SEPARATING ABPS AND STRUCTURED FORMULAS

IN THE NON-COMMUTATIVE SETTING

PRERONA CHATTERJEE
TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI

MARCH 19, 2021

THE NON-COMMUTATIVE SETTING

fix.y) =(x+y) x(x+y)

THE NON-COMMUTATIVE SETTING

fO,y)=(xX+Yy) x (x+y) =X +xy+yx+y>

THE NON-COMMUTATIVE SETTING

fO,y)=(xX+Yy) x (x+y) =X +xy+yx+y>

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

THE NON-COMMUTATIVE SETTING

f,y) = (x+y) x (X+y) =X +xy +yx+y°

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

THE NON-COMMUTATIVE SETTING

f,y) = (x+y) x (X+y) =X +xy +yx+y°

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

m Dety(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2%(") complexity in this setting (AS "18).

THE NON-COMMUTATIVE SETTING

f,y) = (x+y) x (X+y) =X +xy +yx+y°

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

m Dety(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2%(") complexity in this setting (AS "18).
m Exponential lower bounds known for certain models via exact characterisation

(Nis '91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ‘85, CKSV '20).

THE NON-COMMUTATIVE SETTING

f,y) = (x+y) x (X+y) =X +xy +yx+y°

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

m Dety(x) has small (poly(n)) complexity in the commutative setting but is
expected to have very large (2%(") complexity in this setting (AS "18).

m Exponential lower bounds known for certain models via exact characterisation
(Nis '91). Best lower bound for corresponding models in the commutative
setting is quadratic (Kal ‘85, CKSV '20).

m Hardness Amplification is known (CILM '18).

ALGEBRAIC BRANCHING PROGRAMS

ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}

ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}
m Weight of path p =wt(p): Product of the edge labels on p

ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}
m Weight of path p =wt(p): Product of the edge labels on p
m Polynomial computed by the ABP: 3~ wt(p)

ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}
m Weight of path p =wt(p): Product of the edge labels on p

m Polynomial computed by the ABP: 3~ wt(p)

m Size of the ABP: Number of vertices in the ABP

ALGEBRAIC BRANCHING PROGRAMS

m Label on each edge: A homogeneous linear form in {x;,%3,...,Xp}
m Weight of path p =wt(p): Product of the edge labels on p

m Polynomial computed by the ABP: 3~ wt(p)

m Size of the ABP: Number of vertices in the ABP

For a general polynomial f of degree d, f = Homg(f) + Hom4(f) + - - - + Homy(f).

NISAN’S CHARACTERISATION

Monomials of degree i

Monomials of degree d — i

t §
N

coeffm,.m,(f)

f is a polynomial of degree d.

For every 1 < i < d, consider the
matrix M¢(i) described alongside.

NISAN’S CHARACTERISATION

Monomials of degree i

Monomials of degree d — i

"

coeffm,.m,(f)

f is a polynomial of degree d.

For every 1 < i < d, consider the
matrix M¢(i) described alongside.

Nisan (1991): For every 1 <i < d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mg ().

NISAN’S CHARACTERISATION

Monomials of degree i

Monomials of degree d — i

"

coeffm,.m,(f)

f is a polynomial of degree d.

For every 1 < i < d, consider the
matrix M¢(i) described alongside.

Nisan (1991): For every 1 <i < d,
The number of vertices in the i-th
layer of the smallest ABP computing
f is equal to the rank of Mg ().

If A is the smallest ABP computing f,

d
size(A) =) _ rank(Mg(i)).

ALGEBRAIC FORMULAS

ALGEBRAIC FORMULAS

VFnc € VBPy¢

ALGEBRAIC FORMULAS

VFnc € VBPy¢

Super-polynomial ABP lower bounds

\’
e ° super-polynomial formula lower bounds.

ALGEBRAIC FORMULAS

4 VFne € VBPyc
o o0 Super-polynomialUABP lower bounds

e ° super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:

e ° e e Any ABP (or formula) computing Detp(x)
has size at least 24",

ALGEBRAIC FORMULAS

4 VFne € VBPyc
o o0 Super-polynomialUABP lower bounds

e ° super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:
e ° e e Any ABP (or formula) computing Detp(x)
has size at least 29",

ABECEDARIAN POLYNOMIALS

Generalises the notion of ordered polynomials (defined in [HWY41]).

ABECEDARIAN POLYNOMIALS

Generalises the notion of ordered polynomials (defined in [HWY41]).

Detn(X) = Y (—1)E"x, 51+ Xn.o(m)

O'ESn

ABECEDARIAN POLYNOMIALS

Generalises the notion of ordered polynomials (defined in [HWY41]).

Detn(X) = Y (—1)E"x, 51+ Xn.o(m)

O'ESn

Buckets Example

{Xi}icn Where X; = {Xij}je[n] Detp(X)

ABECEDARIAN POLYNOMIALS

Generalises the notion of ordered polynomials (defined in [HWY41]).

Perm” Z X4 (1) ° ©* Xn ,a(n)
UESn
Buckets Example
{Xi}ie[n] where X; = {Xij}je[n] Detp(X), Permp(X)

ABECEDARIAN POLYNOMIALS

Generalises the notion of ordered polynomials (defined in [HWY41]).

CHSYMpg(X) = > XX,

1<ih<...<ig<n

Buckets Example

{XI}IE[H] Where XI - {XU}]E[H] Detn(x), Permn(x)

ABECEDARIAN POLYNOMIALS

Variables in every monomial arranged in non-decreasing order of bucket indices.

CHSYM,, 4(x) = Z Xi, - Xi,
1<ir<...<ig<n
Buckets Example
{Xi}ie[n] where X; = {Xij}je[n] Detp(x), Permp(x)
CHSYM,, 4(x
Xi}icym where X; = {x;} nd(X)

ABECEDARIAN POLYNOMIALS

Variables in every monomial arranged in non-decreasing order of bucket indices.

ESYMnyd(X) = Z X’-1 000 Xid

1<ir<...<ig<n

Buckets Example

{Xi}ticn Where X; = {Xij}je[n] Detp(x), Permp(x)

(X} 10y Where X = () CHSYM,, 4(X), ESYM,, 4(X)

ABECEDARIAN POLYNOMIALS

Variables in every monomial arranged in non-decreasing order of bucket indices.

Order the monomials
f(x) : £ (x)
using some fixed o€Sp

Buckets Example

{XI}IE[n] Where XI = {X’]}je[n] Detn(x), Permn(x)

CHSYM,, 4(X), ESYM,, 4(x)

{X;}icim where X; = {x;}) i
HiEkn] ' ' Non-Commutative version of any f € F[x,, ..., Xp]

ABECEDARIAN POLYNOMIALS

Buckets Example

{Xi}icn) Where X; = {x,—,—}je[n] Detp(X), Permp(X)

(X} 1o where X; = [x;) CHSYM,, 4(x), ESYM,, 4(X)

Non-Commutative version of any f € F[x,, ..., Xs]
Note: (ord) () (d)
or 1
ESY Myg = E X X

1§I.1<.A.<id§n

i i — Jx® R SO
Is abecedarian w.rt. both {Xk = {xl. }ie[n]}ke[d] as well as {X, {X, }ke[d]}

ie[n]‘

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a, b)

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

Abecedarian Formulas

Every vertex v is labelled by a tuple (a, b)

fvis the polynomialatv = f, = fy[a,b)

6]

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

Abecedarian Formulas Abecedarian ABPs
Every vertex v is labelled by a tuple (a,b) Every vertex is labelled by a bucket index

fvis the polynomialatv = f, = fy[a,b)

6]

SYNTACTICALLY ABECEDARIAN MODELS

Notation: Consider1<a<b<m+1 where m:size of the bucketing system.
m Foranya e [m+1], fla,a) is the constant termin f.

mFor1<a<b<m+n, fla, b) contains only those monomials of f in which
the first variable is from bucket Xg;
last variable is from bucket X, or Xq, or... or X,_,.

Abecedarian Formulas Abecedarian ABPs
Every vertex v is labelled by a tuple (a,b) Every vertex is labelled by a bucket index

f, is the polynomial atv = f, = f,[a, b) f is the polynomial computed between
(u,a) and (v,b) = f =fla,b+1).

6]

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:

1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:
1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that
» fn.4(x) can be computed by an abecedarian ABP of polynomial size;

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:

1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that

» fn.qa(x) can be computed by an abecedarian ABP of polynomial size;
» any abecedarian formula computing f, 1og n(X) must have size that is
super-polynomial in n.

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:
1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that
» fn.qa(x) can be computed by an abecedarian ABP of polynomial size;
» any abecedarian formula computing f, 1og n(X) must have size that is
super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing
system of size O(log n) that can be computed by an ABP of size poly(n).

WHAT WAS KNOWN AND WHAT WE SHOW

[LLS "19]: Any UPT formula computing IMM,, ,(x) must have size n‘(logn),

Our Main Theorems:
1. There is an explicit n>-variate, degree d polynomial f,, 4(x) which is abecedarian
with respect to a bucketing system of size n such that
» fn.qa(x) can be computed by an abecedarian ABP of polynomial size;
» any abecedarian formula computing f, 1og n(X) must have size that is
super-polynomial in n.
2. Let f be an n-variate abecedarian polynomial with respect to a bucketing
system of size O(log n) that can be computed by an ABP of size poly(n).
A super-polynomial lower bound against abecedarian formulas for f would

imply that VF,c # VBPyc.

POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an
abecedarian formula without much blow-up in size, irrespective of the size of
the bucketing system?

2. Is there a polynomial f which is abecedarian with respect to a bucketing
system that has small size such that f witnesses a separation between
abecedarian formulas and ABPs?

’A positive answer to either of these questions would imply that VBPnc # VFc. ‘

THE EXPLICIT STATEMENT

n
linked_CHSYM),, 4(x) = Z (Z Xioiv * Xin)in * 'Xid1,id)

io=1

o <ir<...<ig<n

THE EXPLICIT STATEMENT

n
linked_CHSYM),, 4(x) = Z (Z Xioiv * Xin)in * 'Xid1,id)

io=1 \io<h<...<ig<n

m Abecedarian with respectto {X; : 1<i<n}whereX; = {x; : 1<j<nj}.

THE EXPLICIT STATEMENT

n
linked_CHSYM),, 4(x) = Z (Z Xioiv * Xin)in * 'Xid1,id)

io=1 \Jo<ih<...<ig<n

m Abecedarian with respectto {X; : 1<i<n}whereX; = {x; : 1<j<nj}.
m linked_CHSYM,, 4(x) can be computed by an abecedarian ABP of size O(nd).

THE EXPLICIT STATEMENT

n
linked_CHSYM),, 4(x) = Z (Z Xioiv * Xin)in * 'Xid1,id)

io=1 \Jo<ih<...<ig<n

m Abecedarian with respectto {X; : 1<i<n}whereX; = {x; : 1<j<nj}.
m linked_CHSYM,, 4(x) can be computed by an abecedarian ABP of size O(nd).
m Any abecedarian formula computing linked_CHSYMj, | n(X) has size nf(loglogn),

THE EXPLICIT STATEMENT

n
linked_CHSYM),, 4(x) = Z (Z Xioiv * Xin)in * 'Xid1,id)

io=1 \Jo<ih<...<ig<n

m Abecedarian with respectto {X; : 1<i<n}whereX; = {x; : 1<j<nj}.
m linked_CHSYM,, 4(x) can be computed by an abecedarian ABP of size O(nd).
m Any abecedarian formula computing linked_CHSYMj, | n(X) has size nf(loglogn),

m A super-polynomial lower bound against abecedarian formulas for
linked_CHSYM|og n n(X) would imply that VFc # VBPy.

THE STRUCTURED ABP UPPER BOUND

n
hmd(X) = linked_CHSYMn’d(x) = Z (Z Xioin * Xip,in .X’.dnid)

io=1 \io<ih<...<ig<n

THE STRUCTURED ABP UPPER BOUND

n
hmd(X) = linked_CHSYMn’d(x) = Z (Z Xioin * Xip,in .X’.dnid)

io=1 \io<ih<...<ig<n

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n='°&'°¢") computing hn /2 10g n(X)-

1. Homogenise to get F} of size poly(s).

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n='°&'°¢") computing hn /2 10g n(X)-

1. Homogenise to get F} of size poly(s).

2. Using F/ construct a more structured
formula 7, computing hy, /5 jog n(X), Of
size s, = poly(s).

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n='°&'°¢") computing hn /2 10g n(X)-

1. Homogenise to get F} of size poly(s).
2. Using F/ construct a more structured
formula 7, computing hy, /5 jog n(X), Of
size s, = poly(s).
3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMj 5 jog n(X)-

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n='°&'°¢") computing hn /2 10g n(X)-

1. Homogenise to get F} of size poly(s).

2. Using F/ construct a more structured
formula 7, computing hy, /5 jog n(X), Of
size s, = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMj 5 jog n(X)-

4. Show that there is a homogeneous
abecedarian formula of size (s - s5)
computing CHSYM,, 5 og2 n(X)-

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n='°&'°¢") computing hn /2 10g n(X)-

1. Homogenise to get F} of size poly(s).

2. Using F/ construct a more structured
formula 7, computing hy, /5 jog n(X), Of
size s, = poly(s).

3. Construct a homogeneous,
abecedarian formula F of size
s = poly(n), that computes
CHSYMj 5 jog n(X)-

4. Show that there is a homogeneous
abecedarian formula of size (s - s5)
computing CHSYM,, 5 og2 n(X)-

5. Reuse Step 4 repeatedly at most
O(logn/ioglogn) times to obtain a
homogeneous abecedarian formula
F1 of size O(n®<'°8"), that computes
CHSYMn/z’n/z(X) o

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n®'°'°&") computing hy, og n(X).

1. Homogenise to get 7 of size poly(s). 5. Reuse Step 4 repeatedly at most
2. Using F/ construct a more structured O(ogn/Ioglogn) times to obtain a
formula 7, computing hy, /5 jog n(X), Of homogeneous abecedarian formula
size s, = poly(s). F1 of size O(n®<'°8"), that computes
3. Construct a homogeneous, CHSYMp/2,n/2(X) -
abecedarian formula F of size 6. Using F, construct a homogeneous
s = poly(n), that computes multilinear formula of size O(n¢<'°&™)
CHSYMy, /2 10g n(X)- computing ESYM,, ; />(X).

4. Show that there is a homogeneous
abecedarian formula of size (s - s5)
computing CHSYM,, 5 og2 n(X)-

PROOF IDEA OF THE STRUCTURED FORMULA LOWER BOUND

Let 7’ be an abecedarian formula of size s = O(n®'°'°&") computing hy, og n(X).

1. Homogenise to get 7 of size poly(s). 5. Reuse Step 4 repeatedly at most

2. Using F/ construct a more structured O(ogn/Ioglogn) times to obtain a
formula 7, computing hy, /5 jog n(X), Of homogeneous abecedarian formula
size s, = poly(s). F1 of size O(n®<'°8"), that computes

3. Construct a homogeneous, CHSYMp/2,n/2(X) -
abecedarian formula F of size 6. Using F, construct a homogeneous
s = poly(n), that computes multilinear formula of size O(n¢<'°&™)
CHSYMy, /2 10g n(X)- computing ESYM,, ; />(X).

4. Show that there is a homogeneous 7. Choose ¢ such that Step 6 contradicts
abecedarian formula of size (s - s) the known lower bound against this
computing CHSYM,, 5 g2 n(X)- model for ESYMp, /5 (X).

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations

m When degree is small,
structural changes can
be made on formulas.

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations

m When degree is small,
structural changes can
be made on formulas.

m CHSYM,, 4(x) is
structured enough to
allow degree
amplification (Step 4).

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations

m When degree is small,
structural changes can
be made on formulas.

m CHSYM,, 4(x) is
structured enough to
allow degree
amplification (Step 4).

m All the other steps are to
facilitate the degree
amplification.

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations A little about Step 1
m When degree is small, m Brent's Depth Reduction proof works in the
structural changes can non-commutative setting as well.

be made on formulas.

m CHSYM,, 4(x) is
structured enough to
allow degree
amplification (Step 4).

m All the other steps are to
facilitate the degree
amplification.

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations A little about Step 1
m When degree is small, m Brent's Depth Reduction proof works in the
structural changes can non-commutative setting as well.

be made on formulas. m This allows Raz's Homogenisation proof to go

m CHSYM, 4(x) is through in this setting as well.
structured enough to
allow degree
amplification (Step 4).
m All the other steps are to
facilitate the degree
amplification.

HIGHLIGHTING THE KEY STEPS

Want to use the lower bound in [HY11] against homogeneous multilinear formulas.

Crucial Observations A little about Step 1
m When degree is small, m Brent's Depth Reduction proof works in the
structural changes can non-commutative setting as well.
be made on formulas. m This allows Raz's Homogenisation proof to go
m CHSYM,, 4(x) is through in this setting as well.
structured enough to m It also answers a question by Nisan.

allow degree
amplification (Step 4).

m All the other steps are to Is D(f) < O(log F(f))?
facilitate the degree
amplification.

D(f): Depth Complexity; F(f): Formula Complexity

We answer the question in the positive.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

Step 1

m Make m? copies in C of each
vertex in F: {(a,b)}q pemi-

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

Step 1
m Make m? copies in C of each
vertex in F: {(a,b)}q pemi-

m f,isthe polynomial at v

4
the polynomial at (v, (a, b))

is fy[a, b).

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

Step 1 Step 2
m Make m? copies in C of each m Convert C into a formula 7’ by recomputing
vertex in F: {(a,b)}4 pefm- vertices every time it is reused.
m f,isthe polynomial at v
J
the polynomial at (v, (a, b))
is fy[a, b).

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

Step 1 Step 2
m Make m? copies in C of each m Convert C into a formula 7’ by recomputing
vertex in F: {(a,b)}4 pefm- vertices every time it is reused.
m f,is the polynomial at v m Analyse (similar to Raz) the number of
U distinct paths from any vertex in C to the root.
the polynomial at (v, (a, b))
is fy[a, b).

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let F be a formula of size s computing a polynomial that is abecedarian with
respect to a bucketing system of size m.

1. Convert the given formula F into an abecedarian circuit C.
2. Unravel C to get an abecedarian formula F' computing the same polynomial.

Step 1 Step 2
m Make m? copies in C of each m Convert C into a formula 7’ by recomputing
vertex in F: {(a,b)}4 pefm- vertices every time it is reused.
m f,is the polynomial at v m Analyse (similar to Raz) the number of
U distinct paths from any vertex in C to the root.
the polynomial at (v, (a, b)) m When m = O(logs), the size of 7/ remains
is fy[a, b). poly(s).

OTHER OBSERVATIONS

1. VPnc S ade - VPnc.

OTHER OBSERVATIONS

1. VPnc S ade - VPnc.
2. VBPnC S ade - VBPnc.

OTHER OBSERVATIONS

1. VPnc S ade - VPnc.
2. VBPnC S ade - VBPnc.
3. abcd — VF,c € abcd — VBPy.

OTHER OBSERVATIONS

1. VPpc = abcd — VP,.

2. VBP . = abcd — VBP.

3. abcd — VF,c € abcd — VBPy.
4. abcd — VBP,: C abcd — VPp..

OTHER OBSERVATIONS

VP, = abcd — VPpe.

VBPnc = abcd — VBP.

abcd — VF,c C abcd — VBPy.
abcd — VBP,¢ € abcd — VPy.
f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

4

there is an abcd-formula
computing f of size 0(s'°&d),

A

OTHER OBSERVATIONS

VP, = abcd — VP Corollaries of the Homogenisation Observation

VBP,. = abcd — VBPp.. 2¢(") lower bound against homogeneous formulas
abcd — VFnc C abed — VBP,. TOF Detn(X)

abcd — VBP,¢ € abcd — VPy.

f is an abcd-polynomial of

degree d that is computable
by an abcd-ABP of size s

4

there is an abcd-formula
computing f of size 0(s'°&d),

A

OTHER OBSERVATIONS

VPnc S ade - VPnc.
VBPnC = ade - VBPnc.

A

f is an abcd-polynomial of
degree d that is computable
by an abcd-ABP of size s

J
there is an abcd-formula
computing f of size 0(s'°&d),

abcd — VF,c C abcd — VBPy.
abcd — VBP,¢ € abcd — VPy.

Corollaries of the Homogenisation Observation

2¢(") lower bound against homogeneous formulas

for Detp(X) o

n“(lower bound against homogeneous formulas
for IMMp jog n(X)

OTHER OBSERVATIONS

VPnc S ade - VPnc.
VBPnC = ade - VBPnc.

A

f is an abcd-polynomial of
degree d that is computable
by an abcd-ABP of size s

J
there is an abcd-formula
computing f of size 0(s'°&d),

abcd — VF,c C abcd — VBPy.
abcd — VBP,¢ € abcd — VPy.

Corollaries of the Homogenisation Observation

2¢(") lower bound against homogeneous formulas

for Detp(X) o

n“(lower bound against homogeneous formulas
for IMMj jog n(X) o

n“(lower bound against homogeneous formulas
for linked_CHSYM,, jog n(X)

OTHER OBSERVATIONS

VPnc S ade - VPnc.
VBPnC = ade - VBPnc.

A

f is an abcd-polynomial of
degree d that is computable
by an abcd-ABP of size s

J
there is an abcd-formula
computing f of size 0(s'°&d),

abcd — VF,c C abcd — VBPy.
abcd — VBP,¢ € abcd — VPy.

Corollaries of the Homogenisation Observation
2¢(") lower bound against homogeneous formulas
for Detp(X) o
n“(lower bound against homogeneous formulas
for IMMj jog n(X) o
n“(lower bound against homogeneous formulas
for linked_CHSYM,, jog n(X)

— VFnC # VBPnC

Thank you!

