
Separating ABPs and Structured Formulas
in the Non-Commutative Setting

Prerona Chatterjee

Tata Institute of Fundamental Research, Mumbai

March 19, 2021

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y)

= x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.
Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).

Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).

Hardness Amplification is known (CILM ’18).

1 15

The Non-Commutative Setting

f (x, y) = (x + y)× (x + y) = x2 + xy + yx + y2

Natural restriction with long line of work, beginning with [Hya ’77], [Nis ’91].
Since it is a restricted setting, it is possibly easier to prove lower bounds here.

Detn(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2Ω(n)) complexity in this setting (AS ’18).
Exponential lower bounds known for certain models via exact characterisation
(Nis ’91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ’85, CKSV ’20).
Hardness Amplification is known (CILM ’18).

1 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}

Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p

Polynomial computed by the ABP:
∑

p wt(p)
Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Algebraic Branching Programs

s t

Label on each edge: A homogeneous linear form in {x1, x2, . . . , xn}
Weight of path p = wt(p): Product of the edge labels on p
Polynomial computed by the ABP:

∑
p wt(p)

Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Hom0(f) + Hom1(f) + · · ·+ Homd(f).

2 15

Nisan’s Characterisation
M

on
om

ia
ls

of
de

gr
ee

i

Monomials of degree d− i

m2

m1

coe�m1·m2(f)

f is a polynomial of degree d.

For every 1 ≤ i ≤ d, consider the
matrix Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

3 15

Nisan’s Characterisation
M

on
om

ia
ls

of
de

gr
ee

i

Monomials of degree d− i

m2

m1

coe�m1·m2(f)

f is a polynomial of degree d.

For every 1 ≤ i ≤ d, consider the
matrix Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

3 15

Nisan’s Characterisation
M

on
om

ia
ls

of
de

gr
ee

i

Monomials of degree d− i

m2

m1

coe�m1·m2(f)

f is a polynomial of degree d.

For every 1 ≤ i ≤ d, consider the
matrix Mf (i) described alongside.

Nisan (1991): For every 1 ≤ i ≤ d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

3 15

Algebraic Formulas

+

+ ×

+ × + +

x1 x2 x2 x3 α x2 x1 x3

α1 α2

F

VFnc ⊆ VBPnc

Super-polynomial ABP lower bounds
⇓

super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
Any ABP (or formula) computing Detn(x)
has size at least 2Ω(n).

Question: Is VFnc = VBPnc?

4 15

Algebraic Formulas

+

+ ×

+ × + +

x1 x2 x2 x3 α x2 x1 x3

α1 α2

F VFnc ⊆ VBPnc

Super-polynomial ABP lower bounds
⇓

super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
Any ABP (or formula) computing Detn(x)
has size at least 2Ω(n).

Question: Is VFnc = VBPnc?

4 15

Algebraic Formulas

+

+ ×

+ × + +

x1 x2 x2 x3 α x2 x1 x3

α1 α2

F VFnc ⊆ VBPnc

Super-polynomial ABP lower bounds
⇓

super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
Any ABP (or formula) computing Detn(x)
has size at least 2Ω(n).

Question: Is VFnc = VBPnc?

4 15

Algebraic Formulas

+

+ ×

+ × + +

x1 x2 x2 x3 α x2 x1 x3

α1 α2

F VFnc ⊆ VBPnc

Super-polynomial ABP lower bounds
⇓

super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
Any ABP (or formula) computing Detn(x)
has size at least 2Ω(n).

Question: Is VFnc = VBPnc?

4 15

Algebraic Formulas

+

+ ×

+ × + +

x1 x2 x2 x3 α x2 x1 x3

α1 α2

F VFnc ⊆ VBPnc

Super-polynomial ABP lower bounds
⇓

super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
Any ABP (or formula) computing Detn(x)
has size at least 2Ω(n).

Question: Is VFnc = VBPnc?

4 15

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

Permn(x) =
∑
σ∈Sn

x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Generalises the notion of ordered polynomials (defined in [HWY11]).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

ESYMn,d(x) =
∑

1≤i1<...<id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

f (x) Order the monomials−−−−−−−−−−−−−→
using some fixed σ∈Sn

f (nc)(x)

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

5 15

Abecedarian Polynomials

Buckets Example

{Xi}i∈[n] where Xi =
{

xij
}

j∈[n]
Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

Note:
ESYM(ord)

n,d =
∑

1≤i1<...<id≤n

x(1)
i1 · · · x

(d)
id

is abecedarian w.r.t. both
{

Xk =
{

x(k)
i

}
i∈[n]

}
k∈[d]

as well as
{

Xi =
{

x(k)
i

}
k∈[d]

}
i∈[n]

.

5 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.

For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .

For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which
the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index

f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

Syntactically Abecedarian Models

Notation: Consider 1 ≤ a ≤ b ≤ m + 1 where m: size of the bucketing system.
For any a ∈ [m + 1], f [a,a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a,b) contains only those monomials of f in which

the first variable is from bucket Xa;
last variable is from bucket Xa or Xa+1 or . . . or Xb−1.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a,b)

fv is the polynomial at v =⇒ fv = fv[a,b)

Abecedarian ABPs

Every vertex is labelled by a bucket index
f is the polynomial computed between
(u,a) and (v,b) =⇒ f = f [a,b + 1).

6 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that
I fn,d(x) can be computed by an abecedarian ABP of polynomial size;
I any abecedarian formula computing fn,log n(x) must have size that is

super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing

system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that

I fn,d(x) can be computed by an abecedarian ABP of polynomial size;
I any abecedarian formula computing fn,log n(x) must have size that is

super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing

system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that
I fn,d(x) can be computed by an abecedarian ABP of polynomial size;

I any abecedarian formula computing fn,log n(x) must have size that is
super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a bucketing
system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that
I fn,d(x) can be computed by an abecedarian ABP of polynomial size;
I any abecedarian formula computing fn,log n(x) must have size that is

super-polynomial in n.

2. Let f be an n-variate abecedarian polynomial with respect to a bucketing
system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that
I fn,d(x) can be computed by an abecedarian ABP of polynomial size;
I any abecedarian formula computing fn,log n(x) must have size that is

super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing

system of size O(log n) that can be computed by an ABP of size poly(n).

A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

What was known and what we show

[LLS ’19]: Any UPT formula computing IMMn,n(x) must have size nΩ(log n).

Our Main Theorems:
1. There is an explicit n2-variate, degree d polynomial fn,d(x) which is abecedarian

with respect to a bucketing system of size n such that
I fn,d(x) can be computed by an abecedarian ABP of polynomial size;
I any abecedarian formula computing fn,log n(x) must have size that is

super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing

system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would
imply that VFnc 6= VBPnc.

7 15

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8 15

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:
1. Can any formula computing an abecedarian polynomial be converted to an

abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8 15

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:
1. Can any formula computing an abecedarian polynomial be converted to an

abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8 15

Possible New Approaches to Solving the General Question

Two natural questions that arise at this point:
1. Can any formula computing an abecedarian polynomial be converted to an

abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that VBPnc 6= VFnc.

8 15

The Explicit Statement

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi =
{

xij : 1 ≤ j ≤ n
}

.
linked_CHSYMn,d(x) can be computed by an abecedarian ABP of size O(nd).
Any abecedarian formula computing linked_CHSYMn,log n(x) has size nΩ(log log n).
A super-polynomial lower bound against abecedarian formulas for
linked_CHSYMlog n,n(x) would imply that VFnc 6= VBPnc.

9 15

The Explicit Statement

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi =
{

xij : 1 ≤ j ≤ n
}

.

linked_CHSYMn,d(x) can be computed by an abecedarian ABP of size O(nd).
Any abecedarian formula computing linked_CHSYMn,log n(x) has size nΩ(log log n).
A super-polynomial lower bound against abecedarian formulas for
linked_CHSYMlog n,n(x) would imply that VFnc 6= VBPnc.

9 15

The Explicit Statement

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi =
{

xij : 1 ≤ j ≤ n
}

.
linked_CHSYMn,d(x) can be computed by an abecedarian ABP of size O(nd).

Any abecedarian formula computing linked_CHSYMn,log n(x) has size nΩ(log log n).
A super-polynomial lower bound against abecedarian formulas for
linked_CHSYMlog n,n(x) would imply that VFnc 6= VBPnc.

9 15

The Explicit Statement

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi =
{

xij : 1 ≤ j ≤ n
}

.
linked_CHSYMn,d(x) can be computed by an abecedarian ABP of size O(nd).
Any abecedarian formula computing linked_CHSYMn,log n(x) has size nΩ(log log n).

A super-polynomial lower bound against abecedarian formulas for
linked_CHSYMlog n,n(x) would imply that VFnc 6= VBPnc.

9 15

The Explicit Statement

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi =
{

xij : 1 ≤ j ≤ n
}

.
linked_CHSYMn,d(x) can be computed by an abecedarian ABP of size O(nd).
Any abecedarian formula computing linked_CHSYMn,log n(x) has size nΩ(log log n).
A super-polynomial lower bound against abecedarian formulas for
linked_CHSYMlog n,n(x) would imply that VFnc 6= VBPnc.

9 15

The Structured ABP Upper Bound

hn,d(x) = linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



s1

...

...

...
sn

0

· · ·

· · ·

· · ·

· · ·

...
i
...
...
...

k

...
i
...
j
...

k + 1

· · ·

· · ·

· · ·

· · ·

t1

...

...

...
tn

d

xi,i

xi,j

1

1

1

1

10 15

The Structured ABP Upper Bound

hn,d(x) = linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



s1

...

...

...
sn

0

· · ·

· · ·

· · ·

· · ·

...
i
...
...
...

k

...
i
...
j
...

k + 1

· · ·

· · ·

· · ·

· · ·

t1

...

...

...
tn

d

xi,i

xi,j

1

1

1

1

10 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).

2. Using F ′1 construct a more structured
formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Proof Idea of the Structured Formula Lower Bound

Let F ′ be an abecedarian formula of size s = O(nε log log n) computing hn/2,log n(x).

1. Homogenise to get F ′1 of size poly(s).
2. Using F ′1 construct a more structured

formula F ′2 computing hn/2,log n(x), of
size s′2 = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMn/2,log n(x).

4. Show that there is a homogeneous
abecedarian formula of size (s · s′2)
computing CHSYMn/2,log2 n(x).

5. Reuse Step 4 repeatedly at most
O(log n/log log n) times to obtain a
homogeneous abecedarian formula
F 1 of size O(nc·ε log n), that computes
CHSYMn/2,n/2(x) .

6. Using F 1 construct a homogeneous
multilinear formula of size O(nc·ε log n)
computing ESYMn,n/2(x).

7. Choose ε such that Step 6 contradicts
the known lower bound against this
model for ESYMn,n/2(x).

11 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.

CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).

All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.

This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.

It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Highlighting the Key Steps

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations
When degree is small,
structural changes can
be made on formulas.
CHSYMn,d(x) is
structured enough to
allow degree
amplification (Step 4).
All the other steps are to
facilitate the degree
amplification.

A little about Step 1
Brent’s Depth Reduction proof works in the
non-commutative setting as well.
This allows Raz’s Homogenisation proof to go
through in this setting as well.
It also answers a question by Nisan.
D(f): Depth Complexity; F(f): Formula Complexity

Is D(f) ≤ O(log F(f))?

We answer the question in the positive.

12 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.

2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.

Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.

When m = O(log s), the size of F ′ remains
poly(s).

13 15

Proof Idea for Converting Formulas into Abecedarian Ones

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F ′ computing the same polynomial.

Step 1
Make m2 copies in C of each
vertex in F : {(a,b)}a,b∈[m+1].

fv is the polynomial at v
⇓

the polynomial at (v, (a,b))
is fv[a,b).

Step 2
Convert C into a formula F ′ by recomputing
vertices every time it is reused.
Analyse (similar to Raz) the number of
distinct paths from any vertex in C to the root.
When m = O(log s), the size of F ′ remains
poly(s).

13 15

Other Observations

1. VPnc = abcd− VPnc.

2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.

3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.

4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.

5. f is an abcd-polynomial of
degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x)

or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x)

or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Other Observations

1. VPnc = abcd− VPnc.
2. VBPnc = abcd− VBPnc.
3. abcd− VFnc ⊆ abcd− VBPnc.
4. abcd− VBPnc (abcd− VPnc.
5. f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

⇓
there is an abcd-formula
computing f of size O(slog d).

Corollaries of the Homogenisation Observation

2ω(n) lower bound against homogeneous formulas
for Detn(x) or

nω(1) lower bound against homogeneous formulas
for IMMn,log n(x) or

nω(1) lower bound against homogeneous formulas
for linked_CHSYMn,log n(x)

=⇒ VFnc 6= VBPnc

14 15

Thank you!

15 / 15

