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f,y) = (x+y) x (X+y) =X +xy +yx+y°

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

m Dety(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2%(") complexity in this setting (AS "18).

m Exponential lower bounds known for certain models via exact characterisation
(Nis '91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ‘85, CKSV '20).

m Hardness Amplification is known (CILM '18).
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ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}
m Weight of path p =wt(p):  Product of the edge labels on p

m Polynomial computed by the ABP: 3~ wt(p)

m Size of the ABP:  Number of vertices in the ABP

For a general polynomial f of degree d, f = Homg(f) + Hom4(f) + - - - + Homy(f).
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Monomials of degree i

Monomials of degree d — i

"

coeffm,.m,(f)

f is a polynomial of degree d.

For every 1 < i < d, consider the
matrix M¢(i) described alongside.

Nisan (1991): For every 1 <i < d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mg ().

If A is the smallest ABP computing f,

d
size(A) =) _ rank(Mg(i)).
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4 VFne € VBPyc
o o0 Super-polynomialUABP lower bounds

e ° super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
e ° e e Any ABP (or formula) computing Detp(x)
has size at least 29",
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CHSYMpg(X) = > XX,

1<ih<...<ig<n
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ABECEDARIAN POLYNOMIALS

Variables in every monomial arranged in non-decreasing order of bucket indices.

Order the monomials
f(x) : £ (x)
using some fixed o€Sp

Buckets Example

{XI}IE[n] Where XI = {X’]}je[n] Detn(x), Permn(x)

CHSYM,, 4(X), ESYM,, 4(x)

{X;}icim where X; = {x;} ) i
HiEkn] ' ' Non-Commutative version of any f € F[x,, ..., Xp]




ABECEDARIAN POLYNOMIALS

Buckets Example

{Xi}icn) Where X; = {x,—,—}je[n] Detp(X), Permp(X)

(X} 1o where X; = [x;) CHSYM,, 4(x), ESYM,, 4(X)

Non-Commutative version of any f € F[x,, ..., Xs]
Note: (ord) () (d)
or 1
ESY Myg = E X X

1§I.1<.A.<id§n

i i — Jx® R SO
Is abecedarian w.rt. both {Xk = {xl. }ie[n]}ke[d] as well as {X, {X, }ke[d]}

ie[n]‘
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SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

Abecedarian Formulas Abecedarian ABPs
Every vertex v is labelled by a tuple (a,b)  Every vertex is labelled by a bucket index

f, is the polynomial atv = f, = f,[a, b) f is the polynomial computed between
(u,a) and (v,b) = f =fla,b+1).

6]
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[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:
1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that
» fn.qa(x) can be computed by an abecedarian ABP of polynomial size;
» any abecedarian formula computing f, 1og n(X) must have size that is
super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing
system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would

imply that VF,c # VBPyc.
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POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

’A positive answer to either of these questions would imply that VBPnc # VFc. ‘
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m Abecedarian with respectto {X; : 1<i<n}whereX; = {x; : 1<j<nj}.
m linked_CHSYM,, 4(x) can be computed by an abecedarian ABP of size O(nd).
m Any abecedarian formula computing linked_CHSYMj, | n(X) has size nf(loglogn),

m A super-polynomial lower bound against abecedarian formulas for
linked_CHSYM|og n n(X) would imply that VFc # VBPy.
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Let 7’ be an abecedarian formula of size s = O(n®'°'°&") computing hy,  og n(X).

1. Homogenise to get 7 of size poly(s). 5. Reuse Step 4 repeatedly at most

2. Using F/ construct a more structured O(ogn/Ioglogn) times to obtain a
formula 7, computing hy, /5 jog n(X), Of homogeneous abecedarian formula
size s, = poly(s). F1 of size O(n®<'°8"), that computes

3. Construct a homogeneous, CHSYMp/2,n/2(X) -
abecedarian formula F of size 6. Using F, construct a homogeneous
s = poly(n), that computes multilinear formula of size O(n¢<'°&™)
CHSYMy, /2 10g n(X)- computing ESYM,, ; />(X).

4. Show that there is a homogeneous 7. Choose ¢ such that Step 6 contradicts
abecedarian formula of size (s - s) the known lower bound against this
computing CHSYM,, 5 g2 n(X)- model for ESYMp, /5 (X).
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HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations A little about Step 1
m When degree is small, m Brent's Depth Reduction proof works in the
structural changes can non-commutative setting as well.
be made on formulas. m This allows Raz's Homogenisation proof to go
m CHSYM,, 4(x) is through in this setting as well.
structured enough to m It also answers a question by Nisan.

allow degree
amplification (Step 4).

m All the other steps are to Is D(f) < O(log F(f))?
facilitate the degree
amplification.

D(f): Depth Complexity; F(f): Formula Complexity

We answer the question in the positive.
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PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.
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