

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R ≠

¸j0ÿ

i=1
Pi · Qi + ” ,
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where P1, . . . , P¸j0
, Q1, . . . , Q¸j0

are a set of non-constant polynomials with constant
term zero and ” œ F. Since ¸j0 Æ 0.005

n
2

�·dk
, the claim follows.

We are finally ready to prove our main theorem, which we restate once more.

Theorem 2.4.14. Let F be a field and n œ N such that char(F) - n. Then any algebraic
branching program over F computing the polynomial

q
n

i=1 xn
i

is of size at least �(n2
).

When the ABP’s edge labels are allowed to be polynomials of degree at most �, our
lower bound is �(n2/�).

Proof. Let A be a multilayered ABP computing the polynomial
q

n

i=1 xn
i

that has d0
layers. As before we may assume, without loss of generality, that the underlying
field F is algebraically closed.

Note that if d0 is at most n/�, then the formal degree of A is at most d0� Æ n. Thus,
by Theorem 2.4.5, we know that |A| is at least �(n2/�) and we are done. Also, if
d0 > n2/�, then again we have our lower bound since each layer of A must have at
least one vertex. Thus, we can assume that n/� Æ d0 Æ n2/�.

The proof idea is to iteratively make changes to A till we get a multilayered ABP A
Õ

of formal degree at most n that computes a polynomial of the type

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R

where r Æ n/10 and A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such
that for every i, Ai(0) = Bi(0) = 0 and R has degree at most n ≠ 1. Once we have
this, we can invoke Theorem 2.4.5 and get the required lower bound.

We now explain how to obtain A
Õ from A using Claim 2.4.13. Let us set A0 = A.

Then, A0 is a multilayered ABP with d0 layers and size at most · that computes the
polynomial

q
n

i=1 xn
i
.

If · Ø 0.001n2/�, the statement of the theorem follows. Otherwise, we apply
Claim 2.4.13 iteratively K times, as long as the number of layers is more than
n/�, to eventually get a multilayered ABP A

Õ
= AK with dÕ

Æ n/� layers. Let
d0, . . . , dK≠1, dK denote the number of layers in each ABP in this sequence, so that
dK≠1 > n/�, and dk Æ 2dk≠1/3 for k œ [K]. A

Õ is an ABP with at most n/� layers
and size at most · , which by induction, computes a polynomial of the form

nÿ

i=1
xn

i +

rÿ

j=1
Aj · Bj + R ,
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where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R(x) is a polynomial of degree at most n ≠ 1. Further, the
number of error terms, r, is at most

0.005n2

�

3
1

dK≠1
+

1

dK≠2
+ · · · +

1

d0

4
.

Since dk Æ
2
3 · dk≠1, we have that 1

dk≠1
Æ

2
3 ·

1
dk

for all k œ [K], so that

r Æ
0.005n2

�
·

1

1 ≠ 2/3
·

1

dK≠1
Æ

n

10

as dK≠1 Ø n/�.

At this point, since the formal degree is at most n, using Theorem 2.4.5 we get

· Ø
--AÕ-- Ø

(n/2 ≠ r)n

2�
= �

A
n2

�

B

.

2.5 Unlayered Algebraic Branching Programs

In this section, we prove Theorem 2.2.2. We begin with the following definition.

Definition 2.5.1. Let A be an unlayered ABP over F. Let s and t denote the start and
end vertices of A, respectively, and let v ”= s, t be a vertex in A. Denote by – œ F the
constant term of [s, v] and by — œ F the constant term of [v, t].

The cut of A with respect to v, denoted cut(A, v), is the unlayered ABP obtained from
A using the following sequence of operations:

1. Duplicate the vertex v (along with its incoming and outgoing edges). Let v1, v2
denote the two copies of v.

2. Erase all outgoing edges of v1, and connect v1 to t by a new edge labelled —.

3. Erase all incoming edges of v2, and connect s to v2 by a new edge labelled –. ⌃

We now prove some basic properties of the construction in Definition 2.5.1.

Claim 2.5.2. Let A be an unlayered ABP over F computing a polynomial F , and let
v be a vertex in A. Denote A

Õ
= cut(A, v). Denote by d the depth of A and by dv the

depth of v in A. Then the following properties hold:

1. A
Õ has 1 more vertex and 2 more edges than A.
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2. The depth of A
Õ is at most

max {depth(A \ {v}), dv + 1, d ≠ dv + 1} ,

where A \ {v} is the ABP obtained from A by erasing v and all of its adjacent
edges.

3. A
Õ computes a polynomial of the form F ≠ P · Q ≠ ” where P and Q have no

constant term, and ” œ F.

Proof. The first property is immediate from the construction. The second property
follows from the following reasoning: each path in A

Õ is of exactly one of the
following types: (a) misses both v1 and v2, (b) passes through v1, or (c) passes
through v2. In case (a), the path also appears in the graph of A \ {v}. In case (b),
the only edge going out of v1 is to t, and all other edges in the path appear in A,
hence the length is at most dv + 1. In case (c), the only edge entering v2 is from s,
hence similarly the path is of length at most d ≠ dv + 1.

It remains to show the last property. Let P Õ
= [s, v] and QÕ

= [v, t] (as computed
in A). Denote P Õ

= P + – where P has no constant term and – œ F and similarly
QÕ

= Q + —. One may write F = P Õ
· QÕ

+ R = (P + –)(Q + —) + R where R is the
sum over all paths in A which do not pass through v. In A

Õ, we have that [s, v1] = P Õ

and [v2, t] = QÕ, and thus A
Õ computes the polynomial

R + – · QÕ
+ P Õ

· — = F ≠ P · Q + –—.

Our goal is to perform cuts on a strategically chosen set of vertices. In order
to select them, will use the following well known lemma of [Val77], simplifying
and improving an earlier result of Erdős, Graham and Szemerédi [EGS75]. For
completeness, we also sketch a short proof.

Lemma 2.5.3 ([Val77]). Let G be a directed acyclic graph with m edges and depth
d Ø

Ô
n. Then, there exists a set EÕ of at most 4m/ log n edges such that removing EÕ

from G results in a graph of depth at most d/2.

Proof. Let dÕ
Ø d Ø

Ô
n be a smallest power of 2 larger than d, so that dÕ

Æ 2d.
Let k = log dÕ. A valid labeling of a directed graph G = (V, E) is a function
f : V æ {0, . . . , N ≠ 1} such that whenever (u, v) is an edge, f(u) < f(v).
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Clearly if G had depth d then there is a valid labeling with image {0, . . . , N ≠ 1} =

{0, . . . , d ≠ 1} by labeling each vertex by its depth. Conversely, if there is a valid
labeling with image {0, . . . , N ≠ 1} then depth(G) Æ N .

Let f be a valid labeling of G with image {0, . . . , dÕ
≠ 1} and for i œ [k] let Ei be the

set of edges such that the most significant bit in which the binary encoding of the
labels of their endpoints differ is i. If Ei is removed, we can obtain a valid relabelling
of the graph with image {0, . . . , dÕ/2 ≠ 1} by removing the i-th bit from all labels.

The two smallest sets among the Ei-s have size at most 2m/k, which is at most
4m/ log n (since k = log dÕ

Ø log n/2). Thus removing them gives a valid labeling
with image {0, . . . , dÕ/4 ≠ 1} and therefore a graph with depth at most dÕ/4 Æ

d/2.

We need a slight variation of this lemma, in which we do not pick edges whose
endpoints have too small or too large a depth in the graph.

Lemma 2.5.4. Let G be a directed acyclic graph with m edges and depth d Ø
Ô

n.
Then, there exist a set U of vertices, of size at most 4m/ log n, such that for every v œ U

we have that d/9 Æ depth(v) Æ 8d/9, and removing U (and the edges touching those
vertices) results in a graph of depth at most 3d/4.

Proof. Let E denote the set of edges of G and EÕ
™ E be the set of edges guaranteed

by Lemma 2.5.3. Let E1 ™ EÕ be the edges in EÕ whose heads have depth at
most d/9, and E2 be the edges in EÕ whose heads have depth at least 8d/9. Let
EÕÕ

= EÕ
\ (E1 fi E2) (see also Figure 2.4). Clearly, |EÕÕ

| Æ |EÕ
| Æ 4m/ log n. Let U

be the set of heads of edges in EÕÕ.

Consider now any path in the graph obtained from G by removing U (and hence
in particular EÕÕ). Given such a path, let e1 be the last edge from E1 in the path
which appears before all edges from E2 (if there exists such an edge), and let e2 the
first edge from E2 (if any) in the path. We partition the path into three (possibly
empty) parts: the first part is all the edges which appear until e1 (including e1); the
second part is all the edges after e1 and before e2; the last part consists of all the
edges which appear after e2 (including e2). Because the head of e1 is a vertex of
depth at most d/9, the first part can contribute at most d/9 edges. The second part
includes only edges from E \ EÕ, and thus its length is at most d/2. The last part
again has depth at most d/9 + 1, as any path leaving a vertex of depth at least 8d/9

can have at most that many edges (here we add 1 to account for the edge e2 itself,
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E1 E2

Figure 2.4.: The types of edges in Lemma 2.5.4. Thick edges were selected to E
Õ by Lemma 2.5.3.

The sets E1 contains the edges in E
Õ of low depth and E2 the edges in E

Õ of large depth.
E

ÕÕ is constructed by removing E1 and E2 edges from E
Õ.

since the assumption is on the depth of the head of e2). Thus, the total length of the
path is at most

d/9 + d/2 + d/9 + 1 Æ 3d/4 .

The set of vertices given by the lemma above will be the vertices according to
which we will cut the ABP. We describe it in the following lemma, and prove some
properties of this operation.

Lemma 2.5.5. Let A be an unlayered ABP over a field F of depth d Ø
Ô

n computing
a polynomial F . Let · be the number of vertices and m be the number of edges in A.
Then there exist an unlayered ABP A

Õ, with at most · + 4m/ log n vertices, at most
m + 8m/ log n edges, and depth at most 9d/10, computing a polynomial of the form
F ≠

q
r

i=1 PiQi ≠ ” where ” œ F is a field constant, the Pi, Qi’s have no constant term,
and r Æ 4m/ log n.

Proof. Let G be the underlying graph of the unlayered ABP A. Let U = {u1, . . . , ur}

be the set of vertices guaranteed by Lemma 2.5.4, such that r Æ 4m/ log n. We
perform the following sequence of cuts on A. Set A0 := A and for i œ [r], Ai =

cut(Ai≠1, ui). Finally A
Õ
= Ar.

The statements of the lemma now follow from the properties of cuts as proved in
Claim 2.5.2. The bound on the number of vertices and edges in A

Õ is immediate.
The claim on the polynomial computed by A

Õ follows by induction on i.

Finally, by induction on i, we have that the depth of A
Õ is at most the maximum

among depth(u1) + 1, . . . , depth(ur) + 1, d ≠ depth(u1) + 1, . . . , d ≠ depth(ur) + 1 and
depth(A \ U), where A \ U is the ABP obtained by removing all vertices in U .

By the choice of U as in Lemma 2.5.4, for every i œ [r] we have that d/9 Æ

depth(ui) Æ 8d/9, and depth(A \ U) Æ 3d/4, which implies the required upper
bound on the depth of A

Õ (assuming n, and hence d, are large enough).
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Repeated applications of Lemma 2.5.5 give the following statement.

Corollary 2.5.6. Let A be an unlayered ABP over a field F, with edge labels of degree at
most � = no(1), computing an n-variate polynomial F . Further suppose A has depth
at least

Ô
n, and that the number of edges in A is at most

n log n/(1000(log log n + log �)) .

Let · denote the number of vertices in A.

Then, there exists an unlayered ABP A
Õ, whose depth is at most n/�, which computes a

polynomial of the form

F ≠

rÿ

i=1
PiQi ≠ ” ,

such that Pi, Qi are all polynomials without a constant term, ” œ F is a field constant,
and r Æ n/10. The number of vertices in A

Õ is at most · + n/10.

Proof. Observe that the depth of A is at most d := n log n. As long as the depth is at
least

Ô
n, apply Lemma 2.5.5 repeatedly at most k := 7(log log n + log �) times, to

obtain an unlayered ABP of depth at most (0.9)
k

· d Æ n/�.

The upper bound on the number of summands PiQi and the number of vertices
after each application is given as a function of the number of edges, which increases
in the process. Hence, we first provide a crude estimate on the number of edges
at each step. For i œ [k], let Ai denote the unlayered ABP obtained after the i-th
application of Lemma 2.5.5, and let mi be the number of edges in Ai.

We claim that by induction on i, mi Æ m0 · (1 + 8/ log n)
i. This is true for i = 0 by

definition. For i Ø 1, since we maintain the invariant that the depth is at least
Ô

n, it
follows from Lemma 2.5.5 that

mi Æ mi≠1 + 8mi≠1/ log n = mi≠1(1 + 8/ log n)

Æ m0(1 + 8/ log n)
i≠1

· (1 + 8/ log n)

where the last inequality uses the induction hypothesis.

Thus, the final unlayered ABP has at most

mk Æ m0(1 + 8/ log n)
k

Æ 2m0

= n log n/(500(log log n + log �)) =: M
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assuming n is large enough (recall that by assumption we have that log � = o(log n),
so that limnæŒ(1 + 8/ log n)

o(log n)
= 1). It is convenient to now use M as a uniform

upper bound on the number of edges in all stages of this process, so that each step
adds at most 4M/ log n summands and vertices. It now follows that r is at most

4kM

log n
Æ

7(log log n + log �) · 4n

500(log log n + log �)
Æ n/10,

and similarly the total number of vertices added throughout the process is at most
n/10.

The lower bound given in Theorem 2.2.2 now follows by a simple win-win argument.
For convenience, we restate the theorem.

Corollary 2.5.7. Let A be an unlayered ABP over a field F, with edge labels of degree at
most � = no(1), computing

q
n

i=1 xn
i
. Then A has at least �(n log n/(log log n + log �)

edges.

Proof. Let · denote the number of vertices in A. If the number of edges is at least
n log n/(1000(log log n + log �)), then we already have our lower bound. Else, the
number of edges is at most n log n/(1000(log log n+log �)). Now, by Corollary 2.5.6,
there exists an unlayered ABP A

Õ, with · + n/10 vertices and depth at most n/�,
computing

q
n

i=1 xn
i

≠
q

r

j=1 PiQi ≠ ”, such that Pj , Qj have no constant term, r Æ

n/10, and ” œ F.

It thus follows that A
Õ has formal degree at most n. By Theorem 2.4.5, it has �(n2/�)

vertices, thus · = �(n2/�), so that the number of edges is also �(n2/�).

A natural open question here is to prove an improved lower bound for unlayered
algebraic branching programs. In particular, in the absence of an obvious non-trivial
upper bound, it seems reasonable to conjecture that any unlayered ABP computing
the polynomial

q
n

i=1 xn
i

has size at least �(n2≠o(1)
).
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Lower Bounds Against General

Algebraic Formulas

3

In this chapter, we study the model of algebraic formulas. Recall that they are
algebraic circuits where the underlying graph is a tree. For polynomials like

q
n

i=1 xn
i
,

a quadratic lower bound on the formula size is immediate. This is because the
degree of the polynomial in every variable is n, and hence there must be at least n

leaves which are labelled by xi for every i. Therefore, for a formula lower bound to
be non-trivial it should hold for a polynomial with bounded individual degrees. We
discuss this further while discussing previous work.

3.1 Our Results

Our main result in this chapter is an �(n2
) lower bound against algebraic formulas

for a multilinear polynomial.

Theorem 3.1.1. Let n œ N and let F be a field of characteristic greater than 0.1n.
Then any algebraic formula over F computing the elementary symmetric polynomial

ESYM
,(n,0.1n)(x) =

ÿ

S™[n],|S|=0.1n

Ÿ

jœS

xj ,

is of size at least �(n2
).

As we will describe while discussing the proof overview, even though formulas can
be simulated by ABPs with little overhead, this theorem is not an immediate corollary
of Theorem 2.2.1 and requires some work. Before we get into those details, let us
look at some prior work on formula lower bounds.

Previous Work

As mentioned earlier, note that any algebraic formula computing the polynomial
q

n

i=1 xn
i

has at least n2 leaves, as since the degree of the polynomials in each of
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the variables xi is n, there must be at least n leaves in the formula which are
labelled by xi. Thus, the number of leaves is at least n ◊ n = n2. Therefore, for
lower bounds for algebraic formulas to be interesting and non-trivial, they must be
asymptotically larger than the sum of the individual degrees of the variables. One
particularly interesting regime of parameters is when the target hard polynomial
has constant individual degree (which can be taken to be 1, essentially without loss
of generality).

The first non-trivial lower bound for algebraic formulas was due to [Kal85] who
proved a lower bound of �(n3/2

) for an n-variate multilinear polynomial (in fact
for the

Ô
n ◊

Ô
n determinant). Kalorkoti’s proof is essentially an algebraic version

of the one by [Nec66] which showed a lower bound of �(n2/ log n) on the size
of Boolean formula in the full binary basis (gates are allowed to be all Boolean
functions on 2 variables). Using very similar arguments, it is possible to show an
�(n2/ log n) lower bound for a different multilinear polynomial (the construction
we describe here is based on a non-multilinear construction given in [SY10]): letÓ

x(j)
i

: i œ [log n], j œ [n/ log n]

Ô
and {yk : k œ [n]} be two sets of n variables each,

and fix a bijection ÿ : 2
[log n]

æ [n]. The hard multilinear polynomial will be

n/ log nÿ

j=1

Q

a
ÿ

S™[log n]
yÿ(S) ·

Ÿ

iœS

x(j)
i

R

b .

It turns out that in general, this technique of Nechipurok and Kalorkoti cannot prove
a lower bound which is asymptotically better than

!
n2/ log n

"
(see, for example,

[Juk12, Remark 6.18]).

In Theorem 3.1.1, we adapt the ideas used in Theorem 2.2.1 to prove an �(n2
) lower

bound for an explicit n variate multilinear polynomial. Thus, while the quantitative
improvement over the previous lower bound is by a mere log n factor, it is interesting
to note that Theorem 3.1.1 gives an asymptotically better lower bound than the best
bound that can be proved using the classical, well known techniques of Nechiporuk
and Kalorkoti.

The n-variate elementary symmetric polynomial of degree 0.1n which, due to a
well known observation of Ben-Or, is also known to be computable by a formula
(in fact, a depth-3 formula) of size O(n2

) over all large enough fields. For a large
regime of parameters, this construction was shown to be tight for depth-3 formulas
(even depth-3 circuits) by [SW01]. Theorem 3.1.1 shows that elementary symmetric
polynomials do not have formulas of size o(n2

) regardless of their depth. Prior to
this work, the only super linear lower bound on the general formula complexity of
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elementary symmetric polynomials we are aware of is the �(n log n) lower bound
of [BS83], which as we mentioned earlier is in fact a lower bound on the stronger
notion of circuit complexity. As far as we understand, Kalorkoti’s proof directly
does not seem to give any better lower bounds on the formula complexity of these
polynomials.

Another mildly interesting point is that there is also an upper bound of O(n log n)
1

on the circuit complexity of the elementary symmetric polynomials due to [BS83].
Hence, our lower bound implies a super-linear separation between the formula
complexity and the circuit complexity of an explicit multilinear polynomial family.

Proof Overview

The proof of Theorem 3.1.1 is similar to that of Theorem 2.2.1 but needs a few
more ideas. A natural attempt at recovering formula lower bounds from ABP lower
bounds is to convert the formula to an ABP and then invoke the lower bound in
Theorem 2.2.1. However, while it is easy to see that a formula can be transformed
into an ABP with essentially no blow up in size, the ABP obtained at the end of
this transformation is not necessarily layered. Therefore, we cannot directly invoke
Theorem 2.2.1. We can still invoke Theorem 2.2.2, but the lower bound thus
obtained is barely super-linear and, in particular, weaker than the known lower
bounds [Kal85; SY10].

For the proof of Theorem 3.1.1, we apply the ideas in the proof of Theorem 2.2.1 in
a non black-box manner. The proof is again in two steps, where in the first step, we
show a lower bound of �(n2

) for polynomials of the form ESYM
,(n,0.1n)(x) + Á(x)

for formulas of formal degree at most 0.1n. Here, Á(x) should again be thought of
as an error term as in the outline of the proof of Theorem 2.2.1.

For formulas of formal degree greater than 0.1n, we describe a simple structural
procedure to reduce the formal degree of a formula, while maintaining its size.
The cost of the procedure is that the complexity of error terms increases in the
process. We argue that starting from a formula of size at most n2 (since otherwise,
we are already done) computing ESYM

,(n,0.1n)(x), we can repeatedly apply this
degree reduction procedure to obtain a formula of formal degree at most 0.1n which
computes the polynomial ESYM

,(n,0.1n)(x) + Á(x), where the error terms is not too

1The key step in the proof refers to a paper that is written in German and we were unable to
reconstruct it. Ramprasad, however, told us about an O(n log

2
n) upper bound which can also be

found on cs.stackexchange.
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complex. Combining this with the robust lower bound for formulas of formal degree
at most 0.1n completes the proof of Theorem 3.1.1.

3.2 Preliminaries

Similar to the previous chapter, we need the notion of affine algebraic varieties and
we refer the reader to section 2.3 for an overview of its definition and some of its
properties. As before, all logarithms are base 2.

Properties of Elementary Symmetric Polynomials

We begin by defining the family of elementary symmetric polynomials formally.

ESYMn,d(x) =

ÿ

S™[n],|S|=d

Ÿ

jœS

xj

We now discuss some properties of the polynomial family. These seem to be well
known and are not original to this work.

Lemma 3.2.1 ([MZ17; LMP19]). Let n, d œ N be natural numbers with 2 Æ d Æ n.
Then, over any field of characteristic at least d + 1, the dimension of the variety V

defined as

V = V
1Ó

ˆxi
ESYM

,(n,d) : i œ [n]

Ô2

is at most d ≠ 2. Here, ˆxi
ESYMn,d(x) is the partial derivative of ESYM

,(n,d) with
respect to the variable xi.

We quickly sketch the outline of a proof of this lemma from [MZ17] for completeness.
The following claim immediately implies the lemma.

Claim 3.2.2. Let a œ Fn be a point in the variety V as defined in Lemma 3.2.1. Then,
at least n ≠ (d ≠ 2) coordinates of a are equal to 0.

To see that the lemma follows from the claim, observe that Claim 3.2.2 implies
that the variety V is a subset of set of fiS™n,|S|=d≠2VS , where VS(™ Fn

) is the set of
points in Fn where the coordinates in S are all set to zero, and the other coordinates
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take all possible values in F. Thus, each VS is a variety of dimension d ≠ 2, and V is
contained in a union of such varieties. Therefore, the dimension of V cannot exceed
d ≠ 2. We now sketch the proof of the claim. For that we need the following folklore
fact, often attributed to Euler.

Fact 3.2.3 (Differentiation of Homogeneous Polynomials). Suppose A(x1, . . . , xk) is
a homogeneous polynomial of degree t. Then

q
k

i=1 xi ·
ˆA

ˆxi
= t · A(x1, . . . , xk).

Proof of Claim 3.2.2. The proof is via induction on the degree of the elementary
symmetric polynomials being considered. Note that we only consider the cases when
the degree, d, satisfies 2 Æ d Æ n.

For the base case, we show that the claim is true whenever 2 = d Æ n. In this case,
the partial derivative ˆxi

ESYMn,2(x) =
q

j ”=i xj . Now for any a œ Fn, all the linear
forms

Óq
j ”=i aj

Ô

iœ[n]
vanish exactly when each aj is zero. This implies the claim.

For the induction step, let us fix d > 2 and assume that the claim holds for
ESYMn,r(x) for all r œ N with 2 Æ r Æ d ≠ 1 and n Ø r. We then prove the
claim for ESYMn,d(x) for every n Ø d.

For any n Ø d, from the definition of elementary symmetric polynomials, observe
that

ˆxi
ESYMn,d(x) = ESYMn,d≠1(x) ≠ xi · ˆxi

ESYMn,d≠1(x) . (3.2.4)

If we add up the equations above for each i œ [n], we get

ÿ

iœ[n]
ˆxi

ESYMn,d(x) = n · ESYMn,d≠1(x) ≠

ÿ

iœ[n]
xi · ˆxi

ESYMn,d≠1(x) .

From Fact 3.2.3, this can be simplified to

ÿ

iœ[n]
ˆxi

ESYMn,d(x) = n · ESYMn,d≠1(x) ≠ (d ≠ 1) · ESYMn,d≠1(x) .

Thus, it follows that for every a œ Fn where all the first order partial derivatives
of ESYMn,d(x) vanish, it must be the case that ESYMn,d≠1(x) is also zero at a.
Moreover, from Equation 3.2.4, this implies that each of the polynomials in the set

{xi · ˆxi
ESYMn,d≠1(x) : i œ [n]}
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must also vanish at a. Now if k of the coordinates of a are equal to 0, and S is the
subset of non-zero coordinates of a, it must be the case that the polynomials

{ˆxi
ESYMn≠k,d≠1(x) : i œ S}

vanish at the point aS œ Fn≠k, where aS is the n ≠ k dimensional vector obtained by
projecting a to the set S of its coordinates.

By the induction hypothesis, we know that for every r Æ d ≠ 1 and m Ø r, any
common zero of all the first order partial derivatives of ESYMm,r(x) must be zero
in at least m ≠ (r ≠ 2) coordinates. But aS is a common zero with support n ≠ k of
all the first order partial derivatives of ESYMn≠k,d≠1(x).

Thus, if n ≠ k Ø d ≠ 1( =∆ k Æ (n ≠ d + 1)), then by the induction hypothesis,

no. of zero co-ordinates in aS = 0 Ø n ≠ k ≠ (d ≠ 3) =∆ k Ø n ≠ d + 3

which would lead to a contradiction. The only other case then, is that

d ≠ 1 > n ≠ k =∆ k Ø n ≠ (d ≠ 2).

Thus, a is zero on at least n ≠ (d ≠ 2) of its coordinates.

We will also need the following strengthening of a result by Limaye, Mittal and
Pareek [LMP19] in our proof.

Lemma 3.2.5 ([MZ17; LMP19]). Let n, d œ N be natural numbers with 2 Æ d Æ n

and let F be a field of characteristic greater than d. Let R1, R2, . . . , Rn œ F[x] be
polynomials of degree at most d ≠ 2. Then, the dimension of the variety V defined as

V = V
1Ó

ˆxi
ESYM

,(n,d) ≠ Ri : i œ [n]

Ô2

is at most d ≠ 2.

For the sake of completeness, we provide a proof for a slightly more general state-
ment. In this regard, we first introduce a couple of notations.

Notation 3.2.6. For a polynomial f , let Homd(f) denote the d-th homogeneous compo-
nent of f . Also, suppose we fix an ordering < on the monomials in F[x] that is graded
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according to degree. Then for any ideal I ™ F[x], we denote by LM(I) the leading
monomial ideal of I. That is,

LM(I) = {m : m is a leading monomial (w.r.t. <) for some polynomial in I} .⌃

Lemma 3.2.7. Let {f1, . . . , fk} be a set of homogeneous polynomials such that
deg(fi) = di. Let R1, . . . , Rk be polynomials such that deg(Ri) < di, and let
I = Èf1, . . . , fkÍ and I Õ

= Èf1 + R1, . . . .fk + RkÍ. Then,

dim(V(I Õ
)) Æ dim(V(I))

Proof. The proof follows from the following claim.

Claim 3.2.8. If {f1, . . . , fk} are homogeneous polynomials and deg(fi) = di, and let
I, I Õ as in Lemma 3.2.7. Then LM(I) ™ LM(I Õ

).

Indeed, by the statement of the claim,

LM(I) ™ LM(I Õ
) =∆ V(LM(I Õ

)) ™ V(LM(I))

(see, for example, [CLO07, Section 4.2])

=∆ dim(V(LM(I Õ
))) Æ dim(V(LM(I))) =∆ dim(V(I Õ

)) Æ dim(V(I)).

The last implication follows from the fact that dim(V(LM(J))) = dim(V(J)) for any
ideal J (see, for example, [CLO07, Section 9.3]).

Thus, to finish the proof of Lemma 3.2.7, we need to prove Claim 3.2.8.

Proof of Claim 3.2.8. Let m œ LM(I) be the leading monomial in
q

k

i=1 gi · fi, and
let d = deg(m). Since fi is homogeneous of degree di, m continues to be the leading
monomial in

q
k

i=1 Homd≠di
(gi) · fi, and hence in

q
k

i=1 Homd≠di
(gi) · (fi + Ri). This

shows that m œ LM(I Õ
).

Using Lemma 3.2.1 and Lemma 3.2.7, it is easy to see that Lemma 3.2.5 holds.
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3.3 A Lower Bound Against Algebraic Formulas

Theorem 3.3.1. Any algebraic formula computing the polynomial ESYM
,(n,0.1n)(x)

over a field of characteristic greater than 0.1n has size at least �
!
n2"

.

Recall that the polynomial we prove the lower bound for is the elementary symmetric
polynomial on n-variables of degree 0.1n, which is defined as follows.

ESYM
,(n,0.1n)(x) =

ÿ

S™[n],|S|=0.1n

Ÿ

jœS

xj

A few properties of the elementary symmetric polynomials are needed for our proof,
and we first discuss them. These seem to be well known and are not original to this
work.

A Degree Reduction Procedure

We will now prove a statement similar to Lemma 2.4.12 for the case of formulas. We
start with a few preliminary remarks. It is common to define the size of the formula
as the number of leaves (which is, up to a factor of 2, the total number of vertices in
the formula). For us it is a bit more convenient to define the size of the formulas as
the number of leaves labelled by variables (rather than field constants), and prove a
lower bound on this measure.

The formal degree of a vertex in the formula is defined by induction in the natural
way. If v is a leaf labelled by variable, its formal degree is 1. If v is a leaf labelled
by a field constant, its formal degree is 0. The formal degree of a sum gate is the
maximum between the formal degree of its children, and the formal degree of a
product gate is the sum of the formal degrees of its children.

The formal degree of the formula is the formal degree of its output gate.

We start by a simple observation which can be proved by induction on the structure
of the formula.

Observation 3.3.2. The size of a formula is at least as large as its formal degree.

To avoid cumbersome notation, we identify a formula � with the polynomial it
computes. For a vertex v in the formula �, we denote by �v subformula rooted at v

(and similarly identify �v with the polynomial it computes).
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Lemma 3.3.3. Let � œ F[x] be a formula of formal degree d. Then, for every t œ N
such that 2t Æ d, there is a vertex v in � of formal degree at least t and at most 2t ≠ 1.

Moreover, there are polynomials h, f œ F[x] such that � © h · �v + f and for every
“ œ F, the polynomial “h + f œ F[x] can be computed by a formula of size at most
|�| ≠ |�v|.

Proof. From the definition of formal degree, recall that for every + gate of formal
degree k, at least one of its children also has formal degree k, and for every ◊ gate
of formal degree k, at least one of its children has formal degree at least Ák/2Ë.
To get our hands on the vertex v of formal degree in the interval [t, 2t ≠ 1] in the
formula �, we start from the root of � and traverse down, such that in every step if
the degree of the current vertex w is at least 2t, then we traverse down to its child
with the larger degree (breaking ties arbitrarily). We stop the first time we reach a
vertex v of formal degree at most 2t ≠ 1. The claim is that such a vertex must have
formal degree at least t.

To see the lower bound of t on the degree of v, recall that the formal degree of � is
at least 2t and by definition, v is the first vertex on the unique path from v to the
root of � with formal degree at most 2t ≠ 1. Thus, the parent of v must have formal
degree at least 2t. We also know that at any stage of this walk down from the root,
we go from a vertex to its child with the higher formal degree. Therefore, the formal
degree of v is at least half of the degree of its parent, i.e., at least 1

2 · 2t = t.

Consider now that formula obtained from � by replacing all the subtree rooted at v

with a leaf labelled by a new variable y. This new formula �
Õ computes a polynomial

of the form h · y + f , and by replacing y with �v we recover the formula �, thus
� © h · �v + f .

The size of �
Õ is |�| ≠ |�v| + 1. For every fixed “ œ F we can actually compute “h + f

by replacing the leaf labelled y in �
Õ by the constant “ (recall that we do not count

leaves labelled by constant in or definition of size).

We now use Lemma 3.3.3 inductively to get the following decomposition.

Lemma 3.3.4. Let � be a formula of size s and formal degree at most d. Then there
exist k œ N polynomials g1, . . . , gk, h1, . . . , hk and a formula �

Õ such that the following
are true.

• The degree of each gi is at least Âd/3Ê and at most 2Âd/3Ê ≠ 1 and each hi has
degree at least 1.
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• �
Õ has formal degree at most 2Âd/3Ê and size at most s.

• The constant term of each gi and hi is zero.

• There exists a constant c œ F such that

� © �
Õ
+

kÿ

i=1
gihi + c .

• kÂd/3Ê Æ s.

Proof. For brevity, let us assume that d is divisible by 3, and let t = d/3. The proof
of the lemma essentially follows from a repeated application of Lemma 3.3.3, where
we keep extracting vertices of degree at least t till the total degree becomes smaller
than 2t. We now give the details.

Since the formal degree of � is at least 2t, from Lemma 3.3.3, we know that there is
a vertex v1 in � with formal degree in the interval [t, 2t ≠ 1] and polynomials hÕ

1 and
f1 satisfying the following properties.

• � © hÕ
1 · �v1 + f1.

• For every “ œ F, “hÕ
1 + f1 can be computed by a formula of size at most

|�| ≠ |�v1 |.

Let gÕ
1 = �v1 and s1 = |�v1 |. Let –, — œ F be the constant terms of gÕ

1 and hÕ
1

respectively, and let g1 and h1 be polynomials with constant term zero such that
gÕ

1 = g1 + – and hÕ
1 = h1 + —. We know that � © hÕ

1 · gÕ
1 + f1, or in other words,

� © (h1 + —) · (g1 + –) + f1. Rearranging the terms, we get

� © g1h1 + —(g1 + –) + –(h1 + —) + f1 ≠ –— .

This can be re-written as

� © g1h1 + —gÕ
1 +

!
–hÕ

1 + f1
"

≠ –— .

Observe that –hÕ
1 + f1 can be computed by a formula �1 of size at most s ≠ s1.

Also, the constant terms of g1, h1 are both zero and —gÕ
1 is computable by a formula

�
Õ
v1 © — · �v1 of formal degree at most 2t ≠ 1 and size s1 (which is also a sub-formula

of �). In a nutshell, in one application of Lemma 3.3.3, we have decomposed � into
a sum of a formula �

Õ
v1 of size s1 and formal degree at most 2t ≠ 1, a formula �1 of

size at most s ≠ s1, a constant term and a product of two constant free polynomials
g1h1, where g1 has degree at least t and h1 has degree at least 1. To see the lower
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bound on the degree of h1, note that if h1 is of degree zero, then it must be identically
zero (since it is constant free), and this term just vanishes.

Now, consider the formula �1. If the formal degree of �1 is at most 2t ≠ 1, then we
are already done by letting �

Õ in the statement of the theorem be the sum of �1 and
�

Õ
v1 (indeed, the size of �

Õ is at most (s ≠ s1) + s1 = s). Else, observe that the size
of �1 is strictly smaller than the size of �. All the items of the lemma (except the
last item) now follow from a simple induction on the formula size.

To see the upper bound on k given by the last item, note that the formulas for the
polynomials gÕ

1, gÕ
2, . . . , gÕ

k
obtained in each of the steps, whose sizes are s1, . . . , sk,

respectively, are all disjoint subformulas of � and have formal degree at least t each.
Thus, by Observation 3.3.2, si Ø t for all i œ [k], and hence, the size of � is at least
kt = kÂd/3Ê.

A Quadratic Lower Bound Against Formulas

We are now ready to prove the lower bound on the formula size computing the
elementary symmetric polynomial ESYM

,(n,0.1n)(x). As was the case with ABPs,
before we prove Theorem 3.3.1, we need to prove the lower bound for formulas
whose formal degree is at most 0.1n.

Theorem 3.3.5. Let n œ N, and let F be a field of characteristic greater than 0.1n.
Let A1(x), . . . , Ar(x), B1(x), . . . , Br(x) and R(x) be polynomials such that for every
i, Ai(0) = Bi(0) = 0 and R is a polynomial of degree at most 0.1n ≠ 1. Then, for
every r Æ 0.1n, any formula over F, of formal degree at most 0.1n which computes the
polynomial

ESYM
,(n,0.1n)(x) +

rÿ

j=1
Aj · Bj + R

has at least 0.001n2 vertices.

Proof. Let F be a size s formula that computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rÿ

j=1
Aj · Bj + R

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) and R(x) are as in the statement of the
lemma.
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By Lemma 3.3.4, we know that the polynomial computed by F has the form

RÕ
+

kÿ

i=1
gihi + c

where RÕ has degree at most 2 Â0.1n/3Ê Æ 0.1n ≠ 1, the constant terms of gi and hi

are zero, and s Ø k · Â0.1n/3Ê.

Thus,

ESYM
,(n,0.1n)(x) +

rÿ

j=1
Aj · Bj + R = RÕ

+

kÿ

i=1
gihi + c

=∆ ESYM
,(n,0.1n)(x) + RÕÕ

=

kÿ

i=1
gihi ≠

rÿ

j=1
Aj · Bj

where RÕÕ
= R ≠ RÕ

≠ c has degree at most 0.1n ≠ 1. This shows that if we consider

V = V
1Ó

ˆxi
ESYM

,(n,0.1n)(x) ≠ ˆxi
RÕÕ

: i œ [n]

Ô2

and

V Õ
= V ({gi, hi, Aj , Bj : i œ [k], j œ [r]}) ,

then V Õ
™ V and V Õ

”= ÿ.

Now by Lemma 3.2.5, we know that dim(V ) Æ 0.1n ≠ 2. Therefore, since V Õ
”= ÿ,

dim(V Õ
) Ø n ≠ 2k ≠ 2r (see, for example, [Smi14, Section 2.8]). Hence,

n ≠ 2k≠2r Æ 0.1n ≠ 2

=∆ k Ø
n ≠ 0.1n ≠ 2r + 2

2
= 0.45n ≠ r + 1 Ø 0.35n.

This implies that s Ø 0.35n ·

Í
0.1n

3

Î
Ø

0.035n
2

6 Ø 0.001n2.

We now use this to prove a claim similar to Claim 2.4.13.

Claim 3.3.6. Let Fk be a formula with formal degree dk > 0.1n and size at most · ,
that computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rkÿ

j=1
Aj · Bj + R
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where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that for every j,
Aj(0) = Bj(0) = 0 and R(x) is a polynomial of degree at most 0.1n ≠ 1.

If · Æ 0.001n2, then there exists a formula Fk+1 with formal degree at most 2dk/3 and
size at most · which computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rk+1ÿ

j=1
AÕ

j · BÕ
j + RÕ ,

where AÕ
1(x), . . . , AÕ

rk+1(x), BÕ
1(x), . . . , BÕ

rk+1(x), RÕ
(x) are polynomials such that for

every i, AÕ
i
(0) = BÕ

i
(0) = 0, RÕ

(x) is a polynomial of degree at most 0.1n ≠ 1 and
rk+1 Æ rk +

0.0033n
2

dk
.

Proof. Let Fk be a formula computing a polynomial of the form ESYM
,(n,0.1n)(x) +

qrk

j=1 Aj · Bj + R, with formal degree dk > 0.1n and size at most · . Here R(x)

has degree at most 0.1n ≠ 1 and A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials
such that for every j, Aj(0) = Bj(0) = 0. Then, for � = Fk, Lemma 3.3.4 says that
there exists a formula Fk+1 = �

Õ of formal degree at most 2dk/3 and size at most ·

that computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rkÿ

j=1
Aj · Bj + R ≠

¸kÿ

i=1
gi · hi + c ,

where ¸k Æ
·

Âdk/3Ê Æ
3.3◊0.001n

2
dk

=
0.0033n

2
dk

for large enough n. Further, g1, . . . , g¸k
,

h1, . . . , h¸k
are a set of non-constant polynomials with constant term zero and

c œ F. Thus, if we set RÕ
= R + c, AÕ

i
= Ai, BÕ

i
= Bi for every i œ [rk] and

AÕ
rk+j

= gj , BÕ
rk+j

= hj for every j œ [¸k], the claim follows.

Finally, let us recall the main theorem of this chapter and complete its proof.

Theorem 3.3.7. Let n œ N and let F be a field of characteristic greater than 0.1n.
Then any algebraic formula over F computing the elementary symmetric polynomial

ESYM
,(n,0.1n)(x) =

ÿ

S™[n],|S|=0.1n

Ÿ

jœS

xj ,

is of size at least �(n2
).

Proof. Let F be a formula with formal degree d0 which computes the polynomial
ESYM

,(n,0.1n)(x). We assume without loss of generality that the underlying field F is
algebraically closed. If d0 is at most 0.1n, then by Theorem 3.3.5, we know that |F|
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is at least �(n2
) and we are done. Also, if d0 > n2, then we again have the required

lower bound by Observation 3.3.2. Thus, we may assume that 0.1n Æ d0 Æ n2.

From this point, the proof is exactly along the same lines as that of Theorem 2.2.1.
We iteratively make changes to F , reducing its formal degree geometrically in each
step, via Lemma 3.3.4, till we get a formula F

Õ of formal degree at most 0.1n that
computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rÿ

j=1
Aj · Bj + R

where r Æ 0.1n and A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that
for every i, Ai(0) = Bi(0) = 0 and R(x) is a polynomial of degree at most 0.1n ≠ 1.
Once we have this, Theorem 3.3.5 gives the required lower bound.

As before, we use Claim 3.3.6 iteratively to obtain F
Õ from F . Set F0 = F . Then, F0

is a formula with formal degree d0 and size at most · that computes the polynomial
ESYM

,(n,0.1n)(x). If · Ø 0.001n2, the statement of the theorem follows.

Otherwise, applying Claim 3.3.6 iteratively as long as the formal degree remains
> 0.1n, we eventually get a formula F

Õ with formal degree dÕ
Æ 0.1n. Let the

number of steps taken be K, and so let FK = F
Õ. Further, let d0, . . . , dK≠1, dK

denote the formal degree of each formula in this sequence. Thus dK≠1 > 0.1n, and
dk Æ 2dk≠1/3 for every k œ [K]. Now F

Õ has formal degree at most 0.1n, size at
most · , and computes a polynomial of the form

ESYM
,(n,0.1n)(x) +

rKÿ

j=1
Aj · Bj + R ,

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R(x) is a polynomial of degree at most 0.1n ≠ 1. Further, the
number of error terms, rK , is at most

0.0033n2
3

1

dK≠1
+

1

dK≠2
+ · · · +

1

d0

4
.

Since dk Æ
2
3 · dk≠1, we have that 1

dk≠1
Æ

2
3 ·

1
dk

for all k œ [K]. This implies that

rK Æ 0.0033n2
·

1

1 ≠ 2/3
·

1

dK≠1
=

0.0099n2

0.1n
= 0.099n Æ 0.1n

as dK≠1 Ø 0.1n.
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Finally, since the formal degree is at most 0.1n, using Theorem 3.3.5 we get

· Ø
--F Õ-- Ø 0.001n2

= �(n2
) .

We conclude with an open problem. A question which is natural in the context of
this work and remains open is to prove super-quadratic lower bounds for general
formulas. As a first step towards this, the question of proving super-quadratic lower
bound for homogeneous algebraic formulas might be more approachable.
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The Non-Commutative Setting:

Circuit Lower Bounds

4

In this and the following chapter, we are interested in polynomials that come from
the non-commutative polynomial ring F Èx1, . . . , xnÍ, where the indeterminates do
not commute with each other (that is, xy ”= yx for indeterminates x, y). As a
consequence, any monomial in a non-commutative polynomial f œ F Èx1, . . . , xnÍ

is essentially a string over the alphabet {x1, . . . , xn}. Such models occur naturally
while studying computations on matrices, among other things. There has been a
long line of work that studies non-commutative computation beginning with the
works of Hyafil and Nisan [Hya77; Nis91]1.

It was shown by Hrubeš, Wigderson and Yehudayoff [HWY10] that the non commu-
tative permanent polynomial is complete for the class VNPnc (the non-commutative
version of VNP). Later Arvind, Joglekar and Raja [AJR16] gave a natural polynomial
that is complete for the class of n-variate non-commutative polynomials computable
by poly(n)-sized circuits (denoted by VPnc).

The question of whether the classes VPnc and VNPnc are different is the central
open problem in the non-commutative setting. Although the general question of
showing lower bounds against non-commutative circuits remains open, there has
been considerable progress in restricted settings [LMS16; LMP19; LLS19; ST18;
Fij+20; LST21a]. Most significantly, Limaye, Srinivasan and Tavenas [LST21a] gave
a super polynomial lower bound against constant depth non-commutative circuits.
They showed that any depth-� circuit computing the iterated matrix multiplication
polynomial, IMMn,d(x), must have size at least n�(d1/�) when � is constant.

With respect to the general question, Hrubeš, Wigderson and Yehudayoff [HWY11]
showed that a sufficiently strong super-linear lower bound for the classical sum-of-
squares problem implies a separation between VPnc and VNPnc. In another related
work, Carmosino, Impagliazzo, Lovett and Mihajlin [Car+18] showed that proving
mild lower bounds against non-commutative circuits would imply exponential lower
bounds against the same model.

1The main result in [Hya77] is unfortunately false as shown in [Nis91]
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One motivation for studying non-commutative computation is that it is possibly easier
to prove strong lower bounds in this setting as compared to the usual commutative
setting. At least intuitively, it seems harder to cancel monomials once they have been
calculated when commutativity is not allowed amongst the variables. For example,
the n ◊ n determinant can be computed by an O(n3

) algebraic circuit, but to the
best of our knowledge there is no circuit for the non-commutative determinant
of size 2

o(n). In fact, it was shown by Arvind and Srinivasan [AS18] that if the
non-commutative determinant has a poly-sized circuit, then VPnc = VNPnc.

Even though super-polynomial lower bound against non-commutative circuits are
not known, exponential lower bounds are known in the non-commutative setting
for formulas and algebraic branching programs. We will talk about these in the next
chapter. In this chapter, we define a new class of non-commutative circuits that
allow us to get strong lower bounds against general non-commutative circuits from
weak lower bounds against multilinear circuits from the commutative world.

4.1 Abecedarian Polynomials and Circuits

In [HWY11], Hrubeš et al. defined the notion of ordered polynomials. A homoge-
neous polynomial of degree d is said to be ordered if the set of variables it depends
on can be partitioned into d buckets such that in every monomial, variables occurring
in position k only come from the k-th bucket.

We generalise this notion by making the bucket indices position independent. That
is, a variable in position k need not necessarily come from the k-th bucket as long
as in every monomial, the variables appear in non-decreasing order of their bucket
indices. We call such polynomials abecedarian since, in English, an abecedarian word
is one in which all of the letters are arranged in alphabetical order [MW19].

The difference between ordered polynomials and abecedarian ones can be explained
succinctly using the notion of regular expressions from Automata Theory.

For a non-commutative polynomial f œ F Èx1, . . . , xnÍ, suppose the variables can be
partitioned into buckets {X1, . . . , Xm}. Then f is said to be ordered with respect
to {X1, . . . , Xm} if every monomial in it is a word that can be generated using the
regular expression X1 · · · Xm. On the other hand, f is abecedarian if the monomials
in it are words that can be generated using the regular expression Xú

1 · · · Xú
m.
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It is easy to see that any ordered polynomial is also abecedarian with respect to the
same partition. This is because position indices are always increasing. For example,
consider the following version of the complete homogeneous symmetric polynomial.

CHSYM
(ord)
n,d

(x) =

ÿ

1Æi1Æ...ÆidÆn

x(1)
i1 · · · x(d)

id
.

It is both ordered, as well as abecedarian with respect to the same partition –Ó
Xk =

Ó
x(k)

i
: i œ [n]

ÔÔ
.

On the other hand, note that there are homogeneous abecedarian polynomials that
are not ordered. The following version of the same polynomial is an example.

CHSYMn,d(x) =

ÿ

1Æi1Æ...ÆidÆn

xi1 · · · xid

is abecedarian with respect to {Xi : Xi = {xi}}, but is not ordered.

The reason is that for a polynomial to be ordered, the bucket labels have to essentially
be position labels. On the other hand, for a polynomial to be abecedarian with respect
to a partition, the bucket labels can be independent of position.

We now formally define abecedarian polynomials.

Definition 4.1.1 (Abecedarian Polynomials). Let f œ F Èx1, . . . , xnÍ be a polynomial
of degree d and {X1, . . . , Xm} be a partition for {x1, . . . xn}. Further, for any k œ [d],
f [Xi1 , . . . , Xik

] is defined as follows.

For a polynomial f , f [Xi1 , . . . , Xik
] is the homogeneous polynomial of degree k such

that for every monomial –,

coe�–(f [Xi1 , . . . , Xik
])

=

Y
]

[
coe�–(f) if – = x¸1 · · · x¸k

with x¸j
œ Xij

for every j œ [k]

0 otherwise.

Then f is said to be abecedarian with respect to a partition, if

f = f [ÿ) +

dÿ

k=1

Q

a
ÿ

1Æi1Æ···ÆikÆm

f [Xi1 , . . . , Xik
]

R

b

where f [ÿ) is the constant term in f .
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In this case, we say that f is abecedarian with respect to {X1, . . . , Xm}, a partition of
size m. ⌃

Before moving ahead, let us go over a few subtleties to help us understand the
subclass of abecedarian polynomials better.

Examples and Non-Examples Firstly we note that the most natural way of con-
sidering the non-commutative analogue of any commutative polynomial yields an
abecedarian polynomial with respect to the partition {Xi : Xi = {xi}}. That is,
given a commutative polynomial f œ F[x1, . . . , xn], if we define its non-commutative
analogue, f (nc) as follows.

f and f (nc) look essentially the same, except that variables in every
monomial in f (nc) are arranged in non-decreasing order of their indices.

Then, f (nc) is abecedarian with respect to the partition {Xi : Xi = {xi}}.

However, we note that the natural non-commutative analogues of commutative
computation need not be abecedarian. For example, the ABP constructed by Mahajan
and Vinay [MV97] to compute the determinant is not abecedarian even though the
usual ABP (see, for example, [LMP19, Lemma 15]) used to compute the elementary
symmetric polynomial is.

This leads to the fact that not every non-commutative analogue of a commutative
polynomial is abecedarian with respect to the partition {Xi : Xi = {xi}}.

For instance, consider the arc-full rank polynomial which was constructed by Dvir,
Malod, Perifel and Yehudayoff to give a super-polynomial separation between the
powers of formulas and ABPs in the multilinear setting [Dvi+12, Section 3.1]. Let
us call that polynomial f and look at it as a non-commutative polynomial, f Õ, in the
following sense.

Let A be the ABP that computes f and think of A as a non-commutative
ABP A

Õ. Then, f Õ is the polynomial computed by A
Õ.

We note that across different monomials in f Õ, the order in which variables appear is
not consistent. Thus, f Õ is not abecedarian with respect to the given partition.
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Polynomials Can be Abecedarian With Respect to Di�erent Partitions A final point
to note before we move ahead is that a polynomial might be abecedarian with respect
to different partitions2. For example, note that CHSYM

(ord)
n,d

(x) is abecedarian with

respect to the partition
Ó

Xi =

Ó
x(k)

i
: k œ [d]

ÔÔ
as well as

Ó
Xk =

Ó
x(k)

i
: i œ [n]

ÔÔ
.

In fact, note that even the sizes of the different partitions are different.

Similarly, the polynomial

ESYM
(ord)
n,d

(x) =

ÿ

1Æi1<...<idÆn

x(1)
i1 · · · x(d)

id

is abecedarian with respect to the partition
Ó

Xk =

Ó
x(k)

i
: i œ [n]

ÔÔ
which has size

d, as well as the partition
Ó

Xi =

Ó
x(k)

i
: k œ [d]

ÔÔ
which has size n.

Next, we define a subclass circuits that naturally compute abecedarian polynomials.

Abecedarian Circuits

In the same paper that introduced ordered polynomials [HWY11], Hrubeš et al. also
defined ordered circuits, a model that naturally computes ordered polynomials. We
generalise this notion to define abecedarian circuits in the most natural way.

A circuit, C, is abecedarian if every gate in C computes an abecedarian polynomial.

In their paper Hrubeš et al. had also shown that without loss of generality, any circuit
computing an ordered polynomial can be assumed to be ordered [HWY11, Theorem
7.1]). We show that an analogous statement is true in the abecedarian setting.

Theorem 4.1.2 (Converting Circuits into Abecedarian Circuits). Suppose f is an
abecedarian polynomial with respect to a partition of size m, and C is a circuit of size s

computing f . Then there is an abecedarian circuit C
Õ computing f of size O(m3s).

Before we move on to the proof, let us first define some notation.

Definition 4.1.3 (Sub-Polynomials of an Abecedarian Polynomial). Suppose f is an
abecedarian polynomial with respect to the partition {X1, . . . , Xm}, and has degree d.
For any 1 Æ a Æ b Æ m + 1, f [a, b) is the sub-polynomial of f defined as follows.

• For any a œ [m + 1], f [a, a) = f [ÿ) is the constant term in f .
2Every polynomial f œ F Èx1, . . . , xnÍ is abecedarian with respect to the partition {X} for X =

{x1, . . . , xn}.
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• For any 1 Æ a < b Æ m + 1,

f [a, b) =

dÿ

k=1

Q

ccca
ÿ

i1,...,ikœ[m]
a=i1Æ···Æik<b

f [Xi1 , . . . , Xik
]

R

dddb

where f [Xi1 , . . . , Xik
] is as defined in Definition 4.1.1. ⌃

That is, given a polynomial f that is abecedarian with respect to the partition
{X1, . . . , Xm}, we will use f [a, b) to denote the polynomial that consists of all those
monomials in f that can be generated by the regular expression X+

a Xú
a+1 · · · Xú

b≠1.

Proof of Theorem 4.1.2. Without loss of generality, let us assume that the C has
fan-in 2. We prove the given statement by describing how to construct C

Õ from C.

For each gate v in C, we make O(m2
) copies in C

Õ, {(v, [a, b)) : 1 Æ a Æ b Æ m + 1}.
Further, if root is the output gate in C, then we define a new output gate in C

Õ that
computes

q
m

i=1(root, [i, m + 1)).

Intuitively, if fv is the polynomial computed at v in C, then the polynomial computed
at (v, [a, b)) is fv[a, b). Thus if f was the polynomial computed at root, then the
polynomial computed by C

Õ is
q

m+1
i=1 f [i, m + 1) which is indeed f .

We ensure this property at every gate by adding edges as follows.

• If v is an input gate labelled by a field element “,

– we set (v, [a, a)) = “ for every a œ [m + 1];

– we set (v, [a, b)) = 0 for every 1 Æ a < b Æ m + 1.

• If v is an input gate labelled by a variable xi and xi œ Xk,

– we set (v, [k, k + 1)) = xi;

– we set (v, [a, b)) = 0 for every a ”= k, b ”= k + 1.

• If v = v1 + v2, we set

(v, [a, b)) = (v1, [a, b)) + (v2, [a, b))

for every a Æ b œ [m + 1].
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• If v = v1 ◊ v2, we set

(v, [a, a)) = (v1, [a, a)) · (v2, [a, a))

for every a œ [m + 1]; and

(v, [a, b)) = (v1, [a, a)) · (v2, [a, b)) + (v1, [a, b)) · (v2, [b, b))

+

b≠1ÿ

c=a

(v1, [a, c + 1)) ◊ (v2, [c, b))

for every 1 Æ a < b Æ m + 1.

Using induction, it is easy to see3 that every gate in C
Õ computes the intended

abecedarian polynomial. Further for every gate v in C, there are at most O(m3
)

vertices in C
Õ. Therefore, C

Õ is indeed an abecedarian circuit computing f of size
O(m3s).

Note that Theorem 4.1.2 implies that in order to show super-polynomial lower
bounds against general non-commutative circuits, it is enough to show super-
polynomial lower bounds against abecedarian circuits. What we will see now is
a way to show strong lower bounds against non-commutative circuits using weak
lower bounds against multilinear circuits in the commutative world.

4.2 Non-Commutative Circuit Lower Bounds From
Multilinear Circuit Lower Bounds

In this section, we will show that strong enough lower bounds against commutative
multilinear circuits can be amplified to give arbitrarily strong polynomial lower
bounds against general non-commutative circuits.

In particular, we will prove the following statement.

Theorem 4.2.1. For any Á > 0, assume that there exists an explicit n-variate com-
mutative multilinear polynomial of degree poly(n), such that any multilinear circuit
computing it requires size �(n3+(Ê/2)+Á

). Then for any c > 1, there exists another
explicit m-variate polynomial of degree poly(m), such that any non-commutative circuit
computing it requires size �(mc

).
3Essentially, parse trees ([LLS19]) of C are simply rearranged in C

Õ and therefore each parse tree in C

appears exactly once in C
Õ.

4.2 Non-Commutative Circuit Lower Bounds From Multilinear Circuit Lower
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Even though the statement seems surprising, it follows rather easily from techniques
similar to those in the proof of Theorem 4.1.2 (or the results in the work of Hrubeš
et al. [HWY11, Section 8]) and one of the main results in the work of Carmosino
et al. [Car+18, Theorem 1.1]. We give a proof for the sake of completeness.

Let us first state the hardness amplification statement from [Car+18], where it was
shown that super-linear lower bounds against general non-commutative circuits
are enough to show arbitrarily strong polynomial lower bounds against the same
model.

Theorem 4.2.2 (Theorem 1.1 in [Car+18]). For any Á > 0, assume that there exists
an explicit non-commutative polynomial in n variables of degree poly(n), such that any
non-commutative circuit computing it requires size �(n(Ê/2)+Á

). Then, for any c > 1,
there exists another explicit polynomial in m variables of degree poly(m), such that
any non-commutative circuit computing it requires size �(mc

).

We now prove Theorem 4.2.1

Proof of Theorem 4.2.1. Let Á > 0 be fixed, and f œ F[x1, . . . , xn] be the explicit
multilinear polynomial in n variables of degree poly(n), such that any multilinear
circuit computing it has size at least “ · n3+(Ê/2)+Á for some absolute constant “.

We define the non-commutative analogue of f , say f (nc) in the following way.

f and f (nc) look essentially the same, except that variables in every
monomial in f (nc) are arranged in non-decreasing order of their indices.

We then claim the following.

Claim 4.2.3. If C is a non-commutative circuit computing f (nc) of size s, then there is a
multilinear circuit C

Õ computing f of size at most ” · n3s for some absolute constant ”.

Before proving the claim, let us complete the proof using it.

Suppose C is a non-commutative circuit of size s computing fnc. Then, by Claim 4.2.3,
we have that there is a multilinear circuit C

Õ that computes f of size at most ” · n3s

for some absolute constant ”. By our assumption, ” · n3s Ø “ · n3+(Ê/2)+Á, and so
s Ø (“/”) · n(Ê/2)+Á.

Therefore, we have an explicit n-variate non-commutative polynomial, f , of de-
gree poly(n), such that any non-commutative circuit computing it requires size
�(n(Ê/2)+Á

). By Theorem 4.2.2, this implies that for any c > 1, there exists another
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explicit polynomial in m variables of degree poly(m), such that any non-commutative
circuit computing it requires size �(mc

).

To complete the proof, we therefore need to prove Claim 4.2.3, whose proof closely
follows that of Theorem 4.1.2.

Proof of Claim 4.2.3. We prove the claim by describing how to construct C
Õ from C.

For each gate v in C, let us make O(n2
) copies of v in C

Õ, namely

Ó
v[a,b) : 1 Æ a < b Æ n + 1

Ô
fi {vÿ} .

Further, if root is the output gate in C, then we define a new output gate in C
Õ that

computes
q

n

i=1(root, [i, n + 1)).

Intuitively, suppose gv is the polynomial computed at v in C. Then the polynomial
computed at v[a,b), say gÕ

v, will be the sum of those multilinear monomials (along
with their coefficients) of gv for which the following is true.

The lowest index among the indices of variables present in the monomial
is exactly a, and the highest index among the indices of variables present
it is at most (and including) b ≠ 1.

Thus if f was the polynomial computed at root, then the polynomial computed by C
Õ

is
q

n+1
i=1 f [i, n + 1) which is indeed f .

The polynomial computed at vÿ is the constant term of gv. The way we ensure this
property at every gate is by building the circuit C Õ bottom-up as follows.

• If v is an input gate labelled by a field element –, set vÿ to be – and v[a,b) = 0

for every 1 Æ a < b Æ n + 1.

• If v is an input gate labelled by a variable xi, then set v[i,i+1) = xi and v[a,b) = 0

for all other 1 Æ a < b Æ n + 1. Also set vÿ = 0.

• If v = u + uÕ, set vÿ = uÿ + uÕ
ÿ and

v[a,b) = u[a,b) + uÕ
[a,b)

for every 1 Æ a < b Æ n + 1.

• If v = u ◊ uÕ, set vÿ = uÿ ◊ uÕ
ÿ. Also, assuming [i, i) = ÿ for any i, set

v[a,b) =

ÿ

aÆiÆb

u[a,i) ◊ uÕ
[i,b)

4.2 Non-Commutative Circuit Lower Bounds From Multilinear Circuit Lower
Bounds
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for every 1 Æ a < b Æ n + 1.

By induction, one can easily show that4 the gates in C
Õ indeed have the property that

we claimed them to have before we described C
Õ. Hence the polynomial computed

by C Õ is indeed f . Further, for every gate v in C, there are at most O(n3
) vertices in

C
Õ, and so the size of C

Õ is as claimed.

Theorem 4.2.1 shows that a strong enough lower bound against multilinear circuits is
enough to show arbitrarily strong polynomial lower bounds against non-commutative
circuits. On the other hand, the best lower bound known against multilinear circuits
is an almost quadratic lower bound due to Alon, Kumar and Volk [AKV20].

Therefore, it would be very interesting to know whether super-quadratic lower
bounds against multilinear circuits implies arbitrarily strong polynomial lower
bounds against non-commutative circuits.

4Essentially, parse trees ([LLS19]) of C are simply rearranged in C
Õ and therefore each parse tree in C

appears exactly once in C
Õ.
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Separating Syntactically

Abecedarian Formulas and

Algebraic Branching Programs

5

As we saw in the previous chapter, for the case of circuits, we do not know a
lower bound better than the one known in the commutative case itself, due to
Baur and Strassen [Str73a; BS83]. However, for the case of formulas, we know an
exponential lower bound due to the seminal work of Nisan [Nis91]. In fact, the
proof actually works for Algebraic Branching Programs – a model which is believed
to be more powerful than formulas. Nisan’s work [Nis91] actually gives an exact
characterisation for the size of any algebraic branching program (or ABP) computing
a non-commutative polynomial.

The motivating question for this chapter is whether there is a separation between the
powers of ABPs and formulas in the non-commutative setting. Let us denote the class
of non-commutative polynomials over n variables that can be computed by poly(n)-
sized ABPs by VBPnc. Similarly, let VFnc denote the class of non-commutative
polynomials over n variables that can be computed by poly(n)-sized formulas. The
question is essentially whether VBPnc is contained in VFnc.

This question had been posed by Nisan [Nis91] and at the time when this work was
done, the only work we were aware of that made some progress with respect to
this question was by Lagarde, Limaye and Srinivasan [LLS19], where they show
that certain syntactically restricted non-commutative formulas (called Unique Parse
Tree formulas) cannot compute IMMn,n unless they have size n�(log n). However
very recently, in a breakthrough work, Limaye, Srinivasan and Tavenas [LST21a]
showed that in the homogeneous non-commutative setting, there is indeed a super-
polynomial separation between the powers of formulas and ABPs.

In this chapter, we extend the definition of abecedarian circuits to define abecedarian
ABPs (ABPs in which the polynomial computed between any two of its vertices is
abecedarian) and abecedarian formulas (syntactically restricted formulas in which
the polynomial computed at every vertex is abecedarian), and then show a super-
polynomial separation between the powers of abecedarian formulas and ABPs.
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5.1 Abecedarian Formulas and ABPs

Let us begin by recalling the definition of abecedarian polynomials. For a non-
commutative polynomial f œ F Èx1, . . . , xnÍ, suppose the variables can be partitioned
into buckets {X1, . . . , Xm}. Then, f is said to be abecedarian with respect to this
partition if in every monomial, the variables appear in non-decreasing order of
their bucket indices. A formal definition and further discussions can be found in
section 4.1.

Given an abecedarian polynomial, we also defined its sub-polynomials as follows.

Suppose f is an abecedarian polynomial with respect to the partition
{X1, . . . , Xm}, and has degree d. For any 1 Æ a Æ b Æ m + 1, f [a, b) is
the sub-polynomial of f defined as follows.

• For any a œ [m + 1], f [a, a) = f [ÿ) is the constant term in f .

• For any 1 Æ a < b Æ m + 1,

f [a, b) =

dÿ

k=1

Q

ccca
ÿ

i1,...,ikœ[m]
a=i1Æ···Æik<b

f [Xi1 , . . . , Xik
]

R

dddb

where f [Xi1 , . . . , Xik
] is the homogeneous polynomial of degree

k such that for every monomial –, where the coefficient of – in
f [Xi1 , . . . , Xik

] is

Y
]

[
coe�–(f) if – = x¸1 · · · x¸k

with x¸j
œ Xij

for every j œ [k]

0 otherwise.

Finally, recall that we defined abecedarian circuits as non-commutative circuits
in which every gate computes an abecedarian polynomial. However note that the
abecedarian circuit, C

Õ, that we constructed given a general non-commutative circuit
computing a polynomial f , in Theorem 4.1.2, had the following syntactic structure.

• C
Õ
= C

Õ
1 + · · · + C

Õ
m where C

Õ
i computed the polynomial f [i, m + 1);

• every gate v in C
Õ
i was associated with a set Iv = [a, b), and in particular, the

root node in C
Õ
i was associated with the set [i, m + 1)

• if fv was the polynomial computed at v, then fv = fv[a, b);
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• if v = v1 + v2, then Iv = Iv1 = Iv2;

• if v = v1 ◊ v2 with Iv = [a, a), then Iv1 = Iv2 = [a, a)

• if v = v1 ◊ v2 with Iv = [a, b) and a < b, then one of the following was true

– Iv1 = [a, b) and Iv2 = [b, b);

– Iv1 = [a, a) and Iv2 = [a, b);

– there exists a Æ c < b such that Iv1 = [a, c + 1) and Iv2 = [c, b).

Let us call circuits that have this additional structure as syntactically abecedarian
circuits. We note that Theorem 4.1.2 shows that up to polynomial factors, abecedarian
circuits and syntactically abecedarian circuits are equivalent. However it is not clear
if an analogous statement is true in the case of formulas.

Abecedarian Formulas

Similar to circuits, we can define abecedarian formulas to be those non-commutative
formulas in which the polynomial computed at every gate is abecedarian, and syntac-
tically abecedarian formulas as follows.

Definition 5.1.1 (Syntactically Abecedarian Formulas). For any a, b œ N, let [a, b)

denote a set of the form I = {i : a Æ i < b}. Suppose F is a formula computing a
polynomial f that is abecedarian with respect to a partition of size m. Then F is said
to be syntactically abecedarian if F = F1 + · · · + Fm for sub-formulas F1, . . . , Fm+1,
where for every i œ [m + 1]:

• F i computes the polynomial f [i, m + 1);

• every gate v in F i is associated with a set Iv = [a, b), and in particular, the root
node must be associated with the set [i, m + 1)

• if fv is the polynomial computed at v, then fv = fv[a, b);

• if v = v1 + v2, then Iv = Iv1 = Iv2;

• if v = v1 ◊ v2 with Iv = [a, a), then Iv1 = Iv2 = [a, a)

• if v = v1 ◊ v2 with Iv = [a, b) and a < b, then one of the following is true

– Iv1 = [a, b) and Iv2 = [b, b);

– Iv1 = [a, a) and Iv2 = [a, b);
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– there exists a Æ c < b such that Iv1 = [a, c + 1) and Iv2 = [c, b).

Further, F is said to be homogeneous if each F i is homogeneous. ⌃

As mentioned earlier, unlike circuits, it is not clear whether the syntactic and semantic
definitions of abecedarian formulas are equivalent up to polynomial factors.

We now define abecedarian ABPs and show that any ABP computing an abecedarian
polynomial can be converted into an abecedarian ABP with only a polynomial factor
blow-up in size. It also follows easily that any polynomial which is computable by
an efficient abecedarian formula is also computable by an efficient abecedarian ABP
and similarly any polynomial which is computable by an efficient abecedarian ABP is
also computable by an efficient abecedarian circuit.

Abecedarian Algebraic Branching Programs

An abecedarian algebraic branching program is a non-commutative ABP in which the
polynomial computed between any two of its vertices is abecedarian. Let us begin by
observing that similar to circuits, without loss of generality, we can assume that any
ABP computing an abecedarian polynomial is abecedarian.

Observation 5.1.2 (Converting ABPs into Abecedarian ABPs). Suppose f is a degree
d abecedarian polynomial with respect to a partition of size m. If there is an ABP A0 of
size s computing it, then there is an abecedarian ABP A

Õ computing it of size O(msd).

Proof. Firstly, we note that if f0 is homogeneous, then there is a homogeneous1 ABP
A computing f0 of size at most O(sd). Further, if f0 is not homogeneous, then A

can be thought of as a sum of homogeneous ABPs {A1, . . . , Ad} where Ak computes
the k-th homogeneous component of f . Finally, if f0 is abecedarian with respect to
{Xi}

m

i=1 for Xi = {xi,j : j œ [ni]}, then so is each of its homogeneous components.

Therefore we assume that we are working with a homogeneous ABP, A, of size O(sd)

computing a polynomial, f , of degree at least 1 that is abecedarian with respect to
{Xi}

m

i=1 for Xi = {xi,j : j œ [ni]}. We prove the theorem by describing how to
construct A

Õ using A.

For each vertex v in A, make O(m) copies in A
Õ, namely {(v, a) : 0 Æ a Æ m}.

Further, suppose s and t are the start and terminal vertices in A. Then we define a

1Every edge is labelled by a homogeneous form.
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new start vertex sÕ in A
Õ and add edges labelled with 1 from sÕ to each of the vertices

{(s, a) : 1 Æ a Æ m}. We also define (t, m) as the terminal vertex in A
Õ.

Intuitively, if g(u,v) is the polynomial computed between u and v in A, then the
polynomial computed between (u, a) and (v, b) in A

Õ is g(u,v)[a, b + 1). We ensure
this property at every vertex by adding edges in A

Õ as follows.

For any two vertices u, v in A, suppose there is an edge between them
that is labelled with

q
iœ[m]

q
jœ[ni] “i,jxi,j . Then, for every a, b œ [m] with

a Æ b, add an edge from (u, a) to (v, b) with label
q

b

i=a

1q
jœ[ni] “i,jxi,j

2
.

We also, associate the bucket index a with the gate (v, a) in A
Õ.

By induction, one can easily show2 that the gates in A
Õ have the claimed property.

Therefore the polynomial computed by A
Õ is

q
m

i=1 f [1, m + 1) which is indeed f .
Hence A

Õ is indeed an abecedarian ABP computing f . Further, every vertex v in A,
there are at most O(m) vertices in A

Õ. Therefore, the size of A
Õ is O(msd).

We now define some natural classes of abecedarian polynomials and show that the
logical inclusions hold. Let abcVPnc denote the class of abecedarian polynomials
that can be computed by poly-sized abecedarian circuits. Similarly let abcVBPnc
and abcVFnc denote the classes of abecedarian polynomials that can be computed by
poly-sized abecedarian ABPs and abecedarian formulas respectively.

Observation 5.1.3. Let abcVPnc, abcVBPnc and abcVFnc denote the classes of abecedarian
polynomials over n variables that can be computed by poly(n) sized abecedarian circuits,
abecedarian ABPs and abecedarian formulas respectively. Then,

abcVFnc ™ abcVBPnc ™ abcVPnc.

Proof. Suppose f œ abcVFnc. Then f is abecedarian, and in particular f œ VFnc. But
we know that VFnc ™ VBPnc, and so f œ VBPnc. By Observation 5.1.2, this implies
that f œ abcVBPnc.

Similarly, suppose f œ abcVBPnc. Then f is abecedarian, and f œ VBPnc. But
VBPnc ™ VPnc, and so f œ VPnc. By Theorem 4.1.2, this implies that f œ abcVPnc.
This completes the proof.

2Essentially, s–t paths of A are simply rearranged in A
Õ and therefore each s–t path in A appears

exactly once in A
Õ.
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Consider the following modified version of the palindrome polynomial

ÿ

wœ{0,1}n

x1w1 · · · xnwn
x(n+1)wn

· · · x(2n)w1

where wR denotes the reverse of the word w œ {0, 1}
n. Note that the polynomial is

abecedarian with respect to the partition {Xi : Xi = {xi0, xi,1}}, has an abecedarian
circuit of size poly(n) and by Nisan’s proof cannot be computed by ABPs of size 2

o(n).
Therefore, by Observation 5.1.2,

abcVBPnc ( abcVPnc

Finally, we observe that a degree d polynomial that is computable by an abecedarian
ABP of size s is also computable by an abecedarian formula of size O(slog d

) via the
usual divide-and-conquer algorithm.

Observation 5.1.4 (Converting Abecedarian ABPs into Abecedarian Formulas).
Suppose f is an abecedarian polynomial of degree d. If there is an abecedarian ABP
A of size s computing it, then there is an abecedarian formula F computing f of size
O(slog d

).

The main result in this chapter essentially shows that the blow-up observed above,
in Observation 5.1.4, is tight. We also show that in certain settings an analogous
statement to Theorem 4.1.2 or Observation 5.1.2 is true for formulas.

5.2 Our Results

We begin by formally stating our main theorem in this chapter.

Theorem 5.2.1 (Separating Abecedarian Formulas and ABPs). Define

linked_CHSYM
n,d

(x) =

nÿ

i0=1

Q

a
ÿ

i0Æi1Æ...ÆidÆn

xi0,i1 · xi1,i2 · · · xid≠1,id

R

b

to be the linked complete homogeneous polynomial over n-variables of degree d.

The polynomial linked_CHSYM
n,d

(x) is abecedarian with respect to the partition
{Xi : i œ [n]} where Xi = {xi,j : i Æ j Æ n}. With respect to this partition,

1. linked_CHSYM
n,d

(x) has an abecedarian ABP of size O(nd);
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2. for d = log n, any syntactically abecedarian formula computing the polynomial
linked_CHSYM

n/2,d
(x) has size n�(log d).

That is, there is a super-polynomial separation between syntactically abecedarian for-
mulas and ABPs.

Note that in the above theorem, the partition is of size n. However, our next result
shows that if the partition size is O(log s), then formulas computing abecedarian
polynomials can be assumed to be abecedarian without loss of generality.

Theorem 5.2.2 (Converting Formulas into Abecedarian Formulas). Let f be an
abecedarian polynomial with respect to a partition of size m, and F be a formula of size
s computing f . If m = O(log s), then there is an abecedarian formula F

Õ computing f

of size poly(s).

In other words, an nÊ(1) lower bound against abecedarian formulas computing a poly-
nomial that is abecedarian with respect to a partition of size O(log n), would result
in a super-polynomial lower bound against general non-commutative formulas.

These statements suggest a couple of new approaches towards resolving the general
VFnc vs VBPnc question. We first discuss these.

Connections to the General VFnc vs VBPnc Question

Theorem 5.2.1 gives a separation between abecedarian formulas and ABPs. On the
other hand, Theorem 5.2.2 shows that if we are given a formula that computes a
polynomial that is abecedarian with respect to a partition of small size, then we can
assume that the formula is abecedarian without loss of generality. Unfortunately,
the partition with respect to which our hard polynomial from Theorem 5.2.1 is
abecedarian, is not small in size. Thus, the general question of whether VBPnc is
contained in VFnc or not still remains open.

However, there are two natural questions that arise at this point.

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the partition?

2. Is a separation between abecedarian formulas and ABPs witnessed by a polyno-
mial which is abecedarian with respect to a partition that has small size?
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Clearly, a positive answer to either of these questions would imply that VBPnc ”= VFnc.
In fact, since non-commutative formulas computing polynomials of low degree can
be homogenised3 efficiently, a super-polynomial lower bound against homogeneous
formulas for our hard polynomial (or any explicit polynomial of degree O(log n) that
is efficiently computable by ABPs) would separate VBPnc and VFnc.

Corollary 5.2.3. Let linked_CHSYM
n,d

(x) be as defined in Theorem 5.2.1. An nÊ(1)

lower bound against homogeneous formulas for linked_CHSYM
n,log n

(x) would result
in a super-polynomial separation between non-commutative formulas and ABPs.

However, unfortunately, the lower bound of Limaye et al.[LST21a] against homoge-
neous non-commutative formulas does not work for polynomials of degree O(log n).
Thus the general VBPnc vs VFnc question remains open.

Proof Overview

We now give a proof overview of our main theorems.

Let us first consider Theorem 5.2.2, since the proof is simpler. In order to prove the
statement, we first convert the given formula F into an abecedarian circuit C, and
then unravel C to get an abecedarian formula F

Õ computing the same polynomial.

The first step is fairly straightforward. The proof is along the same lines as that for
homogenising circuits. The only difference is that we keep track of bucket indices of
the variables on either ends of the monomials being computed at the gates, instead
of their degrees.

In the second step, we convert C into a formula F
Õ. In order to do that, we need

to recompute vertices every time it is reused. Thus, to give an upper bound on
the size of F

Õ, we need to find an upper bound on the number of distinct paths
from any vertex in C to the root. This analysis is done in a way similar to the one
by Raz [Raz13] to show that formulas computing low degree polynomials can be
homogenised without much blow-up in size. The requirement of the size of the
partition being small also arises because of this analysis.

The only additional point that needs to be checked for the proof to go through is
that similar to the commutative setting, non-commutative formulas can be depth
reduced as well (Lemma 5.2.5).

3This follows from the proof of a similar statement in the commutative setting due to Raz [Raz13]
together with the fact the non-commutative formulas can be depth-reduced to log-depth [HW15]
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Figure 5.1.: An ABP of size O(nd) computing linked_CHSYM
n,d

(x).

A complete proof of Theorem 5.2.2 can be found in section 5.4.

Next we go over the proof idea of Theorem 5.2.1. A small abecedarian ABP computing
linked_CHSYM

n,d
(x) is described in Figure 5.2.

For the lower bound, we assume that a small syntactically abecedarian formula com-
puting the polynomial has been given. We keep modifying this formula till we get a
small homogeneous multilinear formula computing the elementary symmetric polyno-
mial of degree n/2. Finally, we use the known lower bound against homogeneous
multilinear formulas for this polynomial (shown by Hrubeš and Yehudayoff [HY11]),
to get a contradiction.

Let us spell out the proof in some more detail.

Step 1: Assume that we are given an abecedarian formula computing the polyno-
mial linked_CHSYM

n/2,log n
(x) of size O(nÁ log log n

). Since the degree of the
polynomial being computed is small, we can assume that there is in fact a
homogeneous abecedarian formula computing linked_CHSYM

n/2,log n
(x) of size

O(nc·Á log log n
) for some constant c independent of Á.

Step 2: Using the homogeneous abecedarian formula from Step 1, we obtain a
structured homogeneous abecedarian formula, of size O(nc·Á log log n

), computing
linked_CHSYM

n/2,log n
(x).

Step 3: We consider the complete homogeneous polynomial over n variables of
degree d

CHSYMn,d(x) =

ÿ

1Æi1Æ...ÆidÆn

xi1 · · · xid
,

and show that there is a homogeneous abecedarian formula of size poly(n) that
computes CHSYMn/2,log n(x).
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Step 4: If the formula in Step 2 has size s and that in Step 3 has size sÕ, then we
show that there is a homogeneous abecedarian formula of size (s·sÕ

) computing
CHSYM

n/2,log2
n
(x).

Step 5: Next, we show that Step 4 can be used repeatedly at most O(log n/ log log n)

times, to obtain a homogeneous abecedarian formula computing the polynomial
CHSYMn/2,n/2(x), of size O(nc·Á log n

).

Step 6: Using the formula obtained in Step 5, we get a homogeneous multilinear
formula computing the elementary symmetric polynomial of degree n/2, of
size O(nc·Á log n

).

Step 7: Finally, we choose an Á that contradicts the theorem in [HY11].

Note that in order for the lower bound proof of Hrubeš and Yehudayoff to work,
the degree of the polynomial needs to be poly(n). However in order to make the
formula structured enough for it to work, we need the degree to be low so that the
size does not blow up by much in the process. Therefore the crucial step in the
proof is that we use the structure we get because we are in the low degree setting to
amplify the degree of the polynomial being computed in a systematic way (without
blowing up the size by much). This is the Step 4 in the description above.

A complete proof of Theorem 5.2.1 can be found in section 5.5.

We now elaborate a little on the first step. These statements are known to be true in
the commutative setting and their proofs in the abecedarian setting are fairly similar
to the ones for their commutative counterparts. We state them here nevertheless,
since they might be of independent interest.

Homogenising Abecedarian Formulas computing Polynomials of Low Degree Raz
[Raz13] had shown that if there is a formula computing a homogeneous polynomial
of low degree in the commutative world, then it can be assumed without loss of
generality that the formula is homogeneous. We show that this statement is true
even in the non-commutative setting.

Lemma 5.2.4 (Homogenising Abecedarian Formulas computing Low Degree Poly-
nomials). Suppose f is a non-commutative homogeneous polynomial that can be
computed by a fan-in 2 formula, F , of size s, and has degree d = O(log s). Then
there is a homogeneous formula F

Õ computing f , that has size poly(s) and whose
multiplication gates have fan-in 2. Further, if F was abecedarian with respect to some
partition, then F

Õ is also abecedarian with respect to the same partition.
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The only thing that needs to be checked for Raz’s proof to work in this setting is
whether abecedarian formulas can be depth-reduced to log-depth. It turns out that
in fact they can be.

Depth Reduction for Abecedarian Formulas Brent [Bre74] had shown that if there
is a formula of size s computing a commutative polynomial f , then there is a formula
of depth O(log s) and size poly(s) that computes the same polynomial. A similar
statement was shown by Hrubeš and Wigderson [HW15] in the non-commutative
setting4. We show that the statement continues to be true for abecedarian formulas.
The proof is exactly along the same lines as the one by Brent [Bre74].

Lemma 5.2.5 (Depth Reduction of Abecedarian Formulas). If there is a fan-in 2

formula F of size s computing a non-commutative polynomial f , then there is a fan-
in 2 formula F

Õ of size poly(s) and depth O(log(s)) computing f . Further if F is
homogeneous, F

Õ is also homogeneous. Similarly, if F is abecedarian with respect to
some partition, then F

Õ is also abecedarian with respect to the same partition.

We first prove the structural statements mentioned above, namely Lemma 5.2.5 and
Lemma 5.2.4, in the next section. Following that, in section 5.4, we prove that in
certain settings, formulas computing an abecedarian polynomial can be converted
into abecedarian formulas without causing much blow-up in size. Finally, we prove
our main theorem that shows a super-polynomial separation between the powers of
abecedarian formulas and circuits in section 5.5.

5.3 Structural Statements

In this section, we prove two structural statements in the abecedarian setting that
are known to be true in the commutative setting. Apart from being crucial to our
proofs, they are possibly interesting observations in their own right.

Depth Reduction for Abecedarian Formulas

Brent [Bre74] had shown that if there is a formula of size s computing a commu-
tative polynomial f , then there is a formula of depth O(log s) and size poly(s) that

4They in fact showed it for rational functions
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computes the same polynomial. This was shown to be true in the non-commutative
setting as well, in more generality for rational functions, by Hrubeš et al.[HW15].

We show that a similar statement continues to hold for abecedarian formulas. The
proof is essentially the same as the one by Brent [Bre74], just analysed carefully. We
give a complete proof for the sake of completeness.

We first restate the statement.

Lemma 5.2.5 (Depth Reduction of Abecedarian Formulas). If there is a fan-in 2

formula F of size s computing a non-commutative polynomial f , then there is a fan-
in 2 formula F

Õ of size poly(s) and depth O(log(s)) computing f . Further if F is
homogeneous, F

Õ is also homogeneous. Similarly, if F is abecedarian with respect to
some partition, then F

Õ is also abecedarian with respect to the same partition.

Proof. We begin by making the following claim.

Claim 5.3.1. Suppose F0 is a formula computing a polynomial f0 and has fan-in 2.
Then the there exist sub-formulas, L, F1, R, F2, of F0 such that

• F
Õ
0 = L · F1 · R + F2 also computes f0;

• each of L, F1, R, F2 have size at most (2s/3);

• if F0 is homogeneous, then so are L, F1, R, F2;

• if F0 is abecedarian with respect to some partition, fleft, f1, fright, f2 are polyno-
mials computed by L, F1, R, F2 respectively and f0 = f0[a, b), then f2 = f2[a, b)

and

– each of L, F1, R, F2 are abecedarian with respect to the same partition as
F0

– when a = b, fleft = fleft[a, a) f1 = f1[a, a) fright = fright[a, a);

– when a < b, there exist a Æ i Æ j Æ b such that

a = i < j = b =∆ fleft = fleft[a, i) f1 = f1[i, j) fright = fright[j, b).
a = i = j < b =∆ fleft = fleft[a, i) f1 = f1[i, j) fright = fright[j, b).
a = i < j < b =∆ fleft = fleft[a, i) f1 = f1[i, j + 1) fright = fright[j, b).
a < i = j = b =∆ fleft = fleft[a, i + 1) f1 = f1[i, j) fright = fright[j, b).
a < i = j < b =∆ fleft = fleft[a, i + 1) f1 = f1[i + 1, j + 1) fright = fright[j, b).
a < i < j = b =∆ fleft = fleft[a, i + 1) f1 = f1[i, j) fright = fright[j, b).
a < i < j < b =∆ fleft = fleft[a, i + 1) f1 = f1[i, j + 1) fright = fright[j, b).
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Before proving Claim 5.3.1, let us complete the proof of Lemma 5.2.5 using it.

Assuming F0 to be the given formula F , using the above claim, we have a formula
F

Õ
0 computing f0 that looks like L·F1 ·R+F2 where each of L, F1, R, F2 have size at

most (2s/3). Further if F is homogeneous, then so are each of L, F1, R, F2. Hence,
F

Õ
0 is homogeneous. On the other hand, when F0 is abecedarian, so are L, F1, R, F2.

Further, note that F
Õ
0 is also abecedarian in this case since fleft, f1, fright, f2 are of the

correct type due to Claim 5.3.1.

In all the cases, recursively applying this technique, on each of L, F1, R, F2, we get

depth(s) Æ depth(2s/3) + 3 and size(s) Æ 4 · size(2s/3) + 3.

Note that in the base case, when s is constant, both size(s) and depth(s) are constants.
Thus, depth(s) = O(log s) and size(s) = poly(s).

Pictorially, once we have Claim 5.3.1, we essentially do the following recursively.

DepthReduce(L) DepthReduce(F1)

◊ DepthReduce(R)

◊ DepthReduce(F2)

+

We now complete the proof of Claim 5.3.1

Proof of Claim 5.3.1. From the root let us traverse F0 towards the leaves, always
choosing the child that has a larger sub-tree under it, till we find a vertex v such that
the associated sub-tree has size at most (2s/3). Since F0 tree has fan-in 2, we also
know that the size of this sub-tree must be at least (s/3).

Let this sub-tree be F1. Additionally, in the case when F0 is abecedarian, let us
assume that v is labelled with [iv, jv).
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Let P be the path from v to the root and vadd the addition gate on P which is closest
to v. Also let the set of multiplication gates on P be {v1, . . . , v¸} for some ¸ œ N.
Assume, without loss of generality, that v1 is closest to v and v¸ to the root. Further,
for every i œ [¸], let Li be sub-formula corresponding to the left child of vi and Ri

the one to its right child. Note that for every i œ [¸], exactly one of children of vi is a
vertex in P. We can then define L and R as follows.

Step 1: Set L = R = 1.

Step 2: For i from 1 to ¸,

L =

Y
]

[
Li ◊ L if the right child of vi is a vertex in P,

L otherwise.

and

R =

Y
]

[
R if the right child of vi is a vertex in P,

R ◊ Ri otherwise.

Also define F2 to be the formula we get by replacing the vertex v and the sub-tree
under it with 0, and then removing the redundant gates.

By construction, F1, L, R and F2 are sub-formulas of F0. Further, F1 is disjoint
from L, R and F2. As a result, since F1 has size at least (s/3) and at most (2s/3), it
must be the case that each of L, R and F2 have size at most (2s/3).

Also, it is not hard to see that F
Õ
0 = L · F1 · R + F2 computes f0. What is left to

check is that when F0 is homogeneous or abecedarian, then L, F1, R, F2 have the
additional properties claimed. The one line proof of this is that each parse-tree5

of F0 is merely restructured in the above process, without changing its value. We
however go over the proof explicitly for the sake of completeness.

When F0 is homogeneous, since L, F1, R, F2 are sub-formulas, they are also homo-
geneous. On the other hand, suppose F0 is abecedarian and f0 = f0[a, b). Recall
that the vertex v was labelled by [iv, jv). Let us set i = iv and j = jv. Then, by
definition, F1 is labelled by [i, j). Hence, if f1 is the polynomial computed at v, then
f1 = f1[i, j). Further, F1 is abecedarian since it is a sub-formula of F0 and computes
an abecedarian polynomial.

Now let us focus on F2. Essentially F2 is got by removing from F0, v and all the
multiplication gates on P between v and vadd along with the sub-trees under them.

5For a definition, see for example [LLS19]
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Thus F2 is also abecedarian in this case, and if f2 is the polynomial computed by it,
then f2 = f2[a, b).

Finally, note that the left indices of labels on the various vertices of P change only at
the gates at which multiplications to L occur. Further, note that they occur in the
correct order and are of the correct type. Thus, by induction, it is easy to see that the
labels on L are consistent with those on the Lis when the respective multiplications
happen. Therefore L is abecedarian, and fleft = fleft[a, i). For similar reasons, R is
also abecedarian and fright = fright[j, b). This completes the proof.

Homogenisation

Raz [Raz13] had shown that if there is a formula computing a homogeneous
polynomial of low degree in the commutative world, then it can be assumed without
loss of generality that the formula is homogeneous. We show that his proof also
works in the abecedarian setting because of Lemma 5.2.5. A complete proof is given
here for the sake of completeness.

Lemma 5.2.4 (Homogenising Abecedarian Formulas computing Low Degree Poly-
nomials). Suppose f is a non-commutative homogeneous polynomial that can be
computed by a fan-in 2 formula, F , of size s, and has degree d = O(log s). Then
there is a homogeneous formula F

Õ computing f , that has size poly(s) and whose
multiplication gates have fan-in 2. Further, if F was abecedarian with respect to some
partition, then F

Õ is also abecedarian with respect to the same partition.

Proof. We first note that if F has depth r, then by Lemma 5.2.5, we can assume
without loss of generality, that r = O(log sÕ

).

In order to construct a homogeneous formula computing f , we first homogenise F

to obtain a circuit C, and then unravel C to make it into a formula F
Õ.

The first step is done in the usual manner. For every gate v in F , we have d + 1

gates (v, 0), . . ., (v, d) in C. Intuitively if fv is the polynomial computed at v, then
the polynomial computed at (v, i) is the degree i homogeneous component of fv.
These vertices are then connected as follows.

• If v = u1 + u2, then for every i œ {0, . . . , d}, (v, i) = (u1, i) + (u2, i).

• If v = u1 ◊u2, then for every i œ {0, . . . , d}, (v, i) =
q

i

j=0(u1, j)◊ (u2, i≠ j).
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So, we now have a homogeneous circuit C that computes f and has size at most O(d2
·

sÕ
). Also, the depth of this circuit is at most twice that of F , and the multiplication

gates have fan-in 2.

To convert C into a formula F
Õ, we have to recompute nodes whenever they have to

be reused. That is, a particular vertex in C has to be duplicated as many times as
there are paths from it to the root. Thus, to upper bound the size of F

Õ, we need to
give a bound on the number of distinct paths from every vertex of C to its root.

Let us arbitrarily choose a vertex (v, i) in C, and consider a path from it to the root.
Suppose the path is (v, i) = (v1, i1) æ · · · æ (v¸, i¸) = (root, d) where ¸ is at most
the depth of C. By construction, it must be that v = v1 æ · · · æ v¸ = root is the
unique path from v to the root in F . Therefore it is only the number of possible
second co-ordinates in the path description that we need to bound.

Now it must be the case that i = i1 Æ · · · Æ i¸ = d. Hence, if we define ”j = ij+1 ≠ ij

for j œ [¸≠1], then the ”js are non-negative integers such that ”1+· · ·+”¸≠1 = (d≠i).
Thus, the number of choices we have for (i2, . . . , i¸) such that i = i1 Æ · · · Æ

i¸ = d, is the same as the number of choices we have for (”1, . . . , ”¸≠1) such that
”1 + · · · + ”¸≠1 = (d ≠ i) Æ d. This is at most

!
¸+d

¸

"
.

Note that in this process the fan-in of the gates have not changed, and hence the
multiplication gates in F

Õ continue to have fan-in 2. Further, we know that the
C has depth 2r and hence ¸ Æ 2r. Therefore, the number of paths from (v, i) to
the root is at most

!2r+d

2r

"
. Hence, if F

Õ is the formula obtained by unravelling
C, then size(F

Õ
) Æ sÕ

· d2
·

!2r+d

d

"
. Here r = O(log(sÕ

)), and s Æ sÕ implying that
d = O(log(s)) = O(log(sÕ

)). Thus, size(F
Õ
) Æ poly(sÕ

).

Finally, assume that F is abecedarian. Then every vertex v is labelled with a tuple
of bucket indices, say (av, bv). In that case, we add the label (av, bv) to the gates
{(v, i)}d

i=0 in C and continue with the proof as is. Note that the final formula that
we get, F

Õ, is abecedarian and all the other properties that were true in the general
case, continue to be true.

As a corollary, we now have that proving a lower bound against homogeneous
non-commutative formulas would be enough to separate VBPnc and VFnc.

Corollary 5.2.3. Let linked_CHSYM
n,d

(x) be as defined in Theorem 5.2.1. An nÊ(1)

lower bound against homogeneous formulas for linked_CHSYM
n,log n

(x) would result
in a super-polynomial separation between non-commutative formulas and ABPs.
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Proof. By Theorem 5.2.1, we know that linked_CHSYM
n,log n

(x) can be computed
by ABPs of size poly(n). Further, the degree of the polynomial is O(log n). Thus,
by Lemma 5.2.4, if there is a formula computing linked_CHSYM

n,log n
(x) of size s,

then there is a homogeneous formula computing it of size poly(s). This immediately
implies the given statement.

We now move on to proving our main theorems. First we show that even in the
case of formulas, in certain settings, we can convert formulas computing abecedarian
polynomials into abecedarian formulas with only a polynomial blow-up in size.

5.4 Converting Formulas into Abecedarian Formulas

We have already seen that without loss of generality, circuits and ABPs computing
abecedarian polynomials can be assumed to be abecedarian. For formulas however, we
can prove such a statement only when the polynomial is abecedarian with respect to
a bucketing system of small size. The proof is very similar to that of Lemma 5.2.4.

Theorem 5.2.2 (Converting Formulas into Abecedarian Formulas). Let f be an
abecedarian polynomial with respect to a partition of size m, and F be a formula of size
s computing f . If m = O(log s), then there is an abecedarian formula F

Õ computing f

of size poly(s).

Proof. Let us assume additionally that F has depth r. Now Lemma 5.2.5 implies
that r = log(s) without loss of generality. By Theorem 4.1.2, there is an abecedarian
circuit C that computes f and has size at most sÕ

= O(s · m3
). Further its proof

implies that the depth of C is at most 2r.

To convert C into an abecedarian formula F
Õ, we have to recompute a node each

time it has to be reused. That is, a particular vertex in C has to be duplicated as
many times as there are paths from the vertex to the root. Thus to upper bound the
size of F

Õ, we need to give an upper bound on the number of distinct paths from
every vertex in C to its root.

Let us arbitrarily choose a vertex (v, [a, b)) in C, and consider the path from it to
the root. Suppose the path is (v, [a, b)) = (v1, [a1, b1)) æ · · · æ (v¸, [a¸, b¸)) =

(root, [i, m + 1)) for some ¸ that is at most the depth of C. Again, as in the proof
of Lemma 5.2.4, we only need to bound the different possibilities in the second
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co-ordinate. This is because, by construction, v = v1 æ · · · æ v¸ = root must be the
unique path from v to root in F .

Now note that it must be the case that

i Æ a¸ Æ · · · Æ a1 Æ a Æ b Æ b1 Æ b¸ Æ m + 1.

Let us define ”j = aj ≠ aj+1 and ”Õ
j

= bj+1 ≠ bj for j œ [¸ ≠ 1]. Then, the number of
choices we have for (a1, . . . , a¸) and (b1, . . . , b¸) such that

i = a¸ Æ · · · a1 = a Æ b = b1 Æ · · · Æ b¸ = m + 1

is the same as the number of choices we have for (”1, . . . , ”¸≠1, ”Õ
1, . . . , ”Õ

¸≠1) such
that

”1 + · · · + ”¸≠1 + ”Õ
1 + · · · + ”Õ

¸≠1 = (m + 1 ≠ (b ≠ a) ≠ i) Æ m.

This is clearly at most
!2¸+m

m

"
.

Further, we know that the C has depth 2r and hence ¸ Æ 2r. Therefore, the number
of paths from (v, i) to the root is at most

!4r+m

m

"
. Hence if F

Õ is the formula obtained
by unravelling C, then size(F

Õ
) Æ sÕ

· m2
·
!4r+m

m

"
. Here sÕ

= O(m3
· s), r = O(log(s))

and m = O(log(s)). Thus, size(F
Õ
) Æ poly(s).

Finally, in the next section, we prove our main theorem – a super-polynomial
separation between the powers of abecedarian formulas and ABPs.

5.5 Separating Abecedarian Formulas and ABPs

Before proceeding to the proof, let us go over some observations that we will need.

Some Simple Observations

The two main polynomials we will be working with are linked_CHSYM
n,d

(x) and
CHSYMn,d(x). Let us recall their definitions.

linked_CHSYM
n,d

(x) =

nÿ

i0=1

Q

a
ÿ

i0Æi1Æ...ÆidÆn

xi0,i1 · xi1,i2 · · · xid≠1,id

R

b ,
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is abecedarian with respect to the bucketing system {X1, . . . , Xn} where Xi =

{xi,j : j œ [n]}, and

CHSYMn,d(x) =

ÿ

1Æi1Æ...ÆidÆn

xi1 · · · xid
.

is abecedarian with respect to the bucketing system {Xi : Xi = {xi}}.

We begin with the notion of a linked abecedarian formula computing the polynomial
linked_CHSYM

n,d
(x).

Definition 5.5.1. An abecedarian formula computing linked_CHSYM
n,d

(x) is said to
be linked if at every gate, all the monomials occurring in the polynomial computed at
that gate have the following property.

xij appears right before xiÕjÕ in the monomial =∆ j = iÕ. ⌃

The first observation shows that any abecedarian formula computing the polynomial
linked_CHSYM

n,d
(x) can be assumed to be linked without loss of generality.

Observation 5.5.2. Let F be a homogeneous abecedarian formula computing the
polynomial linked_CHSYM

n,d
(x) of size s, and let the multiplication gates of F have

fan-in 2. Then there is a homogeneous linked abecedarian formula F
Õ computing the

same polynomial of size O(s).

Proof. For any leaf ¸ in F labelled by a variable, say xi,j , suppose P is the path from
¸ to the root. Consider the set of multiplication gates on P whose left child is part
of P, and let v be the one that is closest to ¸. Since F is abecedarian, the right child
of v must be associated with a set, say [a, b). If j ”= a, we set the label of ¸ to zero;
otherwise we let it be xi,j .

Note that this operation does not kill any valid monomial. Let F
Õ be the formula

we get by performing the above operation on every leaf of F that is labelled by a
variable. F

Õ is clearly homogeneous and abecedarian. We show that F
Õ is also linked.

Suppose that is not the case. Then there must be a problematic vertex in F
Õ. Let v

be such a vertex of minimal height. That is, there is a monomial in the polynomial
computed at v in which, say, xi,j appears right before xiÕ,jÕ but j ”= iÕ. Further, the
sub-formulas corresponding to the children of v are linked. Note that v must be a
multiplication gate; not a leaf or an addition gate.
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Let fleft and fright be the polynomials computed at the left and right children of v

respectively. Also, let [a, b) be the set associated with the right child of v. Then, it
must be the case that the first variable in any monomial in fright looks like xa,jÕ for
some jÕ. Further, there must be a monomial in fleft in which the last variable looks
like xi,j for j ”= a.

Look at the leaf corresponding to this variable. Let this leaf be ¸ and let P be the
path from ¸ to the root. Since xi,j is the right most variable in fleft, it must be the
case that v is the multiplication gate that is closest to ¸, whose left child is on P . But
then, we should have set xi,j to zero since j ”= a. Hence, such a monomial cannot
appear in fleft.

This shows that F
Õ is indeed a homogeneous linked abecedarian formula of size at

most that of F that computes linked_CHSYM
n,d

(x).

The next observation shows that there is a poly-sized homogeneous abecedarian
formula that computes CHSYMn,log n(x) .

Observation 5.5.3. The polynomial CHSYMn/2,log n(x) can be computed by a homo-
geneous abecedarian formula of size poly(n).

Proof. Consider the following polynomial over variables {t, x1, . . . , xn}, where we
think of t as a commuting variable and x1, . . . , xn as non-commuting variables.

fn,d(x) =

nŸ

i=1

Q

a1 +

dÿ

j=1
tj

· xj

i

R

b

Note that the coefficient of td in fn,d(x) is exactly CHSYMn,d(x). Further, it is not
hard to see that fn/2,log n(x) is abecedarian in terms of x with respect to the bucketing
system {Xi : Xi = {xi}}, and that the given expression results in an abecedarian
formula of size O(n(log n)

2
).

Since t is a commuting variable, we can use the usual interpolation techniques
[BC92], to get an abecedarian formula of size O(n log n·n(log n)

2
) = O(n2

(log n)
3
) =

poly(n) that computes CHSYMn/2,log n(x) . Since the degree of CHSYMn/2,log n(x)

is O(log n), by Lemma 5.2.4, there is a homogeneous abecedarian formula computing
CHSYMn/2,log n(x) of size poly(n).

Another simple observation is that if we are given a homogeneous abecedarian
formula for an abecedarian polynomial, then we almost immediately have one for its
various sub-polynomials.
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Observation 5.5.4. Suppose there is a homogeneous abecedarian formula F computing
a polynomial f that is abecedarian with respect to a bucketing system of size m. Then,
for any a, b œ [m + 1], there is a homogeneous abecedarian formula Fa,b of size s that
computes f [a, b).

Proof. Recall that if F is a homogeneous abecedarian formula computing f , then F

is in fact a set of formulas {F i : F i computes f [i, m + 1)}. Consider the formula
Fa and set all variables that belong to buckets {Xb, . . . , Xm} to zero in Fa. This
operation clearly kills exactly the monomials in f [a, m + 1) that are not in f [a, b).
Thus if we call this new formula Fa,b, then Fa,b is homogeneous, abecedarian and
computes f [a, b).

The next observation is extremely crucial, since it allows us to amplify the degree of
CHSYMn,d(x).

Lemma 5.5.5. Suppose there is a homogeneous abecedarian formula computing
CHSYMn,d(x) of size s, and a homogeneous linked abecedarian formula computing
linked_CHSYM

n,dÕ(x) of size sÕ. Then, there is a homogeneous abecedarian formula
computing CHSYMn,(d·dÕ)(x) of size (s · sÕ

).

Proof. Let F be the homogeneous abecedarian formula computing the polynomial
CHSYMn,d(x) of size s, and F

Õ be the homogeneous linked abecedarian formula
computing linked_CHSYM

n,dÕ(x) of size sÕ.

We think of the variable xa,b in linked_CHSYM
n,dÕ(x) as a placeholder for the sub-

polynomial CHSYMn,d[a, b + 1)(x)
6 of CHSYMn,d(x). Note that there is a bijection

between monomials in CHSYMn,(d·dÕ)(x) and those in the polynomial we get by
substituting xa,b in linked_CHSYM

n,dÕ(x) with CHSYMn,d[a, b + 1)(x).

By Observation 5.5.4, there is homogeneous abecedarian formula Fa,b, of size O(s)

computing CHSYMn,d[a, b + 1)(x) for every a, b œ [n + 1]. Thus, if we replace every
leaf of F

Õ labelled by xa,b with Fa,b, then the resulting formula is a homogeneous
abecedarian formula computing CHSYMn,(d·dÕ)(x) of size (s · sÕ

).

Finally, we observe that if we are given a homogeneous abecedarian formula com-
puting the polynomial CHSYM(n≠d+1),d(x), then we get a homogeneous multilinear
formula computing the non-commutative version of ESYMn,d(x).

6Sum of monomials in CHSYMn,d(x) whose first variable is a and last variable is one of {xa, . . . , xb}.
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Observation 5.5.6. Consider the elementary symmetric polynomial

ESYMn,d(x) =

ÿ

1Æi1<...<idÆn

xi1 · · · xid
.

If there is a homogeneous abecedarian formula computing CHSYM(n≠d+1),d(x) of size
s, then there is a homogeneous multilinear formula computing ESYMn,d(x) of size s.

Proof. Suppose F is a homogeneous abecedarian formula computing the polynomial
CHSYM(n≠d+1),d(x) of size s. Since F is homogeneous, every leaf labelled by a
variable can be associated with a position index. If a leaf labelled xi has position k

associated with it, then replace the label of that leaf with xi+k≠1.

Call this formula F
Õ. Clearly F

Õ is a homogeneous formula of size s computing
ESYMn,d(x). Further note that since F was abecedarian, F

Õ is multilinear.

Proof of the Separation

We now prove Theorem 5.2.1. Let us first recall the statement.

Theorem 5.2.1 (Separating Abecedarian Formulas and ABPs). Define

linked_CHSYM
n,d

(x) =

nÿ

i0=1

Q

a
ÿ

i0Æi1Æ...ÆidÆn

xi0,i1 · xi1,i2 · · · xid≠1,id

R

b

to be the linked complete homogeneous polynomial over n-variables of degree d.

The polynomial linked_CHSYM
n,d

(x) is abecedarian with respect to the partition
{Xi : i œ [n]} where Xi = {xi,j : i Æ j Æ n}. With respect to this partition,

1. linked_CHSYM
n,d

(x) has an abecedarian ABP of size O(nd);

2. for d = log n, any syntactically abecedarian formula computing the polynomial
linked_CHSYM

n/2,d
(x) has size n�(log d).

That is, there is a super-polynomial separation between syntactically abecedarian for-
mulas and ABPs.

That linked_CHSYM
n,d

(x) has a small abecedarian ABP is not very hard to see. For
the lower bound, we assume that we have been given an abecedarian formula F ,
computing the polynomial linked_CHSYM

n,log n
(x), of size poly(n). We then keep

making changes to this formula till we get a homogeneous multilinear formula
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computing ESYMn,n/2(x) of size poly(n). Finally, we use the following theorem of
Hrubeš and Yehudayoff [HY11] to get a contradiction.

Theorem 5.5.7 (Theorem 1, [HY11]). Any homogeneous multilinear formula that
computes ESYMn,d(x), for d Æ n/2, must have size n ◊ d�(log d).

Let us now complete the proof of our main theorem.

Proof of Theorem 5.2.1. An abecedarian ABP of size O(nd) computing the polyno-
mial linked_CHSYM

n,d
(x) is the following.

s1

...

...

...
sn

0

· · ·

· · ·

· · ·

· · ·

...

i

...

...

...

k ≠ 1

...

i

...
j

...

k

· · ·

· · ·

· · ·

· · ·

t1

...

...

...
tn

d

xi,i

xi,j

The ABP has d + 1 layers, labelled 0 through d, each with n nodes. Between any
consecutive layers k ≠ 1 and k, where 1 Æ k Æ d, there is an edge from the i-th node
in layer k ≠ 1 to the j-th node in layer k layer if i Æ j. The label on this edge is xi,j .
All the nodes in the first layer are start nodes, and all the ones in the last layer are
terminal nodes.

It is easy to check, by induction, that the polynomial computed between sa and
the b-th vertex in layer k computes CHSYMn,k[a, b + 1)(x). Thus the polynomial
computed by the abecedarian ABP constructed above is indeed CHSYMn,d(x), and
its size is clearly O(nd).

Let us now move on to proving the lower bound against abecedarian formulas. We
show that there is a fixed constant Á0 such that any abecedarian formula computing
linked_CHSYM

n/2,log n
(x) must have size atleast �(nÁ0 log log n

). Suppose this is not
the case. Then for every Á > 0, there is an abecedarian formula F

Õ
(Á) computing

linked_CHSYM
n/2,log n

(x) of size O(nÁ log log n
).

Without loss of generality, we can assume that F
Õ
(Á) has fan-in 2. Further, by

Lemma 5.2.5, we can reduce the depth of F
Õ
(Á) to log-depth. That is, we get an

abecedarian formula F
Õ
1(Á) computing linked_CHSYM

n/2,log n
(x) of depth at most
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O(Á log n log log n) and size O(nc1Á log log n
). Here c1 is a fixed constant independent

of Á.

Next, since the degree of the polynomial being computed is small, Lemma 5.2.4
implies that F

Õ
1(Á) can in fact be homogenised without much blow-up in size. In

other words, there is a homogeneous abecedarian formula computing the polynomial
linked_CHSYM

n/2,log n
(x) of size O(nc1c2Á log log n

), where c2 is again a fixed constant
independent of Á. Let this formula be F

Õ
2(Á).

By Observation 5.5.2, we can use F
Õ
2(Á) to get a homogeneous linked abecedarian

formula F
Õ
3(Á) of size O(nc1c2Á log log n

) that computes the same polynomial. Further,
because of Observation 5.5.3, we know that there is a homogeneous abecedarian for-
mula, say F , of size poly(n) = O(nc1c2Á log log n

) that computes CHSYMn/2,log n(x).

With F and F
Õ
3(Á) in hand, we get a homogeneous abecedarian formula com-

puting CHSYM
n/2,log2

n
(x) because of Lemma 5.5.5. To get such a formula for

CHSYMn/2,n/2(x), we need to use Lemma 5.5.5 at most k times where

(log n)
k

=
n

2
=∆ k = O

3
log n

log log n

4
.

Thus, using Lemma 5.5.5 repeatedly at most O( log n/log log n) times, we get that there
is a homogeneous abecedarian formula, F(Á), computing CHSYMn/2,n/2(x) of size

O(n(c1c2Á log log n)·( log n/log log n)
) = O(n(c1c2Á log n)

).

By Observation 5.5.6, we know that F(Á) can be used to get a homogeneous mul-
tilinear formula, F1(Á), computing ESYMn≠1,n/2(x) of size O(n(c1c2Á log n)

). Finally,
Theorem 5.5.7 tells us that there is a constant ” such that any homogeneous mul-
tilinear formula computing ESYMn≠1,n/2(x) must have size at least n”·log n. For
Á = ”/2c1c2, this contradicts the existence of F1(Á) and hence F

Õ
(Á).

Thus, it must be the case that any abecedarian formula computing the polynomial
linked_CHSYM

n/2,log n
(x) has size at least n�(log log n). This completes the proof.

Our main result in this chapter was a tight super-polynomial separation between
abecedarian formulas and algebraic branching programs. In a recent breakthrough
work, Limaye, Srinivasan and Tavenas [LST21a] have shown a super-polynomial
separation between homogeneous formulas and ABPs in the non-commutative setting
using very different techniques. It would be very interesting to see if ideas from
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their work and this work can be combined to give a solution to Nisan’s question of
whether there is a super-polynomial gap between the powers of formulas and ABPs
in the non-commutative setting.
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Part II

Algebraic Independence and Faithful
Homomorphisms





Testing Algebraic Independence 6

Till now we have been focussing on questions that try to classify multivariate
polynomials with respect to how hard it is to compute them for various algebraic
models of computation. In this part, we look at some algorithmic tasks related to
polynomials. The first task we study involves understanding certain relationships
between polynomials — the concept of algebraic independence.

Recall that a set of polynomials {f1, . . . , fm} ™ F[x] is said to be algebraically depen-
dent if and only if there is some nonzero polynomial combination of {f1, . . . , fm}

that is zero. Such a nonzero polynomial A(z1, . . . , zm) œ F[z], if one exist, for which
A(f1, . . . , fm) = 0 is called an annihilating polynomial for the set {f1, . . . , fm}.

For instance, if f1 = x, f2 = y and f3 = x2
+ y2, then A = z2

1 + z2
2 ≠ z3 is an

annihilator. Note that the underlying field is very important. For example, the
polynomials x + y and xp

+ yp are algebraically dependent over Fp, but algebraically
independent over a characteristic zero field.

6.1 Algebraic Rank

As mentioned earlier, algebraically independent subsets of a given set of polynomials
f = {f1, . . . , fm} form a matroid (see [Oxl92]). Hence, the size of the maximum
algebraically independent subset of f is well-defined and is called the algebraic rank
or transcendence degree of f . We denote it by algrank(f) = algrank(f1, . . . , fm).

Several computational questions arise from the above definition. For instance, given
a set of polynomials f = {f1, . . . , fm}, each fi given as a sum of monomials, can we
compute algrank(f) efficiently? What if the fi’s are provided as algebraic circuits?

Furthermore, in instances when algrank(f) = m ≠ 1, the smallest degree annihilat-
ing polynomial is unique ([Kay09]). There could be various questions about the
minimal degree annihilator in this case. For instance, can we compute it efficiently?
Kayal [Kay09] showed that even checking if the constant term of the annihilator is
zero is NP-hard, and evaluating the annihilator at a given point is #P-hard.
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In fact, recently Guo, Saxena, Sinhababu [GSS19] showed that even in the general
case, checking if the constant term of every annihilator is zero is NP-hard. This
effectively rules out any attempt to compute the algebraic rank via properties of the
annihilating polynomials.

Despite this, over fields of characteristic zero, algebraic rank has an alternate
characterisation via the Jacobian criterion. Jacobi [Jac41] showed that the algebraic
rank of a set of polynomials f(™ F[x]) is given by the linear rank (over the rational
function field F(x)) of the Jacobian of these polynomials.

6.2 The Jacobian Criterion

Let us now formally state the Jacobian Criterion.

Definition 6.2.1 (Jacobian Matrix). For f1, . . . , fm œ F[x1, . . . , xn], the Jacobian
matrix is defined as

Jx(f) =

S

WWWWWU

ˆx1(f1) ˆx1(f2) . . . ˆx1(fm)

ˆx2(f1) ˆx2(f2) . . . ˆx2(fm)

...
...

. . .
...

ˆxn
(f1) ˆxn

(f2) . . . ˆxn
(fm)

T

XXXXXV

⌃

With this definition in mind, the Jacobian criterion [Jac41] can now be stated as
follows.

Theorem 6.2.2 (Jacobian Criterion). If F is a field of characteristic zero, then the set
of polynomials f1, . . . , fm œ F[x] are algebraically independent if and only if Jx(f) has
full rank over the rational function field F(x).

This immediately yields a randomized polynomial time algorithm to compute the
algebraic rank of a given set of polynomials by computing the rank of the Jacobian
evaluated at a random point [Ore22; Sch80; Zip79; DL78].

However, this criterion is not true over fields that have finite characteristic. A
standard example to exhibit the failure of the Jacobian criterion over fields of finite
characteristic, is

)
xp≠1y, yp≠1x

*
– these polynomials are algebraically independent

over Fp but the Jacobian is not full-rank over Fp.
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Pandey, Saxena and Sinhababu [PSS18] characterised the extent of failure of the Ja-
cobian criterion for {f1, . . . , fm} by a notion called the inseparable degree associated
with this set (see Definition 6.3.4). Further, they presented a Jacobian-like criterion
to capture algebraic independence.

6.3 The PSS Criterion

The exact characterisation given by Pandey et al. [PSS18] is slightly involved and
requires some field theoretic concepts, which we present first.

Some Field Theoretic Preliminaries

Definition 6.3.1. A polynomial is said to be separable if it does not have repeated roots
in a field where it factorises completely. ⌃

Over characteristic zero fields, every irreducible univariate polynomial is separable
since it cannot have a common root with its derivative. However, this is not the
case over fields of finite characteristic as derivatives of non-trivial polynomials could
become zero. This adds some subtlety in field extensions over finite characteristic.

Some facts about field extensions that we will need are mentioned below. These
may be found in any standard text for field theory (see, for example, [Isa94]).

1. An extension K/F is said to be algebraic if every element in K is the root of
some polynomial over F. Otherwise, it is transcendental.

2. For a transcendental extension K/F, a transcendence basis is a maximal subset
of K that is algebraically independent over F. An extension K/F is purely
transcendental if there is a transcendence base S ™ F such that K = F(S).

3. An algebraic extension K/F is said to be separable if the minimal polynomial
of every element in K is separable.

An example of an algebraic extension that is not separable is Fp(x)/Fp(xp
). The

minimal polynomial µ(z) for x over Fp(xp
) is zp

≠ xp, which is not separable.

Also, if K = F(–1, . . . , –n) is an algebraic extension of F, then K/F is separable
if and only if the minimal polynomials of –i over F is separable for each i.
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For an algebraic extension K/F over characteristic p, the separable closure of F in K,
denoted by Sep(K/F), is defined as

Sep(K/F) = {– œ K : – is separable over F} .

For every element – in K \ Sep(K/F), we would have that –p
i

œ Sep(K/F) for
some positive integer i. Thus, the extension K/F splits into two extensions K Ø

Sep(K/F) Ø F where the latter is a separable algebraic extension and the former is a
purely inseparable algebraic extension.

Definition 6.3.2 (Inseparable degree of algebraic extensions). For an algebraic
extension K/F of characteristic p, the inseparable degree of the extension, denoted by
insep-deg(K/F), is the smallest t such that xt

œ Sep(K/F) for every x œ K. ⌃

Remark 6.3.3. The above definition deviates slightly from the standard definition
in texts on field theory. However, this is the definition used by Pandey, Saxena and
Sinhababu [PSS18] in their criterion and we stick with it here. ⌃

We would like to extend this definition to non-algebraic extensions.

Let {f1, . . . , fm} be a set of polynomials over F. We will be interested in the exten-
sion F(x) = F(x1, . . . , xn) over F(f1, . . . , fm). Suppose {f1, . . . , fk} is a separable
transcendence basis of {f1, . . . , fm}. Using the matroid property of algebraically inde-
pendent polynomials, there exists xik+1 , . . . , xin

such that
)
f1, . . . , fk, xik+1 , . . . , xin

*

is algebraically independent as well.

Now, since F(x) is algebraic over F(f1, . . . , fk, xik+1 , . . . , xin
), we can talk about the

inseparable degree of this algebraic extension. We use this to define a suitable
notation of inseparable degree for a set of algebraically independent polynomials.

Definition 6.3.4 (Inseparable degree of a set of polynomials). Let f = {f1, . . . , fm}

be a set of polynomials over a field F of characteristic p. For a set S ™ [n], define
xS = {xi : i œ S}. We shall define insep-deg({f1, . . . , fk}) to be

min

I

insep-deg (F(x)/F(f , xS)) :
|S| = n ≠ algrank(f) and

F(f , xS)/F(f) is purely transcendental

J

⌃

Intuitively, every extension can be thought of as purely transcendental, followed by
a separable algebraic, followed by a purely inseparable algebraic extension. The
above definition used the inseparable degree of the purely inseparable part of this in
the general case. We again note that this definition is non-standard, but is sufficient
for our purposes and the criterion of Pandey, Saxena and Sinhababu [PSS18]
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An important point to keep in mind is that when we are working over fields of
characteristic zero, since every irreducible polynomial is separable, the inseparable
degree of any set of polynomials is always 1.

With this background, we are now ready to state the criterion for algebraic in-
dependence over fields of finite characteristic. Similar to the Jacobian Criterion,
Pandey, Saxena and Sinhababu [PSS18] reduce the problem of checking algebraic
independence to that of checking linear independence. However, their criterion is
slightly more subtle in the sense that we will have to check the linear independence
of a set of vectors modulo a large subspace.

The Criterion

The key insight of Pandey et al. [PSS18] was to observe that the rows of the Jacobian
matrix, which are first order partial derivatives, are the linear terms present in the
Taylor expansion of f(x) around a generic point z.

In their work, they study higher order terms of the Taylor expansion around a generic
point, and show that it is enough to look at terms up to the inseparable degree of the
set of polynomials given. This allows them to characterise the failure of the Jacobian
criterion and also come up with a modified criterion that works over all fields.

To state their criterion succinctly, they define a new operator based on the notion of
Hasse derivatives of polynomials.

Taylor Expansion and Hasse Derivatives Let Ht(f) := degÆt(f(x + z) ≠ f(z)),
where degÆt restricts to just those monomials in x of degree at most t. Note that
Ht(f) does not have a constant term and this would become useful in the criterion.

The operator Ht(f) can be thought of as a vector over the field F(z) whose coordin-
ates are indexed by monomials xe of degree at most t. The entry in the coordinate
xe of Ht(f) is the corresponding Hasse derivative of f evaluated at z:

|e|!

e1!e2! · · · en!
·

A
ˆ|e|f

ˆxe1
1 · · · ˆxen

n

B

(z).

The operator Ht however, as defined above, is indexed by t. Pandey et al. [PSS18]
show that the correct value of t to work with is the inseparable degree of the given
set of polynomials.
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Formally, we have the following statement.

Theorem 6.3.5 ([PSS18]). Let {f1, . . . , fk} œ F[x1, . . . , xn] have inseparable degree
t. Further, for a generic point z, let Ht(fi) = degÆt(fi(x + z) ≠ fi(z)). Then, they are
algebraically dependent if and only if there exists a non-zero (–1, . . . , –k) œ F(z)

k such
that

kÿ

i=1
–i · Ht(fi) = 0 mod ÈHt(f1), . . . , Ht(fk)Í

Ø2
F(z) + ÈxÍ

t+1 .

We note that at least one direction of this theorem can be slightly generalised.

A Slight Generalisation

We state this generalisation formally here, since we will need it in the next chapter.
A proof is given for the sake of completeness, but we note that the steps are almost
identical to those in [PSS18].

Lemma 6.3.6. Let F be an algebraically closed field and K be an extension field of
F. Further, suppose {g1, . . . , gk} is a set of n-variate polynomials in K[y] that are
F-algebraically dependent. Also, for a generic point v, let

Ht(gi) = degÆt(gi(y + v) ≠ gi(v))

Then for any positive integer t, there exists (–1, . . . , –k) œ F(g(v))
k

\ {0} such that

kÿ

i=1
–iHt(gi) © 0 mod ÈHt(g1), . . . , Ht(gk)Í

Ø2
F(g(v)) + ÈyÍ

t+1

Proof. Suppose {g1, . . . , gk} are F-algebraically dependent. Then by standard prop-
erties of transcendence bases [Kna07, Theorem 7.20 and 7.18], we have that there
is an F-algebraically independent subset of {g1, . . . , gk}, of size r < k, that forms a
separable transcendence basis.

Without loss of generality, let that subset be {g1, . . . , gr}.

Let A œ F[u0, u1, . . . , ur] be the minimal annihilating polynomial for the set of
polynomials g = {g0, g1, . . . , gr} where g0 := gr+1. Now since A(g) = 0, for formal
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variables v, we have A(g(y + v)) = 0. Also, from the definition of Ht(g), we have
that

gj(y + v) = gj(v) + Ht(gj) mod ÈyÍ
t+1

for any j = 0, . . . , r. Hence,

A(g0(v) + Ht(g0), . . . , gr(v) + Ht(gr)) = 0 mod ÈyÍ
t+1 .

Using Taylor expansion, we get

A(g0(v) + Ht(g0), . . . , gr(v) + Ht(gr)) =

ÿ

eØ0
(ˆueA)u=g(v) · (Ht(g))

e

= A(g(v)) +

rÿ

i=0
(ˆui

A)u=g(v) Ht(gi)

mod ÈHt(g0), . . . , Ht(gr)Í
Ø2
F(g(v)) + ÈyÍ

t+1

where the last equality crucially used the fact that the coefficients of A are from F
and hence the linear combinations of ÈHt(g)Í

Ø2 are over F(g(v)).

Observe that A(g(v)) = 0. Furthermore, since {g1, . . . , gr} forms a separable ba-
sis, we have that ˆu0A is a nonzero polynomial. Hence ˆu0(A(g(v))) ”= 0, as A

is the minimal degree annihilator for g. Therefore, we have a nonzero vector
(–1, . . . , –k) œ (F(g(v)))

k such that

kÿ

i=1
–iHt(gi) © 0 mod ÈHt(g1), . . . , Ht(gk)Í

Ø2
F(g(v)) + ÈyÍ

t+1

A Di�erent Perspective

Let Ut(f) = Ut(f1, . . . , fk) denote the subspace

ÈHt(f)Í
Ø2
F(z) = ÈHt(f1), . . . , Ht(fk)Í

Ø2
F(z) mod ÈxÍ

t+1.

Then, for any h œ Ut(f), we define the modified Jacobian matrix as follows.

PSSJact(f , h) =

S

WWWWWU

Ht(f1) + h

Ht(f2)

...
Ht(fk)

T

XXXXXV
.
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The columns of this matrix are indexed by monomials in x and entries in the column
indexed by xe are the coefficient of xe in the corresponding rows.

An alternative statement for the PSS criterion is thus, the following.

Theorem 6.3.7 (Alternate Statement for the PSS-criterion). Let {f1, . . . , fk} be a
set of n-variate polynomials over a field F with inseparable degree t. Then, they are
algebraically independent if and only if for every h œ Ut(f), PSSJact(f , h) is full rank.

We note that Lemma 6.3.6 can also be viewed from a similar perspective. Let
Vt(g1, . . . , gk) denote the subspace ÈHt(g1), . . . , Ht(gk)Í

Ø2
F(g(v)) mod ÈyÍ

t+1. An alter-
nate statement for the lemma is then the following.

Lemma 6.3.8 (Alternate Statement for Lemma 6.3.6). Let F any field and K be an
extension field of F. If {g1, . . . , gk} is a set of n-variate polynomials in K[y] that are F-
algebraically dependent, then for any positive integer t, there exists hÕ

œ Vt(g1, . . . , gk)

such that PSSJact(g, hÕ
) is not full rank.

We are now finally ready to talk about the complexity of testing algebraic indepen-
dence. Recall that over fields of characteristic zero, the Jacobian criterion leads to a
randomised polynomial time algorithm for this problem. Further, this algorithm only
has one-sided error, therefore placing the problem of testing algebraic independence
over fields of characteristic zero in RP. However, over fields of finite characteristic,
the upper bounds known are quite weak and it remains wide open whether the
problem is in RP over such fields as well [DGW09].

6.4 Testing Algebraic Independence Over Fields of
Finite Characteristic

The trivial upper bound known for the problem of algebraic independence testing is
PSPACE. This is due to a classical result of Perron [Per27], who showed that given
a set of algebraically dependent polynomials, there exists an annihilator for these
polynomials whose degree is upper bounded by the product of their degrees.

This upper bound was brought down to NP#P due to the work of Mittman, Saxena
and Scheiblechner [MSS14]. In a recent work of Guo, Saxena and Sinhababu
[GSS19], the complexity was further brought down to AM fl co ≠ AM. This makes
it unlikely that the algebraic independence testing problem is NP-complete (under
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standard complexity theoretic assumptions) [AB09]. However, it is unclear if we
can get an improved algorithm using the ideas in [GSS19].

The PSS Criterion (Theorem 6.3.7) on the other hand, naturally suggests a ran-
domised algorithm [PSS18, Section 4]. Further, given n polynomials as circuits of
size s each, if the inseparable degree of these polynomials is t, then this algorithm
runs in time poly(s,

!
t+n

t

"
). Note that in the setting when the inseparable degree is

constant, the algorithm is efficient since the running time is O(nt
).

We will use this fact later, in chapter 7, to construct faithful homomorphisms in
this setting. But before that, we look at another case where we have an efficient
randomised algorithm for checking algebraic independence among polynomials over
fields of finite characteristic. The case when all the polynomials are quadratics.

Our Result: Solving The Quadratic Case

Suppose we are given n quadratic polynomials over n variables. We show that in
this case, the Jacobian Criterion holds in more generality. That is, the polynomials
are algebraically independent if and only if the Jacobian of these polynomials has
full rank, as long as the underlying field does not have characteristic two.

Theorem 6.4.1. Let {f1, . . . , fn} ™ F[x1, . . . , xn] be a set of quadratic polynomials
with char(F) ”= 2. If f1, . . . , fn are algebraically independent, then det(Jx(f)) ”= 0.

Proof. Let us assume, without loss of generality, that the given polynomials are
constant free.1 We now shift the polynomials by a random point a to get gi(x) =

fi(x + a) ≠ fi(a) for every i. Then, g1, . . . , gn can be written as gi = li + qi, where
qis are quadratic forms and lis are linear forms.

Now, suppose det(Jx(f)) = 0. That would mean g1, . . . , gn are linearly dependent
mod ÈxÍ

2. Since gi = li + qi in this case, what it means is that the set {l1, . . . , ln} are
linearly dependent. Without loss of generality, let the rank of {l1, . . . , ln} be n ≠ 1

and let ln be linearly dependent on the rest. Further, there must be some i œ [n]

such that xi is linearly independent of {l1, . . . , ln≠1}. Without loss of generality, we
assume that it is xn.

We first make the following claim.
1
{f1, . . . , fn} are algebraically independent if and only if {f1 ≠ f1(0), . . . , fn ≠ fn(0)} are alge-
braically independent since the H operator does not distinguish these two cases. Further, the
Jacobian also does not change and so we are in exactly the same situation.
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Claim 6.4.2. If l1, . . . , ln≠1, xn are linearly independent, then the matrix M defined as

Mij = coe�xj
(li)

for i, j œ [n ≠ 1] is invertible.

Proof. Suppose the above claim is false. Then, there would be –i, . . . , –n≠1 such
that

q
n≠1
j=1 –jMj = 0, where Mj is the jth row of M . However, since {l1, . . . , ln≠1}

are algebraically independent,
q

n≠1
j=1 –jlj ”= 0.

The two above statements together implies that for some –,

n≠1ÿ

j=1
–jlj = –xn,

which contradicts the assumption that l1, . . . , ln≠1, xn are linearly independent.

Now since M is invertible, for bi = ≠ coe�xn
(li), the system M ◊ y = b has a

solution. Let {–1, . . . , –n≠1} be the solution.

On the other hand, since f1, . . . , fn are algebraically independent it must be the case
that {xn, f1, . . . , fn} are algebraically dependent. Further, if pk is the inseparable
degree of the extension F(xn, f1, . . . , fn)/F(f1, . . . , fn), then it must be the case that
{f1, . . . , fn} is a separable transcendence basis for the algebraically dependent setÓ

xp
k

n , f1, . . . , fn

Ô
. Let A œ F[u0, u1, . . . , un] be the minimal annihilating polynomial

for
Ó

xp
k

n , f1, . . . , fn

Ô
. Then, A((xn + an)

p
k

, f1(x + a), . . . , fn(x + a)) = A(xp
k

n +

ap
k

n , f1(x + a), . . . , fn(x + a)) = 0 where a is as defined earlier. For ease of notation,
let us denote xp

k

n by f0(x) and define g0(x) = f0(x + a) ≠ f0(a) = xp
k

n .

Now, since fi(x + a) = fi(a) + gi(x) for every i œ {0, . . . , n},

A(f0(a) + g0(x), f1(a) + g1(x), . . . , fn(a) + gn(x)) = 0.

Using Taylor expansion, we get

A(f0(a)+g0(x), . . . , fn(a) + gn(x)) =

ÿ

eØ0
(ˆueA)u=f(a) · (g(x))

e

= A(f(a)) +

rÿ

i=0
(ˆui

A)u=f(a) · gi(x) +

ÿ

eØ2
(ˆueA)u=f(a) · (g(x))

e.
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Observe that A(f(a)) = 0. Furthermore, since {f1, . . . , fr} forms a separable basis,
we have that ˆu0A is a nonzero polynomial. Hence ˆu0(A(f(a))) ”= 0, as A is the
minimal degree annihilator for g.

Thus we have

0 = ˆu0(A(f(a))) · xp
k

n + A(f(a)) +

rÿ

i=1
(ˆui

A)u=f(a) · gi(x)

+

ÿ

eØ2
(ˆueA)u=f(a) · (g(x))

e

= ˆu0(A(f(a))) · xp
k

n + A(f(a)) +

rÿ

i=1
(ˆui

A)u=f(a) · gi(x)

+

ÿ

eØ2
(ˆueA)u=f(a) · (ge1

1 · · · gen

n ) mod ÈxÍ
p

k+1 .

for ˆu0(A(f(a))) ”= 0. In other words,

xp
k

n = Ra(g1, . . . , gn) mod ÈxÍ
Øp

k+1

for some Ra œ F[y1, . . . yn] that depends on the random point a. That is,

xp
k

n = Ra(g1, . . . , gn) + E(x)

where the degree of every monomial in E(x) is at least pk
+ 1.

Since the left hand side of the equation depends only on xn, we should be able to
substitute the other variables x1, . . . , xn≠1 to any value and the equation should still
be satisfied. Let us thus make the following substitution.

xi = –ixn for every i œ [n ≠ 1]

Since the substitution preserves the degree of each monomial, by our choice of
{–1, . . . , –n≠1}, the equation now becomes

xp
k

n = Ra(q1, . . . , qn) + E(xn).

Here every monomial in E has degree at least pk
+ 1.

Now note that the right hand side of the equation can never generate a monomial
that has degree at most pk and is odd. Hence, for p ”= 2, the above equation cannot
be true. This shows that our initial assumption that det(Jx(f1, . . . , fn)) = 0 must be
false.
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For higher degrees however, no algorithm better than the one suggested by the PSS
criterion is known. When the inseparable degree is non-constant, this algorithm fails
to be efficient. Therefore, any progress made towards giving an efficient randomised
algorithm for checking algebraic independence over fields of finite characteristics
when the inseparable degree is non-constant, would be extremely interesting.
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Constructing Faithful

Homomorphisms

7

Algebraic independence shares a lot of similarities with linear independence due to
the matroid structure. One natural task is to find a rank-preserving transformation in
this setting. This is defined by what are called faithful homomorphisms.

Intuitively, suppose we are given a set of n-variate polynomials {f1, . . . , fm} that
have algebraic rank k. Then a map Ï from this set to the set of k-variate polynomials
is said to be faithful if the algebraic rank of {Ï(f1), . . . , Ï(fm)} is also k.

Apart from being a natural task, constructing faithful homomorphisms also has
applications in polynomial identity testing, one of the central algorithmic questions
in algebraic circuit complexity. Given an algebraic circuit C, polynomial identity
testing is the task of checking whether C computes the identically zero polynomial.

7.1 Faithful Homomorphisms and Polynomial Identity
Tests

Let us now look at the formal definition of faithful homomorphisms.

Definition 7.1.1 (Faithful homomorphisms [BMS13]). Let f = {f1, . . . , fm} ™ F[x]

be a set of polynomials. If K is an extension field of F, a homomorphism � : F[x] æ

K[y] is said to be an F-faithful homomorphism for {f1, . . . , fm} if

algrankF {f1, . . . , fm} = algrankF {�(f1), . . . , �(fm)} . ⌃

Ideally, we would like a faithful homomorphism with |y| ¥ algrank {f} and K = F.
Beecken, Mittmann and Saxena [BMS13] showed that a generic F-linear homomor-
phism to algrank(f) many variables would be F-faithful with high probability.

One important consequence of faithful homomorphisms is that they preserve nonze-
roness of any polynomial composition of f1, . . . , fm.
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Lemma 7.1.2 ([BMS13; Agr+16]). Suppose f1, . . . , fm œ F[x1, . . . , xn] and � is
an F-faithful homomorphism for {f1, . . . , fm}. Then, for any circuit C(z1, . . . , zm) œ

F[z1, . . . , zm], we have

C(f1, . . . , fm) = 0 … C(�(f1), . . . , �(fm)) = 0.

Thus, constructing explicit faithful homomorphisms can also be used for polynomial
identity testing or PIT, where the goal is to design a deterministic algorithm that
runs in time polynomial in the size of the circuit.

There are two types of PIT algorithms, whitebox and blackbox — in the blackbox
setting, we are only provided evaluation access to the circuit and some of its
parameters (such as degree, number of variables, size etc.). Thus blackbox PIT
algorithms for a class C is equivalent to constructing a hitting set, which is a small
list of points in S µ Fn such that any nonzero polynomial f œ C is guaranteed to
evaluate to a nonzero value on some a œ S.

It follows from Lemma 7.1.2 that if we can construct explicit F-faithful homomor-
phisms for a set {f1, . . . , fm} whose algebraic rank is k π n, then we have a variable
reduction that preserves the nonzeroness of any composition C(f1, . . . , fm).

This approach was used by Beecken, Mittmann and Saxena [BMS13] and Agrawal,
Saha, Saptharishi, Saxena [Agr+16], in the characteristic zero setting, to design
identity tests for several subclasses by constructing faithful homomorphisms for
{f1, . . . , fm} with algebraic rank at most k = O(1), when

• each fi is a sparse polynomial,

• each fi is a product of multilinear, variable disjoint, sparse polynomials,

• each fi is a product of linear polynomials,

and further generalisations.

All the above constructions crucially depend on the fact that the rank of the Jaco-
bian captures algebraic independence. However, this fact is true only over fields
of characteristic zero and hence all the above results no longer hold over fields of
finite characteristic. Following up on the criterion of Pandey, Saxena and Sinhab-
abu [PSS18] for algebraic independence over such fields, we extend the results of
Beecken et al. [BMS13] and Agrawal et al. [Agr+16] to construct faithful homomor-
phisms over fields for some restricted settings. This then allows us to give efficient
polynomial identity tests for certain circuit classes.
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7.2 Our Results

Let us first state our results formally.

Theorem 7.2.1. Let f1, . . . , fm œ F[x1, . . . , xn] be such that algrank {f1, . . . , fm} = k

and the inseparable degree is t. If t and k are bounded by a constant, then we can
construct a polynomial (in the input length) sized list of homomorphisms of the form
� : F[x] æ F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to
F-faithful for the set {f1, . . . , fm}, in the following two settings:

• each of the fi’s are sparse polynomials,

• each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Prior to this, construction of faithful homomorphisms over finite fields was known
only in the setting when each fi has small individual degree [BMS13]. Over char-
acteristic zero fields, the inseparable degree is always 1 and hence the faithful
homomorphisms constructed in [BMS13], [Agr+16] over such fields can be viewed
as special cases of our constructions.

Our theorem also holds for a few other models studied by Agrawal et al.[Agr+16]
(for instance, occur-k products of sparse polynomials).

We mention the above two models just as an illustration of lifting the recipe for faith-
ful homomorphisms from [BMS13; Agr+16] to the finite characteristic setting.

As corollaries, we get efficient PIT algorithms for these models.

Corollary 7.2.2. If {f1, . . . , fm} œ F[x1, . . . , xn] is a set of s-sparse polynomials with
algebraic rank k and inseparable degree t where k, t = O(1). Then, for the class of
polynomials of the form C(f1, . . . , fm) for any polynomial C(z1, . . . , zm) œ F[z], there
is an explicit hitting set of size (s · deg(C))

O(1).

Corollary 7.2.3. Let C =
q

m

i=1 Ti be a depth-4 multilinear circuit of size s, where
each Ti is a product of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} œ

F[x1, . . . , xn] is a set of polynomials with algebraic rank k and inseparable degree t

where k, t = O(1). Then, for the class of polynomials of the form C(T1, . . . , Tm) for any
polynomial C(z1, . . . , zm) œ F[z], there is an explicit hitting set of size (s · deg(C))

O(1).

We now compare these PIT results with those in related works.
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Comparison with the PIT of Pandey et al. [PSS18] Pandey et al. [PSS18] also gives a
PIT result for circuits of the form

q
i (fi,1 · · · fi,m) where algrank {fi,1, . . . , fi,m} Æ k

for every i and each fi,j is a degree d polynomial in F[x1, . . . , xn]. They extend the
result of Kumar and Saraf [KS17a] to arbitrary fields by giving quasi-polynomial
time hitting sets if kd is at most poly-logarithmically large. Corollary 7.2.3 however
is incomparable to their result for the following reasons:

• The algebraic rank bound in the case of [PSS18; KS17a] is a gate-wise bound
rather than a global bound. Thus, in principle, it could be the case that
algrank {fi,1, . . . , fi,m} is bounded by k for each i but this would not necessarily
translate to a bound on algrank

Ór
j fi,j : i

Ô
as demanded in Corollary 7.2.3.

Hence, in this regard, the PIT of [PSS18; KS17a] is stronger.

• In the regime when we have algrank
Ór

j fi,j : i
Ô

and the inseparable degree
of this set to be bounded by a constant, Corollary 7.2.3 presents an explicit
hitting set of polynomial size, whereas it is unclear if [PSS18; KS17a] pro-
vide any non-trivial upper bound as this does not translate to any bound on
algrank {fi,1, . . . , fi,m}.

On other models studied by Agrawal et al. [Agr+16] Our results, in its current form,
do not extend directly some of the other models studied by Agrawal et al. [Agr+16],
most notably larger depth multilinear formulas. The primary hurdle appears to be
the recursive use of explicit faithful homomorphisms for larger depth formulas. In
the characteristic p setting, unfortunately, it is unclear if a bound on the inseparable
degree of the original gates can be used to obtain a bound on the inseparable degree
of other sets of polynomials considered in the recursive construction of [Agr+16].

Proof Overview

We now go over the proof idea of Theorem 7.2.1. The general structure of the
proof follows the outline of Agrawal et al. [Agr+16]’s construction of faithful
homomorphisms in the characteristic zero setting. Roughly speaking, this can be
described in the following steps:

Step 1 : For a generic linear map � : x æ F(s)[y1, . . . , yk], write the Jacobian of the
set of polynomials {f1 ¶ �, · · · , fk ¶ �}. Thus can be described succinctly as a
matrix product of the form

Jy(f ¶ �) = �(Jx(f)) · Jy(�(x)).
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Step 2 : We know that Jx(f) is full rank. Ensure that �(Jx(f)) (where � is applied
to every entry of the matrix Jx(f)) remains full rank. This can be done if f ’s are
some structured polynomials such as sparse polynomials, or variable-disjoint
products of sparse polynomials etc.

Step 3 : Choose the map � so as to ensure that

rank(�(Jx(f)) · Jy(�(x))) = rank(�(Jx(f))).

This is typically achieved by choosing � so as to make Jy(�(x)) a rank-
extractor. It was shown by Gabizon and Raz [GR08] that a parametrized
Vandermonde matrix has this property and this allows us to work with a
homomorphism of the form (loosely speaking)

� : xi ‘æ

kÿ

j=1
sijyj .

We would like to execute essentially the same sketch over fields of finite characteristic
but we encounter some immediate difficulties. The criterion of Pandey et al. [PSS18]
over finite characteristic is more involved but it is reasonably straightforward to
execute Steps 1 and 2 in the above sketch using the chain rule of (Hasse) derivatives.
The primary issue is in executing Step 3 and this is for two very different reasons.

The first is that, unlike in the characteristic zero setting, the analogue of the matrix
Jy(�(x)) has many correlated entries. In the characteristic zero setting, we have
complete freedom to choose � so that Jy(�(x)) can be any matrix that we want.
Roughly speaking, we only have n · k parameters to define � but the analogue of
Jy(�(x)) is much larger in the finite characteristic setting. Fortunately, there is just
about enough structure in the matrix that we can show that it continues to have
some rank-preserving properties. This is done in section 7.4.

The second hurdle comes from the subspace that we need to work with in the
modified criterion. The rank-extractor is essentially parametrized by the variable s.
In order to show that it preserves the rank of �(Jx(f)) under right multiplication,
we would like ensure that the variable s effectively does not appear in this matrix.

In the characteristic zero setting, this is done by suitable restriction on other variables
to remove any dependencies on s in �(Jx(f)). Unfortunately, in the criterion of
Pandey et al. [PSS18], we have to work modulo some suitable subspace and these
elements introduce other dependencies on s that appear to be hard to remove. Due
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to this hurdle, we are unable to construct F(s)-faithful homomorphisms even in
restricted settings.

However, we observe that for the PIT applications, we are merely required to
ensure that {f1 ¶ �, . . . , fk ¶ �} remain F-algebraically independent instead of F(s)-
algebraically independent. With this weaker requirement, we can obtain a little
more structure in the subspace involved and that lets us effectively execute Step 3.

We now describe some preliminary concepts in the next section, that are necessary
to understand the proof. Following that, in section 7.4, we show that certain
Vandermonde-like matrices have rank-preserving properties. We use these matrices
to give a recipe of constructing faithful homomorphisms, in section 7.5, and execute
this for the settings of Theorem 7.2.1 in section 7.6.

7.3 Preliminaries

We begin by defining some notations.

Notations

• We will use bold face letters such as x to denote a set of indexed variables
{x1, . . . , xn}. In most cases the size of this set would be clear from context.
Extending this notation, we will use xe to denote the monomial xe1

1 · · · xen

n .

• For a set of polynomials f1, . . . , fm, we will denote by Èf1, . . . , fmÍK the set
of all K-linear combinations of f1, . . . , fm. Extending this notation, we will
use Èf1, . . . , fmÍ

r

K to denote the set of all K-linear combinations of r-products
fi1 · · · fir

(with i1, . . . , ir œ [m]) and Èf1, . . . , fmÍ
Ør

K similarly. In instances when
we just use Èf1, . . . , fmÍ, we will denote the ideal generated by f1, . . . , fm.

A well known concept that we will need is that of hitting set generators or HSGs.

Definition 7.3.1 (Hitting Set Generators (HSG)). Let C be a class of n-variate polyno-
mials. A tuple of polynomials G = (G1(–), . . . , Gn(–)) is a hitting set generator for C

if for every nonzero polynomial P (x) œ C we have P (G1(–), . . . , Gn(–)) is a nonzero
polynomial in –.

The degree of this generator is defined to be max deg(Gi). ⌃

Intuitively, such a tuple can be used to generate a hitting set for C by running
over several instantiations of –. Also, it is well known that any hitting set can be
transformed into an HSG via interpolation.
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Isolating Weight Assignments

Suppose wt : {xi} æ N is a weight assignment for the variables {x1, . . . , xn}. We
can extend it to define the weight of a monomial as follows.

wt(xe
) =

nÿ

i=1
ei · wt(xi)

Definition 7.3.2. A weight assignment wt : {xi} æ N is said to be isolating for a set S

of monomials if every pair of distinct monomials in S receives distinct weights. ⌃

Note that if the highest degree of a monomial in S is d, then assigning the weight
wt(xi) = (d + 1)

i is trivially isolating for S. However, in this case the weight of a
monomial can become exponentially large in n.

In the case when |S| = poly(n), results by Klivans and Spielman [KS01] or Agrawal
and Biswas [AB03] show that if wt(xi) = (d + 1)

i
mod p, then it suffices to go over

poly(n) many ‘p’s to ensure that one of these assignments isolates the monomials in
S. Thus the weight of a monomial in this case is bounded by poly(n).

7.4 Constructing Rank Condensers Using Isolating
Weight Assignments

In this section, we focus on rank-preserving properties of certain types of matrices.
These are slight generalisations of similar properties of Vandermonde matrices that
were proved by Gabizon and Raz [GR08] that would be necessary for the application
to constructing faithful homomorphisms.

Lemma 7.4.1. For a formal variable s, suppose we have a matrix of the form

V =

S

WWWWWU

sw1 s2w1 . . . snw1

sw2 s2w2 . . . snw2

...
swn s2wn . . . snwn

T

XXXXXV

where wi < wj whenever i < j.

If V Õ is a matrix obtained from V by replacing some of the non-diagonal entries by zero,
then det(V Õ

) ”= 0 and furthermore deg(det(V Õ
)) =

q
n

i=1 i · wi.
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Proof. Since

det(V Õ
) =

ÿ

‡œSn

sgn(‡)

Q

a
Ÿ

iœ[n]
V Õ

[i, ‡(i)]

R

b ,

the monomial corresponding to ‡ being the identity permutation contributes a
nonzero monomial of degree

q
i · wi. We will show that all other terms of det(V Õ

)

have smaller degree.

Suppose ‡ is not the identity permutation, we must have i ”= ‡(i) for some index i;
let i0 be the first such index. Define j such that ‡(j) = i0 and fi = ‡ ¶ (i0 j). Note
that fi(i0) = ‡(j) = i0 and fixes the first i0 indices. Furthermore, fi(i) = ‡(i) for all
i ”= i0, j. Thus,

nÿ

i=1
(fi(i) ≠ ‡(i)) · wi = (fi(i0) ≠ ‡(i0)) · wi0 + (fi(j) ≠ ‡(j)) · wj

= (‡(j) ≠ ‡(i0)) · wi0 + (‡(i0) ≠ ‡(j)) · wj

= (‡(i0) ≠ ‡(j)) · (wj ≠ wi0) > 0

Repeating this exercise until we reach the identity permutation, we have that the
monomial contributed by the diagonal has the largest degree.

Lemma 7.4.2. Let A be a matrix over a field F with k rows and columns indexed by
monomials in x of degree at most D that is full-rank. Further, let w = (w1, . . . , wn) be
an isolating weight assignment for the set of degree D monomials, and let wt(xe

) =
q

n

i=1 wiei.

Suppose M� is a matrix whose rows are indexed by monomials in x of degree at most
D, and columns indexed by pure monomials

Ó
yd

i
: i œ {1, . . . , k} , d Æ D

Ô
given by

M�(xe, yd

i ) =

Y
]

[
si·wt(xe) if deg(xe

) = d

0 otherwise
.

where s is a formal variable. Then, rankF(s)(A · M�) = rankF(A).

Proof. By the Cauchy-Binet formula, if we restrict M� to a set T of k-columns, then

det(A · M�[T ]) =

ÿ

S™Columns(A)
|S|=k

det(A[S]) · det(M�[S, T ])
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Here M�[T ] denotes the matrix obtained by restricting M� to the columns in T

and M�[S, T ] denotes the matrix obtained by restricting M�[T ] to the rows in S.
Similarly, A[S] denotes the matrix obtained by restricting A to the columns in S.

We wish to show that the above sum is nonzero for some choice of columns T . We
do that by first defining a weight function on minors of A, then proving that there is
a unique nonzero minor of A of largest weight, and then choosing a set of columns
T such that the degree of det(M�[S, T ]) coincides with this chosen weight function.

Define the weight of a minor of A as follows:

Suppose the columns of the minor is indexed by S = {xe1 , . . . , xek} with
the property that wt(xe1) < wt(xe2) < · · · < wt(xek). Define the weight
of this minor as

wt(S) =

kÿ

i=1
i · wt(xei)

where, recall, wt(xei) =
q

j wj · ei(j).

Claim 7.4.3. There is a unique nonzero k ◊ k minor of A of maximum weight.

Proof. Suppose S1 and S2 are two different minors of A with the same weight. We
will just identify S1 and S2 by the set of column indices for simplicity. Say S1 has
columns indexed by xe1 , . . . , xek with wt(xe1) < wt(xe2) < · · · < wt(xek) and S2
has columns indexed by xeÕ

1 , . . . , xeÕ
k with wt(xeÕ

1) < wt(xeÕ
2) < · · · < wt(xeÕ

k).

Suppose S1 and S2 agree on the first i columns, that is ej = eÕ
j

for all j Æ i, and
say wt(ei+1) < wt(eÕ

i+1). By the matroid property, there must be some column xeÕ
j

from S2 that we can add to S1 \ {xei+1} so that S = S1 \ {xei+1} fi

Ó
xeÕ

j

Ô
is also a

nonzero minor of A. Suppose that

wt(xe1) < · · · < wt(xei+r ) < wt(xeÕ
j ) < wt(xei+r+1) < · · · < wt(xek).

Then the weight of S is equal to

iÿ

a=1
a · wt(xea) +

i+rÿ

a=i+2
(a ≠ 1) wt(xea) + (i + r) wt(xeÕ

j ) +

kÿ

a=i+r+1
a · wt(xea)

>
iÿ

a=1
a · wt(xea) + (i + 1) · wt(xeÕ

j ) +

kÿ

a=i+2
a · wt(xea) >

kÿ

a=1
a · wt(xea).

That is, wt(S) > wt(S1).
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Hence, there cannot be two different nonzero minors of A of the same weight. Thus,
the nonzero minor of largest weight is unique.

We will now choose k columns from M� as follows in such a way that the degree of
the corresponding determinant agrees with the weight function.

Note that the matrix M� has a natural block-diagonal structure based on the degree
of the monomials indexing the rows and columns.

Let S0 be the unique k ◊ k minor of A having maximum weight. Fur-
ther, assume its columns are indexed by xe1 , . . . , xek with wt(xe1) <

wt(xe2) < . . . < wt(xek). Let di = deg(xei) =
q

j(ei)j .

Then choose the columns T =

Ó
yd1

1 , yd2
2 , . . . , ydk

k

Ô
of the matrix M Õ

�.

By Lemma 7.4.1, for any set of SÕ
™ Columns(A), we have deg(det(M�[SÕ, T ])) Æ

wt(SÕ
) and furthermore we also have deg(M�[S0, T ]) = wt(S0) as we chose the

columns T to ensure that the main diagonal of the sub-matrix has only nonzero
elements. Hence,

det(A · M�[T ]) =

ÿ

S™Columns(A)
|S|=k

det(A[S]) · det(M�[S, T ]) ”= 0

since the contribution from A[S0] det(M�[S0, T ]) is the unique term of highest degree
and so cannot be cancelled.

7.5 Constructing Explicit Faithful Homomorphisms

We will be interested in applying a map � : F[x] æ F(s)[y] and study the trans-
formation of the PSS-Jacobian. Since the entries of the PSS-Jacobian involve
Ht(f(x)) = degÆt (f(x + z) ≠ f(z)), we would need to also work with Ht(g(y))

where g(y) = f ¶ �. To make it easier to follow, we shall use a different name for
the variables in the two cases. So let

Ht(f(x)) := degÆt (f(x + z) ≠ f(z)) , Ht(g(y)) := degÆt (g(y + v) ≠ g(v)) .
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Recipe for Constructing Faithful Homomorphisms

We are finally ready to construct faithful homomorphisms.

Let f1, . . . , fm œ F[x1, . . . , xn] be polynomials with algebraic rank k and inseparable
degree t. We will work with linear transformations of the following form.

� : xi ‘æ aiy0 +

kÿ

j=1
swi·jyj , for all i œ [n],

�z : zi ‘æ aiv0 +

kÿ

j=1
swi·jvj , for all i œ [n],

where all the variables on the RHS are formal variables. Further, define {g1, . . . , gm} œ

F[z] as gi = fi ¶ � and Ht(gi) = degÆt(gi(y + v) ≠ gi(v)). The main lemma of this
section is the following recipe.

Lemma 7.5.1 (Recipe for faithful homomorphisms). Let f1, . . . , fm œ F[x] be poly-
nomials such that their algebraic rank is at most k and suppose the inseparable degree
is bounded by a constant t. Further,

• suppose G = (G1(–), . . . , Gn(–)) = (a1, . . . , an) is such that for some a œ G, the
rank of PSSJact(f , h) is preserved after the substitution z æ a.

• suppose w : [n] æ N is an isolating weight assignment for the set of n-variate
monomials of degree at most t.

Then, the homomorphism � : F[x1, . . . , xn] æ F(s, –)[y0, . . . , yk] defined as

� : xi ‘æ y0Gi(–) +

kÿ

j=1
yj · sw(i)j ,

is an F-faithful homomorphism for the set {f1, . . . , fm}.

As mentioned earlier, the rough proof sketch would be to first write the PSS-Jacobian
of the transformed polynomials g in terms of f , express that as a suitable matrix
product, and use some rank extractor properties of the associated matrix, as described
in section 7.4. The rest of this section will execute this sketch.

Lemma 7.5.2 (Evolution of polynomials under �). Let � : x æ F(s)[y] and �z : z æ

F(s)[v] be given as above. Further, for any polynomial hÕ
(a1, . . . , am) œ F(g(v))[a],

define h(a1, . . . , am) œ F(f(z))[a] as follows.
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coe�ae(h) is obtained by replacing every occurrence of gi(v) by fi(z) in
coe�ae(hÕ

)

Then, hÕ
(Ht(g1), . . . , Ht(gm)) = � ¶ �z(h(Ht(f1), . . . , Ht(fm))).

It is worth noting that the polynomial h(a1, . . . , am) is independent of s. This would
be crucial later on in the proof.

Proof. Firstly, note that h is well defined. This is because by the definition of
{g1, . . . , gm}, if coe�ae(hÕ

) œ F(g(v)) has a nonzero denominator then by replacing
the gi(v)s with fi(z) in it, it will continue to remain nonzero. The claim now follows
essentially from the fact that � is linear and homogeneous in y.

Ht(f ¶ �)(y, v) = degÆt [(f ¶ �)(y + v) ≠ (f ¶ �)(v)]

= degÆt [f(�(x) + �z(z)) ≠ f(�z(z))] (by linearity in y)

= � ¶ �z(Ht(f)) (by homogeneity in y)

And it extends to higher degree terms just from the fact that � and �z are homo-
morphisms and that � does not change the degree (in x and y).

Further, note that if h(a1, . . . , am) =
q

e he · ae then

hÕ
=

ÿ

e
�z(he) · ae.

Thus, hÕ
(Ht(g1), . . . , Ht(gm))

=

ÿ

e
�z(he) · (Ht(f ¶ �))

e

=

ÿ

e
�z(he) · � ¶ �z(Ht(f)

e
)

=

ÿ

e
(� ¶ �z(he)) · � ¶ �z(Ht(f)

e
) (he is independent of y)

= � ¶ �z

A
ÿ

e
he · Ht(f)

e
B

(� and �z are homomorphisms)

= � ¶ �z(h(Ht(f1), . . . , Ht(fm)))

Corollary 7.5.3 (Matrix representation of the evolution). Suppose AÕ is a matrix
whose columns are indexed by monomials in y. Further suppose a row in AÕ corresponds
to a polynomial, say hÕ

(Ht(g)) = hÕ
(Ht(g1), . . . , Ht(gm)) œ F(g(v))[y], whose entry

in the column indexed by ye is coe�ye(hÕ
(Ht(g))) œ F(v, s).
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If A is the corresponding matrix (having entries from F(z)) with columns indexed by
monomials in x and the corresponding row being h(Ht(f1), . . . , Ht(fm)) œ F(f(z))[x]

as described in Lemma 7.5.2, then

AÕ
= �z(A) ◊ ÁM�

where ÁM�(xe, yd
) = coe�yd(�(xe

)).

Proof. Suppose h(Ht(f1), . . . , Ht(fm)) =
q

e he(z) · xe. Then,

hÕ
(Ht(g1), . . . , Ht(gm)) = � ¶ �z(h(Ht(f1), . . . , Ht(fm))) (by Lemma 7.5.2)

=

ÿ

e
he(�z(z)) · �(xe

) =

ÿ

e
he(�z(z)) ·

A
ÿ

d
coe�yd(�(xe

)) · yd
B

=

ÿ

d

A
ÿ

e
he(�z(z)) · coe�yd(�(xe

))

B

· yd

Thus, the coefficient of yd in hÕ
(Ht(g1), . . . , Ht(gm)) is

ÿ

e
�z(he(z)) · coe�yd(�(xe

))

which gives the required matrix decomposition.

We are now in a position to prove Lemma 7.5.1.

Proof of Lemma 7.5.1. Without loss of generality, say {f1, . . . , fk} is an algebraically
independent set. We wish to show that if gi = fi ¶ �, then {g1, . . . , gk} is an F-
algebraically independent set as well. Assume on the contrary that {g1, . . . , gk}

is an F-algebraically dependent set. Then for t being the inseparable degree of
{f1, . . . , fk}, by Lemma 6.3.8, there exists

hÕ
œ Vt(g1, . . . , gk) := ÈHt(g1), . . . , Ht(gk)Í

Ø2
F(g(v)) mod ÈyÍ

t+1

such that PSSJact(g, hÕ
) is not full rank. Without loss of generality, we can assume

that the entries of PSSJact(g, hÕ
) are denominator-free by clearing out any denomi-

nators. Corresponding to hÕ, define h as in Lemma 7.5.2, which would also satisfy
that

h œ Ut(f1, . . . , fk) := ÈHt(f1), . . . , Ht(fk)Í
Ø2
F(z) mod ÈxÍ

t+1.
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It is worth stressing the fact that the polynomial h is independent of the variable s.
Then by Corollary 7.5.3 we get

PSSJact(g, hÕ
) = �z(PSSJact(f , h)) ◊ ÁM�.

Now, if we substitute v0 = 1 and vi = 0 for every i œ [k], we get

PSSJact(g, hÕ
)(v0 = 1, v1 = . . . = vk = 0) = PSSJact(f , h)(z = G(–)) ◊ ÁM�.

But since {f1, . . . , fk} is algebraically independent, Theorem 6.3.7 yields that
PSSJact(f , h) has full rank. Thus, for the correct choice of –, PSSJact(f , h)(z =

G(–)) also has full rank by the property we assumed G has.

Most crucially, the matrix PSSJact(f , h) is independent of the variable s. To complete
the proof, we need to show that multiplication by ÁM� continues to keep this full
rank to contradict the initial assumption that PSSJact(g, hÕ

) was not full rank.

Finally note that for the � we have defined, ÁM� restricted to only the pure monomial
columns

Ó
yj

i
: i œ {1, . . . , k} , j œ {0, 1, . . . , t}

Ô
,

is the same as M� as defined in Lemma 7.4.2. Further, w is an isolating weight
assignment for the set of n-variate monomials of degree at most t, we satisfy the
requirements of Lemma 7.4.2. Hence, by Lemma 7.4.2,

rankF(s,–)
!PSSJact(g, hÕ

)(v0 = 1, v1 = . . . , vk = 0)
"

= rankF(–) PSSJact(f , h)(z = G(–))

=∆ rankF(s,–,v)
!PSSJact(g, hÕ

)
"

Ø rankF(–) PSSJact(f , h)(z = G(–)) = k,

which contradicts our assumption that it was not full rank. Hence, it must indeed be
the case that {f1 ¶ �, . . . , fk ¶ �} is F - algebraically independent.

7.6 Explicit Faithful Homomorphisms and PIT
Applications in Restricted Settings

We now describe some specific instantiations of the recipe given by Lemma 7.5.1 in
restricted settings. Let us first recall the statement of the main theorem.
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Theorem 7.2.1. Let f1, . . . , fm œ F[x1, . . . , xn] be such that algrank {f1, . . . , fm} = k

and the inseparable degree is t. If t and k are bounded by a constant, then we can
construct a polynomial (in the input length) sized list of homomorphisms of the form
� : F[x] æ F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to
F-faithful for the set {f1, . . . , fm}, in the following two settings:

• each of the fi’s are sparse polynomials,

• each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Proof. By Lemma 7.5.1, � : F[x1, . . . , xn] æ F(s, –)[y0, . . . , yk] defined as

� : xi ‘æ y0Gi(–) +

kÿ

j=1
yj · sw(i)j ,

is a faithful homomorphism for the set {f1, . . . , fm} if for any h œ Ut(f), w =

(w1, . . . , wn) is a basis isolating weight assignment for PSSJac(f , h) and the map
G = (G1(–), . . . , Gn(–)) is such that the rank of PSSJact(f , h) is preserved after the
substitution z æ a for some a œ G. We define the weight using the standard hashing
techniques [KS01; AB03].

Defining w: Define w : [n] æ N as

w(i) = (t + 1)
i

(mod p)

where t is the inseparable degree. Assuming t to be a constant, there are only poly(n)

many distinct monomials in x of degree at most t. Thus, standard results by Klivans
and Spielman [KS01] or Agrawal and Biswas [AB03] shows that it suffices to go
over poly(n) many ‘p’s before w isolates all monomials in x of degree at most t.
Let PSSJact(f) be the matrix with columns indexed by monomials in x of degree at
most t and rows by k-variate monomials ae in degree at most t, defined as follows.

PSSJact(f)[ae, xd
] = coe�xd(Ht(f)

e
)

Set K =
!

k+t

t

"
be the number of rows in PSSJact(f). Then the following is true.

Claim 7.6.1. If G is a hitting set generator for every K Õ
◊ K Õ minor of PSSJact(f)

where K Õ
Æ K, then the rank of PSSJact(f , h) is preserved for every h œ Ut(f).

Proof. We need to show that there is an a in G which has the following property:
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For any h œ Ut(f), if {Ht(f1) + h, Ht(f2), . . . , Ht(fk)} are linearly inde-
pendent, then so are {Ht(f1)(a) + h(a), Ht(f2)(a), . . . , Ht(fk)(a)}.

Now suppose this is not the case. Then it must be the case that without loss of
generality, some h œ Ut(f), PSSJact(f , h) has full rank but for any a œ G,

–1(Ht(f1)(a) + h(a)) +

kÿ

i=2
(–i · Ht(fi)(a)) = 0.

Here, not all of {–i}iœ[k] are zero. However by our hypothesis, this would mean that

–1(Ht(f1) + h) +

kÿ

i=2
(–i · Ht(fi)) ”= 0.

Let B be a basis of the rows in Ht(f). Then each of {Ht(f1) + h, Ht(f2), . . . , Ht(fk)}

can be written in terms of rows in B. Thus, the above statement can be rewritten as

K
Õÿ

i=1
—i · bi = –1(Ht(f1) + h) +

kÿ

i=2
(–i · Ht(fi)) ”= 0

where {—i}iœ[KÕ] are some scalars and K Õ
= |B|.

This shows that not all {—i}
K

Õ

i=1 can be zero. Now since G is a hitting set generator
for every K Õ

◊ K Õ minor in PSSJact(f), there is some a œ G such that {bi(a)}
iœ[KÕ]

continue to remain linearly independent. Thus,
q

K
Õ

i=1 —i ◊ bi(a)! = 0, since not all
{—i}iœ[KÕ] is zero. However, this shows that

–1(Ht(f1)(a) + h(a)) +

kÿ

i=2
(–i · Ht(fi)(a)) =

K
Õÿ

i=1
—i ◊ bi(a) ”= 0.

This contradicts our assumption, and so it must be the case that for any h œ Ut(f),
the rank of PSSJact(f , h) is preserved.

Now it is only a question of finding a hitting set generator of low degree, for every
K Õ

◊ K Õ minor of PSSJact(f) where K Õ
Æ K.

Defining G when fi’s are sparse: When the fi’s are s-sparse, every entry of
PSSJac(f) is a sum of products of at most t Hasse-derivatives of the fi’s. Further
the number of such products is at most

!
n+t

t

"
, and hence each entry of PSSJac(f)

has sparsity at most
!

n+t

t

"
· st. When k, t are constants, then any K ◊ K minor of
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PSSJac(f) has sparsity sO(1) and hence standard hitting-set generators for sparse
polynomials [KS01; AB03] would be sufficient in this setting.

Defining G when fis are products of variable disjoint, multilinear, sparse polyno-
mials: In exactly along the same lines as Agrawal et al. [Agr+16], we can construct
hitting-set generators for minors of PSSJac(f) when each fi is a product of variable
disjoint, multilinear, sparse polynomials.

The key observation is that when k, t = O(1), any K ◊ K minor of PSSJac(f) only
involves derivatives over constantly many variables, say x1, . . . , x¸ with ¸ Æ Kt.
Since each fi is a product of variable disjoint sparse polynomials, each row of
this submatrix can be expressed as a common factor F and a product of ¸ sparse
polynomials. The reason is as follows.

If f = g.gÕ where gÕ is independent of variables in S ™ {x1, . . . , xn}, then
for any monomial xe that depends only on S we have

coe�xe(Ht(f)) = coe�xe(Ht(g)).gÕ
(z).

Hence, the determinant of this matrix is a product of sparse polynomials (each of
sparsity at most sKt

= poly(s) when k, t = O(1)). Standard hitting-set generators
for sparse polynomials [KS01; AB03] are sufficient in this case as well.

Applications to PIT

Using Lemma 7.1.2, two straightforward corollaries are PIT for related models.

Corollary 7.2.2. If {f1, . . . , fm} œ F[x1, . . . , xn] is a set of s-sparse polynomials with
algebraic rank k and inseparable degree t where k, t = O(1). Then, for the class of
polynomials of the form C(f1, . . . , fm) for any polynomial C(z1, . . . , zm) œ F[z], there
is an explicit hitting set of size (s · deg(C))

O(1).

Proof. Without loss of generality, we may assume that F is algebraically closed (since
nonzeroness of polynomials remain unchanged when interpreted as polynomials
over an extension). Suppose {f1, . . . , fk} be a separable transcendence basis for
{f1, . . . , fm} inseparable degree t.

By Theorem 7.2.1, we have a polynomial sized list of maps

{�i : F[x] æ F[s, y0, . . . , yk, –]}
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each of degree poly(n) such that at least one of them is F-faithful for {f1, . . . , fk}

(and hence also for {f1, . . . , fm}); let � be such a F-faithful homomorphism. From
the construction of Theorem 7.2.1, the homomorphism � has degree poly(s). By
Lemma 7.1.2, we know that C(f1, . . . , fm) = 0 if and only if �(C(f1, . . . , fm)) is
zero. Now that �(C(f1, . . . , fm)) is a polynomial in k + 3 = O(1) variables, we can
use the hitting set obtained from the Polynomial Identity Lemma [Ore22; DL78;
Sch80; Zip79] to give hitting set of size poly(s, deg(C)) for C(f1, . . . , fm).

Along exactly the same lines, we get the following corollary when we are working
with depth-4 multilinear circuits of small algebraic rank and inseparable degree.

Corollary 7.2.3. Let C =
q

m

i=1 Ti be a depth-4 multilinear circuit of size s, where
each Ti is a product of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} œ

F[x1, . . . , xn] is a set of polynomials with algebraic rank k and inseparable degree t

where k, t = O(1). Then, for the class of polynomials of the form C(T1, . . . , Tm) for any
polynomial C(z1, . . . , zm) œ F[z], there is an explicit hitting set of size (s · deg(C))

O(1).

As mentioned in the introduction, the above result is incomparable with the PIT
results of Pandey et al. [PSS18] and Kumar and Saraf [KS17a].

We conclude with some very natural open problems in the context of this work.

• Are the homomorphisms we constructed also F(s)-faithful homomorphisms?

Our proof only provides a recipe towards constructing F-faithful homomor-
phisms due to technical obstacles involving the criterion for algebraic indepen-
dence over finite characteristic fields. The exact point where it fails is in the
proof of Lemma 7.5.1. It is crucial that h œ Ut(f) is s-free for our proof to work.
This is not an issue in characteristic zero fields and Agrawal et al. [Agr+16]
construct F(s)-faithful homomorphisms.

• How crucial is the notion of inseparable degree in the context of testing
algebraic independence?

The criterion of Pandey, Saxena and Sinhababu [PSS18] crucially depends on
this field theoretic notion and there seems to be compelling algebraic reasons
to believe that this is necessary. However, as mentioned earlier, Guo, Saxena
and Sinhababu [GSS19] showed that algebraic independence testing is in
AM fl co ≠ AM and this proof has absolutely no dependence on the inseparable
degree of the polynomials.
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Conclusion 8

In this thesis, we looked at some central questions in the field of Algebraic Complexity
Theory. The first two chapters were dedicated to proving lower bounds against
general algebraic models of computation. In chapter 2, our main result was a
tight �(nd) lower bound against algebraic branching programs for

q
n

i=1 xd
i

and in
chapter 3, our main result was a quadratic lower bound against algebraic formulas
for the multilinear polynomial ESYMn,0.1n(x). Improving these lower bounds,
even in restricted settings, would be interesting. In particular proving super-linear
lower bounds against ABPs computing constant degree polynomials or proving
super-quadratic lower bounds against multilinear ABPs seem approachable, given
our current knowledge. Similarly proving super-quadratic lower bounds against
homogeneous formulas would be extremely interesting.

For the next two chapters, we were interested in the non-commutative setting. In
chapter 4 we showed that weak (super-quartic) lower bounds against multilinear
circuits would imply strong lower bounds against non-commutative circuits, thus
providing a possible reason for knowing only almost quadratic lower bounds against
multilinear circuits in spite of knowing super-polynomial lower bounds against mul-
tilinear formulas. An interesting question is whether super-quadratic lower bounds
against multilinear circuits imply strong lower bounds against non-commutative
circuits. The motivating question for chapter 5 was Nisan’s conjecture [Nis91] that
there is a super-polynomial separation between the powers of formulas and ABPs
in the non-commutative setting. We made progress towards this by proving a tight
super-polynomial separation between the ABPs and some structured formulas in this
setting. Resolving Nisan’s conjecture is the most interesting related question.

In the second part, we gave better upper bounds for the question of polynomial
identity testing (PIT) in certain settings via improved algebraic independence testing
algorithms [PSS18] over fields of finite characteristic. In chapter 6, we studied the
question of testing algebraic independence of a given set of polynomials and then in
chapter 7, we constructed faithful homomorphisms in certain settings. As a corollary,
this allowed us to give efficient PIT algorithms in related settings. Improving the
upper bound on algebraic independence testing over finite fields in more general
settings is an interesting open problem.
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