SEPARATING ABPS AND STRUCTURED FORMULAS IN THE NON-COMMUTATIVE SETTING

PRERONA CHATTERJEE

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI

MARCH 19, 2021

THE NON-COMMUTATIVE SETTING

$$f(x,y) = (x+y) \times (x+y)$$

THE NON-COMMUTATIVE SETTING

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

Natural restriction with long line of work, beginning with [Hya '77], [Nis '91].

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

Natural restriction with long line of work, beginning with [**Hya '77**], [**Nis '91**]. Since it is a restricted setting, it is possibly easier to prove lower bounds here.

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

Natural restriction with long line of work, beginning with [**Hya '77**], [**Nis '91**]. Since it is a restricted setting, it is possibly easier to prove lower bounds here.

■ $Det_n(\mathbf{x})$ has small (poly(n)) complexity in the commutative setting but is expected to have very large $(2^{\Omega(n)})$ complexity in this setting (AS '18).

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

Natural restriction with long line of work, beginning with [**Hya '77**], [**Nis '91**].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

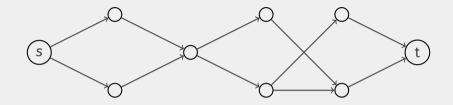
- $Det_n(\mathbf{x})$ has small (poly(n)) complexity in the commutative setting but is expected to have very large $(2^{\Omega(n)})$ complexity in this setting (AS '18).
- Exponential lower bounds known for certain models via exact characterisation (Nis '91). Best lower bound for corresponding models in the commutative setting is quadratic (Kal '85, CKSV '20).

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2$$

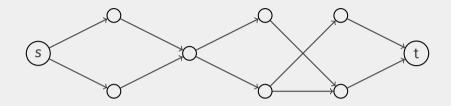
Natural restriction with long line of work, beginning with [**Hya '77**], [**Nis '91**].

Since it is a restricted setting, it is possibly easier to prove lower bounds here.

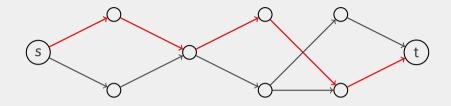
- $Det_n(\mathbf{x})$ has small (poly(n)) complexity in the commutative setting but is expected to have very large $(2^{\Omega(n)})$ complexity in this setting (AS '18).
- Exponential lower bounds known for certain models via exact characterisation (Nis '91). Best lower bound for corresponding models in the commutative setting is quadratic (Kal '85, CKSV '20).
- Hardness Amplification is known (CILM '18).



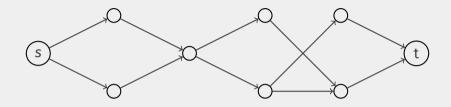
Algebraic Branching Programs



Label on each edge: A homogeneous linear form in $\{x_1, x_2, ..., x_n\}$

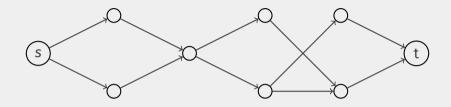


Label on each edge: A homogeneous linear form in {x₁, x₂,..., x_n}
 Weight of path p = wt(p): Product of the edge labels on p

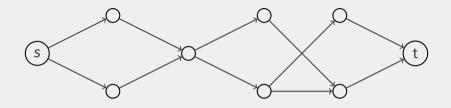


Label on each edge: A homogeneous linear form in $\{x_1, x_2, ..., x_n\}$

- Weight of path *p* = wt(*p*): Product of the edge labels on *p*
- **Polynomial computed by the ABP:** $\sum_{p} wt(p)$



- **Label on each edge:** A homogeneous linear form in $\{x_1, x_2, ..., x_n\}$
- Weight of path *p* = wt(*p*): Product of the edge labels on *p*
- **Polynomial computed by the ABP:** $\sum_{p} wt(p)$
- **Size of the ABP:** Number of vertices in the ABP



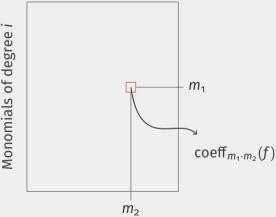
Label on each edge: A homogeneous linear form in $\{x_1, x_2, ..., x_n\}$

- Weight of path *p* = wt(*p*): Product of the edge labels on *p*
- **Polynomial computed by the ABP:** $\sum_{p} wt(p)$
- **Size of the ABP:** Number of vertices in the ABP

For a general polynomial f of degree d, $f = Hom_0(f) + Hom_1(f) + \cdots + Hom_d(f)$.

NISAN'S CHARACTERISATION

Monomials of degree d - i



f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

NISAN'S CHARACTERISATION

Monomials of degree d - i• -- m_1 $coeff_{m_1 \cdot m_2}(f)$ m_2

f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

Nisan (1991): For every $1 \le i \le d$, The number of vertices in the *i*-th layer of the smallest ABP computing f is equal to the rank of $M_f(i)$.

NISAN'S CHARACTERISATION

Monomials of degree d - i• -- m_1 $\operatorname{coeff}_{m_1 \cdot m_2}(f)$ m_2

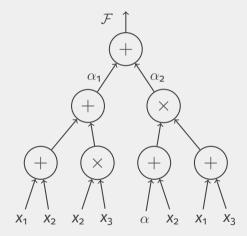
f is a polynomial of degree d.

For every $1 \le i \le d$, consider the matrix $M_f(i)$ described alongside.

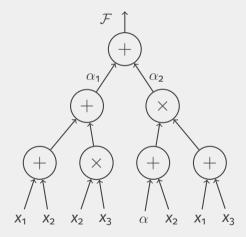
Nisan (1991): For every $1 \le i \le d$, The number of vertices in the *i*-th layer of the smallest ABP computing f is equal to the rank of $M_f(i)$.

If \mathcal{A} is the smallest ABP computing f.

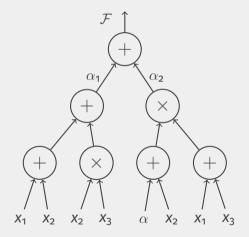
$$size(A) = \sum_{i=1}^{d} rank(M_f(i)).$$



4

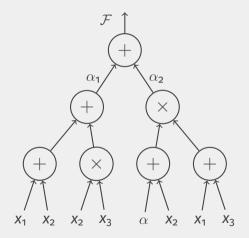


 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}}$



 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}}$

Super-polynomial ABP lower bounds $\$ super-polynomial formula lower bounds.

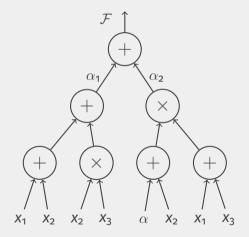


 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}}$

Super-polynomial ABP lower bounds $\$ super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:

Any ABP (or formula) computing $Det_n(\mathbf{x})$ has size at least $2^{\Omega(n)}$.



 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}}$

Super-polynomial ABP lower bounds $\$ super-polynomial formula lower bounds.

Exponential Lower Bound [Nisan]:

Any ABP (or formula) computing $Det_n(\mathbf{x})$ has size at least $2^{\Omega(n)}$.

Question: Is $VF_{nc} = VBP_{nc}$?

$$\operatorname{Det}_{n}(\mathbf{x}) = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{sgn}(\sigma)} X_{1,\sigma(1)} \cdots X_{n,\sigma(n)}$$

$$\operatorname{Det}_{n}(\mathbf{x}) = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{sgn}(\sigma)} X_{1,\sigma(1)} \cdots X_{n,\sigma(n)}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	Det _n (x)

$$\operatorname{Perm}_{n}(\mathbf{x}) = \sum_{\sigma \in S_{n}} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$, $\mathrm{Perm}_n(\mathbf{x})$

$$\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$, $\mathrm{Perm}_n(\mathbf{x})$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$, $\mathrm{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x})$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$\mathrm{ESYM}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \ldots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$, $\mathrm{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x}), ext{ESYM}_{n,d}(\mathbf{x})$

Variables in every monomial arranged in non-decreasing order of bucket indices.

 $f^{(nc)}(\mathbf{x})$

(**x**)
$$\xrightarrow{\text{Order the monomials}}$$

BucketsExample
$$\{X_i\}_{i\in[n]}$$
 where $X_i = \{x_{ij}\}_{j\in[n]}$ $\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$ $\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$ $\operatorname{CHSYM}_{n,d}(\mathbf{x}), \operatorname{ESYM}_{n,d}(\mathbf{x})$ $\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$ $\operatorname{Non-Commutative version of any } f \in \mathbb{F}[x_1, \dots, x_n]$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$, $\mathrm{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x}), ext{ESYM}_{n,d}(\mathbf{x})$ Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Note:

$$\operatorname{ESYM}_{n,d}^{(\operatorname{ord})} = \sum_{1 \le i_1 < \ldots < i_d \le n} x_{i_1}^{(1)} \cdots x_{i_d}^{(d)}$$

is abecedarian w.r.t. both $\left\{ X_k = \left\{ x_i^{(k)} \right\}_{i \in [n]} \right\}_{k \in [d]}$ as well as $\left\{ X_i = \left\{ x_i^{(k)} \right\}_{k \in [d]} \right\}_{i \in [n]}$.

Notation: Consider $1 \le a \le b \le m + 1$ where *m*: size of the bucketing system. For any $a \in [m + 1]$, f[a, a) is the constant term in *f*.

- For any $a \in [m + 1]$, f[a, a) is the constant term in f.

For $1 \le a < b \le m + 1$, f[a, b] contains only those monomials of f in which the first variable is from bucket X_{α} ; last variable is from bucket X_a or X_{a+1} or ... or X_{b-1} .

- For any $a \in [m + 1]$, f[a, a) is the constant term in f.
- For $1 \le a < b \le m + 1$, f[a, b] contains only those monomials of f in which the first variable is from bucket X_a ; last variable is from bucket X_a or X_{a+1} or ... or X_{b-1} .

Abecedarian Formulas

Every vertex v is labelled by a tuple (a, b)

- For any $a \in [m + 1]$, f[a, a) is the constant term in f.
- For $1 \le a < b \le m + 1$, f[a, b] contains only those monomials of f in which the first variable is from bucket X_a ; last variable is from bucket X_a or X_{a+1} or ... or X_{b-1} .

Abecedarian Formulas

Every vertex v is labelled by a tuple (a, b)

 f_v is the polynomial at $v \implies f_v = f_v[a,b)$

Notation: Consider $1 \le a \le b \le m + 1$ where *m*: size of the bucketing system.

- For any $a \in [m + 1]$, f[a, a) is the constant term in f.
- For $1 \le a < b \le m + 1$, f[a, b] contains only those monomials of f in which the first variable is from bucket X_a ; last variable is from bucket X_a or X_{a+1} or ... or X_{b-1} .

Abecedarian Formulas

Abecedarian ABPs

Every vertex v is labelled by a tuple (a, b)

Every vertex is labelled by a bucket index

 f_v is the polynomial at $v \implies f_v = f_v[a,b)$

Notation: Consider $1 \le a \le b \le m + 1$ where *m*: size of the bucketing system.

- For any $a \in [m + 1]$, f[a, a) is the constant term in f.
- For $1 \le a < b \le m + 1$, f[a, b] contains only those monomials of f in which the first variable is from bucket X_{α} : last variable is from bucket X_a or X_{a+1} or ... or X_{b-1} .

Abecedarian Formulas

Abecedarian ABPs

Every vertex v is labelled by a tuple (a, b)

 f_v is the polynomial at $v \implies f_v = f_v[a, b)$

Every vertex is labelled by a bucket index

f is the polynomial computed between (u, a) and $(v, b) \implies f = f[a, b + 1)$.

Our Main Theorems:

1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(\mathbf{x})$ which is abecedarian with respect to a bucketing system of size n such that

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(\mathbf{x})$ which is abecedarian with respect to a bucketing system of size n such that
 - $f_{n,d}(\mathbf{x})$ can be computed by an abecedarian ABP of polynomial size;

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(\mathbf{x})$ which is abecedarian with respect to a bucketing system of size n such that
 - $f_{n,d}(\mathbf{x})$ can be computed by an abecedarian ABP of polynomial size;
 - any abecedarian formula computing $f_{n,\log n}(\mathbf{x})$ must have size that is super-polynomial in n.

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(\mathbf{x})$ which is abecedarian with respect to a bucketing system of size n such that
 - $f_{n,d}(\mathbf{x})$ can be computed by an abecedarian ABP of polynomial size;
 - ▶ any abecedarian formula computing $f_{n,\log n}(\mathbf{x})$ must have size that is super-polynomial in *n*.
- 2. Let f be an n-variate abecedarian polynomial with respect to a bucketing system of size $O(\log n)$ that can be computed by an ABP of size poly(n).

- 1. There is an explicit n^2 -variate, degree d polynomial $f_{n,d}(\mathbf{x})$ which is abecedarian with respect to a bucketing system of size n such that
 - $f_{n,d}(\mathbf{x})$ can be computed by an abecedarian ABP of polynomial size;
 - any abecedarian formula computing $f_{n,\log n}(\mathbf{x})$ must have size that is super-polynomial in n.
- Let f be an n-variate abecedarian polynomial with respect to a bucketing system of size O(log n) that can be computed by an ABP of size poly(n). A super-polynomial lower bound against abecedarian formulas for f would imply that VF_{nc} ≠ VBP_{nc}.

POSSIBLE NEW APPROACHES TO SOLVING THE GENERAL QUESTION

Two natural questions that arise at this point:

Two natural questions that arise at this point:

1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the bucketing system?

Two natural questions that arise at this point:

- 1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the bucketing system?
- 2. Is there a polynomial *f* which is abecedarian with respect to a bucketing system that has small size such that *f* witnesses a separation between abecedarian formulas and ABPs?

Two natural questions that arise at this point:

- 1. Can any formula computing an abecedarian polynomial be converted to an abecedarian formula without much blow-up in size, irrespective of the size of the bucketing system?
- 2. Is there a polynomial *f* which is abecedarian with respect to a bucketing system that has small size such that *f* witnesses a separation between abecedarian formulas and ABPs?

A positive answer to either of these questions would imply that $VBP_{nc} \neq VF_{nc}$.

linked_CHSYM_{n,d}(
$$\mathbf{x}$$
) = $\sum_{i_0=1}^{n} \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$

linked_CHSYM_{n,d}(
$$\mathbf{x}$$
) = $\sum_{i_0=1}^{n} \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$

• Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.

$$linked_CHSYM_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

■ Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$. ■ linked_CHSYM_{n,d}(**x**) can be computed by an abecedarian ABP of size O(nd).

$$linked_CHSYM_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- linked_CHSYM_{*n*,*d*}(\mathbf{x}) can be computed by an abecedarian ABP of size O(nd).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(\mathbf{x}) has size $n^{\Omega(\log \log n)}$.

The Explicit Statement

$$linked_CHSYM_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

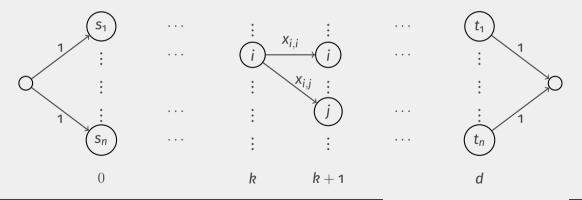
- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- linked_CHSYM_{*n*,*d*}(\mathbf{x}) can be computed by an abecedarian ABP of size O(nd).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(\mathbf{x}) has size $n^{\Omega(\log \log n)}$.
- A super-polynomial lower bound against abecedarian formulas for linked_CHSYM_{log n,n}(x) would imply that VF_{nc} ≠ VBP_{nc}.

THE STRUCTURED ABP UPPER BOUND

$$h_{n,d}(\mathbf{x}) = \text{linked}_\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

THE STRUCTURED ABP UPPER BOUND

$$h_{n,d}(\mathbf{x}) = \text{linked}_{CHSYM_{n,d}}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$



Let \mathcal{F}' be an abecedarian formula of size $s = O(n^{\varepsilon \log \log n})$ computing $h_{n/2,\log n}(\mathbf{x})$.

1. Homogenise to get \mathcal{F}'_1 of size poly(s).

- **1.** Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(s)$.

- **1.** Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(s)$.
- 3. Construct a homogeneous, abecedarian formula \mathcal{F} of size $\mathbf{s} = \text{poly}(n)$, that computes $\text{CHSYM}_{n/2,\log n}(\mathbf{x})$.

- 1. Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(s)$.
- 3. Construct a homogeneous, abecedarian formula \mathcal{F} of size $\mathbf{s} = \operatorname{poly}(n)$, that computes $\operatorname{CHSYM}_{n/2,\log n}(\mathbf{x})$.
- 4. Show that there is a homogeneous abecedarian formula of size $(s \cdot s'_2)$ computing $CHSYM_{n/2,\log^2 n}(\mathbf{x})$.

Let \mathcal{F}' be an abecedarian formula of size $s = O(n^{\varepsilon \log \log n})$ computing $h_{n/2,\log n}(\mathbf{x})$.

- **1.** Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(\mathbf{s})$.
- 3. Construct a homogeneous, abecedarian formula \mathcal{F} of size $\mathbf{s} = \operatorname{poly}(n)$, that computes $\operatorname{CHSYM}_{n/2,\log n}(\mathbf{x})$.
- 4. Show that there is a homogeneous abecedarian formula of size $(s \cdot s'_2)$ computing $CHSYM_{n/2,\log^2 n}(\mathbf{x})$.

5. Reuse Step 4 repeatedly at most $O(\log n/\log \log n)$ times to obtain a homogeneous abecedarian formula \mathcal{F}_1 of size $O(n^{c \cdot \varepsilon \log n})$, that computes $\operatorname{CHSYM}_{n/2,n/2}(\mathbf{x})$.

- **1.** Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(s)$.
- Construct a homogeneous, abecedarian formula *F* of size
 s = poly(n), that computes CHSYM_{n/2,log n}(x).
- 4. Show that there is a homogeneous abecedarian formula of size $(s \cdot s'_2)$ computing $CHSYM_{n/2,\log^2 n}(\mathbf{x})$.

- 5. Reuse Step 4 repeatedly at most $O(\log n/\log \log n)$ times to obtain a homogeneous abecedarian formula \mathcal{F}_1 of size $O(n^{c \cdot \varepsilon \log n})$, that computes $\operatorname{CHSYM}_{n/2,n/2}(\mathbf{x})$.
- 6. Using \mathcal{F}_1 construct a homogeneous multilinear formula of size $O(n^{c \cdot \epsilon \log n})$ computing $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$.

- **1.** Homogenise to get \mathcal{F}'_1 of size poly(s).
- 2. Using \mathcal{F}'_1 construct a more structured formula \mathcal{F}'_2 computing $h_{n/2,\log n}(\mathbf{x})$, of size $\mathbf{s}'_2 = \operatorname{poly}(s)$.
- Construct a homogeneous, abecedarian formula *F* of size
 s = poly(n), that computes CHSYM_{n/2,log n}(x).
- 4. Show that there is a homogeneous abecedarian formula of size $(s \cdot s'_2)$ computing $CHSYM_{n/2,\log^2 n}(\mathbf{x})$.

- 5. Reuse Step 4 repeatedly at most $O(\log n/\log \log n)$ times to obtain a homogeneous abecedarian formula \mathcal{F}_1 of size $O(n^{c \cdot \varepsilon \log n})$, that computes $\operatorname{CHSYM}_{n/2,n/2}(\mathbf{x})$.
- 6. Using \mathcal{F}_1 construct a homogeneous multilinear formula of size $O(n^{c \cdot \varepsilon \log n})$ computing $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$.
- 7. Choose ε such that Step 6 contradicts the known lower bound against this model for $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$.

Crucial Observations

 When degree is small, structural changes can be made on formulas.

Crucial Observations

- When degree is small, structural changes can be made on formulas.
- CHSYM_{n,d}(x) is structured enough to allow degree amplification (Step 4).

Crucial Observations

- When degree is small, structural changes can be made on formulas.
- CHSYM_{n,d}(x) is structured enough to allow degree amplification (Step 4).
- All the other steps are to facilitate the degree amplification.

Crucial Observations

- When degree is small, structural changes can be made on formulas.
- CHSYM_{n,d}(x) is structured enough to allow degree amplification (Step 4).
- All the other steps are to facilitate the degree amplification.

A little about Step 1

 Brent's Depth Reduction proof works in the non-commutative setting as well.

Crucial Observations

- When degree is small, structural changes can be made on formulas.
- CHSYM_{n,d}(x) is structured enough to allow degree amplification (Step 4).
- All the other steps are to facilitate the degree amplification.

A little about Step 1

- Brent's Depth Reduction proof works in the non-commutative setting as well.
- This allows Raz's Homogenisation proof to go through in this setting as well.

Crucial Observations

- When degree is small, structural changes can be made on formulas.
- CHSYM_{n,d}(x) is structured enough to allow degree amplification (Step 4).
- All the other steps are to facilitate the degree amplification.

A little about Step 1

- Brent's Depth Reduction proof works in the non-commutative setting as well.
- This allows Raz's Homogenisation proof to go through in this setting as well.
- It also answers a question by Nisan.
 - D(f): Depth Complexity; F(f): Formula Complexity

 $\mathsf{Is} \ \mathsf{D}(f) \leq \mathsf{O}(\log \mathsf{F}(f))?$

We answer the question in the positive.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

1. Convert the given formula $\mathcal F$ into an abecedarian circuit $\mathcal C$.

PROOF IDEA FOR CONVERTING FORMULAS INTO ABECEDARIAN ONES

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 2. Unravel C to get an abecedarian formula \mathcal{F}' computing the same polynomial.

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula $\mathcal F$ into an abecedarian circuit $\mathcal C$.
- 2. Unravel ${\mathcal C}$ to get an abecedarian formula ${\mathcal F}'$ computing the same polynomial.

Step 1

Make m^2 copies in C of each vertex in \mathcal{F} : $\{(a, b)\}_{a, b \in [m+1]}$.

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula ${\mathcal F}$ into an abecedarian circuit ${\mathcal C}$.
- 2. Unravel ${\mathcal C}$ to get an abecedarian formula ${\mathcal F}'$ computing the same polynomial.

Step 1

- Make m^2 copies in C of each vertex in \mathcal{F} : $\{(a, b)\}_{a, b \in [m+1]}$.
 - f_v is the polynomial at v $\downarrow \downarrow$ the polynomial at (v, (a, b))is $f_v[a, b)$.

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula ${\mathcal F}$ into an abecedarian circuit ${\mathcal C}$.
- 2. Unravel ${\mathcal C}$ to get an abecedarian formula ${\mathcal F}'$ computing the same polynomial.

Step 1

- Make *m*² copies in *C* of each vertex in *F*: {(*a*, *b*)}_{*a*,*b*∈[*m*+1]}.
 - f_v is the polynomial at v $\downarrow \downarrow$ the polynomial at (v, (a, b))is $f_v[a, b)$.

Step 2

■ Convert C into a formula F' by recomputing vertices every time it is reused.

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 2. Unravel ${\mathcal C}$ to get an abecedarian formula ${\mathcal F}'$ computing the same polynomial.

Step 1

- Make *m*² copies in *C* of each vertex in *F*: {(*a*, *b*)}_{*a*,*b*∈[*m*+1]}.
 - f_v is the polynomial at v $\downarrow \downarrow$ the polynomial at (v, (a, b))is $f_v[a, b)$.

Step 2

- Convert C into a formula F' by recomputing vertices every time it is reused.
- Analyse (similar to Raz) the number of distinct paths from any vertex in C to the root.

Let \mathcal{F} be a formula of size *s* computing a polynomial that is abecedarian with respect to a bucketing system of size *m*.

- 1. Convert the given formula $\mathcal F$ into an abecedarian circuit $\mathcal C$.
- 2. Unravel ${\mathcal C}$ to get an abecedarian formula ${\mathcal F}'$ computing the same polynomial.

Step 1

- Make *m*² copies in *C* of each vertex in *F*: {(*a*, *b*)}_{*a*,*b*∈[*m*+1]}.
 - f_v is the polynomial at v $\downarrow \downarrow$ the polynomial at (v, (a, b))is $f_v[a, b)$.

Step 2

- Convert *C* into a formula *F*′ by recomputing vertices every time it is reused.
- Analyse (similar to Raz) the number of distinct paths from any vertex in C to the root.
- When $m = O(\log s)$, the size of \mathcal{F}' remains poly(s).

1. $VP_{nc} = abcd - VP_{nc}$.

- 1. $VP_{nc} = abcd VP_{nc}$.
- **2.** $VBP_{nc} = abcd VBP_{nc}$.

- 1. $VP_{nc} = abcd VP_{nc}$.
- 2. $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.

- 1. $VP_{nc} = abcd VP_{nc}$.
- 2. $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- 4. $abcd VBP_{nc} \subsetneq abcd VP_{nc}$.

- 1. $VP_{nc} = abcd VP_{nc}$.
- 2. $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- 4. $abcd VBP_{nc} \subsetneq abcd VP_{nc}$.
- 5. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s
 ↓
 there is an abcd-formula

computing f of size $O(s^{\log d})$.

- 1. $VP_{nc} = abcd VP_{nc}$.
- 2. $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- 4. $abcd VBP_{nc} \subsetneq abcd VP_{nc}$.
- 5. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s
 ↓
 there is an abcd-formula computing f of size O(s^{log d}).

Corollaries of the Homogenisation Observation

 $\mathtt{2}^{\omega(n)}$ lower bound against homogeneous formulas for $\mathrm{Det}_n(\bm{x})$

- 1. $VP_{nc} = abcd VP_{nc}$.
- 2. $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- 4. $abcd VBP_{nc} \subsetneq abcd VP_{nc}$.
- 5. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s
 ↓
 there is an abcd-formula computing f of size O(s^{log d}).

Corollaries of the Homogenisation Observation

 $2^{\omega(n)}$ lower bound against homogeneous formulas for $\operatorname{Det}_n(\mathbf{x})$ or

 $n^{\omega(1)}$ lower bound against homogeneous formulas for $\mathrm{IMM}_{n,\log n}(\mathbf{x})$

- 1. $VP_{nc} = abcd VP_{nc}$.
- **2.** $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- $\textbf{4. } abcd-VBP_{nc} \subsetneq abcd-VP_{nc}.$
- 5. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s $\downarrow\downarrow$ there is an abcd-formula computing f of size $O(s^{\log d})$.

Corollaries of the Homogenisation Observation

 $2^{\omega(n)}$ lower bound against homogeneous formulas for $\mathrm{Det}_n(\mathbf{x})$ or

 $n^{\omega(1)}$ lower bound against homogeneous formulas for $\mathrm{IMM}_{n,\log n}(\mathbf{x})$ or

 $n^{\omega(1)}$ lower bound against homogeneous formulas for linked_CHSYM_{n,log n}(\mathbf{x})

- 1. $VP_{nc} = abcd VP_{nc}$.
- **2.** $VBP_{nc} = abcd VBP_{nc}$.
- 3. $abcd VF_{nc} \subseteq abcd VBP_{nc}$.
- 4. $abcd VBP_{nc} \subsetneq abcd VP_{nc}$.
- 5. f is an abcd-polynomial of degree d that is computable by an abcd-ABP of size s $\downarrow\downarrow$ there is an abcd-formula computing f of size $O(s^{\log d})$.

Corollaries of the Homogenisation Observation

 $2^{\omega(n)}$ lower bound against homogeneous formulas for $\mathrm{Det}_n(\mathbf{x})$ or

 $n^{\omega(1)}$ lower bound against homogeneous formulas for $\mathrm{IMM}_{n,\log n}(\mathbf{x})$ or

 $n^{\omega(1)}$ lower bound against homogeneous formulas for linked_CHSYM_{n,log n}(\mathbf{x})

$$\implies$$
 $VF_{nc} \neq VBP_{nc}$

Thank you!