
Lower Bounds Against Non-Commutative Models of

Algebraic Computation

Prerona Chatterjee (joint work with Pavel Hrubeš)

Tel Aviv University

January 24, 2023

The Question

Objects of study: Polynomials over some underlying field.

f (x) ∈ F[x]

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

1

The Question

Objects of study: Polynomials over some underlying field.

f (x) ∈ F[x]

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

1

The Question

Objects of study: Polynomials over some underlying field.

f (x) ∈ F[x]

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

1

The Question

Objects of study: Polynomials over some underlying field.

f (x) ∈ F[x]

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

1

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).

2

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).

2

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).

2

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).

2

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], . . . , [Gupta-Kamath-Kayal-Saptharishi], . . . , [Kumar-Saraf], . . .

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {fn,d(x)}n,d such

that any constant depth-∆ circuit computing fn,d(x) has must have size nΩ(d
1
4∆).

This is especially cool in the algebraic world.

Depth reduction results exist, which show that ”good enough” super-polynomial lower bounds

against constant depth circuits imply super-polynomial lower bounds against general circuits.

3

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], . . . , [Gupta-Kamath-Kayal-Saptharishi], . . . , [Kumar-Saraf], . . .

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {fn,d(x)}n,d such

that any constant depth-∆ circuit computing fn,d(x) has must have size nΩ(d
1
4∆).

This is especially cool in the algebraic world.

Depth reduction results exist, which show that ”good enough” super-polynomial lower bounds

against constant depth circuits imply super-polynomial lower bounds against general circuits.

3

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], . . . , [Gupta-Kamath-Kayal-Saptharishi], . . . , [Kumar-Saraf], . . .

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {fn,d(x)}n,d such

that any constant depth-∆ circuit computing fn,d(x) has must have size nΩ(d
1
4∆).

This is especially cool in the algebraic world.

Depth reduction results exist, which show that ”good enough” super-polynomial lower bounds

against constant depth circuits imply super-polynomial lower bounds against general circuits.

3

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], . . . , [Gupta-Kamath-Kayal-Saptharishi], . . . , [Kumar-Saraf], . . .

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {fn,d(x)}n,d such

that any constant depth-∆ circuit computing fn,d(x) has must have size nΩ(d
1
4∆).

This is especially cool in the algebraic world.

Depth reduction results exist, which show that ”good enough” super-polynomial lower bounds

against constant depth circuits imply super-polynomial lower bounds against general circuits.

3

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials?

Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

5

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

5

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

5

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆).

6

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆).

6

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆).

6

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆).

6

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆).

6

Our Main Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd ′) where d ′ = min(d , n − d).

7

Our Main Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd ′) where d ′ = min(d , n − d).

7

Our Main Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd ′) where d ′ = min(d , n − d).

7

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd =⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.

8

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd =⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.

8

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd =⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.

8

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd

=⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.

8

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd =⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.

8

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

9

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

9

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

9

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction.

No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1.

Therefore s ≥ d .

10

A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f) = d + 1. Therefore s ≥ d .

10

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

11

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Therefore we have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Therefore we have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

13

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i .

Add (the ≤ 10 extra) edges accordingly.

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

14

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi).

Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

15

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

16

Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17

Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17

Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17

Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17

Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17

Recalling the measure and the polynomial

f1, . . . , fn: Homogeneous non-commutative polynomials of degree d .

f
(j)
i : Polynomial got from fi by setting variables in positions other than j , j + 1 to 1.

µ(f1, . . . fn) = rank

(
spanF

(
n⋃

i=1

{
f
(0)
i , f

(1)
i , . . . , f

(d)
i

}))
.

The hard polynomial

OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

18

Recalling the measure and the polynomial

f1, . . . , fn: Homogeneous non-commutative polynomials of degree d .

f
(j)
i : Polynomial got from fi by setting variables in positions other than j , j + 1 to 1.

µ(f1, . . . fn) = rank

(
spanF

(
n⋃

i=1

{
f
(0)
i , f

(1)
i , . . . , f

(d)
i

}))
.

The hard polynomial

OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

18

Recalling the measure and the polynomial

f1, . . . , fn: Homogeneous non-commutative polynomials of degree d .

f
(j)
i : Polynomial got from fi by setting variables in positions other than j , j + 1 to 1.

µ(f1, . . . fn) = rank

(
spanF

(
n⋃

i=1

{
f
(0)
i , f

(1)
i , . . . , f

(d)
i

}))
.

The hard polynomial

OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

18

Recalling the measure and the polynomial

f1, . . . , fn: Homogeneous non-commutative polynomials of degree d .

f
(j)
i : Polynomial got from fi by setting variables in positions other than j , j + 1 to 1.

µ(f1, . . . fn) = rank

(
spanF

(
n⋃

i=1

{
f
(0)
i , f

(1)
i , . . . , f

(d)
i

}))
.

The hard polynomial

OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

18

Polynomial with a large measure

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

fi = ∂1,xi f =
∑

i<i1<···<i n
2
≤n

xi1xi2 · · · xi n
2

Claim: The following set of size Ω(n2) is linearly independent.{
f
(j)
i : 1 ≤ i ≤ n

2
, 0 < j <

n

2

}
.

19

Polynomial with a large measure

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

fi = ∂1,xi f =
∑

i<i1<···<i n
2
≤n

xi1xi2 · · · xi n
2

Claim: The following set of size Ω(n2) is linearly independent.{
f
(j)
i : 1 ≤ i ≤ n

2
, 0 < j <

n

2

}
.

19

Polynomial with a large measure

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

fi = ∂1,xi f =
∑

i<i1<···<i n
2
≤n

xi1xi2 · · · xi n
2

Claim: The following set of size Ω(n2) is linearly independent.{
f
(j)
i : 1 ≤ i ≤ n

2
, 0 < j <

n

2

}
.

19

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

xkxl

(j , i) coeffxkxl (f
(j)
i)

The matrix is lower triangular with

the diagonal entries being all 1.

This completes the proof of the main result.

20

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

xkxl

(j , i) coeffxkxl (f
(j)
i)

The matrix is lower triangular with

the diagonal entries being all 1.

This completes the proof of the main result.

20

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

xkxl

(j , i) coeffxkxl (f
(j)
i)

The matrix is lower triangular with

the diagonal entries being all 1.

This completes the proof of the main result.

20

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

xkxl

(j , i) coeffxkxl (f
(j)
i)

The matrix is lower triangular with

the diagonal entries being all 1.

This completes the proof of the main result.

20

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

21

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

21

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

21

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)

= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times.

Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

22

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is ”yes”.

23

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is ”yes”.

23

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is ”yes”.

23

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is ”yes”.

23

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds
(
nΩ(

ω
2 +ε)

)
against

non-commutative circuits for constant degree polynomials imply exponential lower bounds.

• We seem to understand very little in the low degree (let alone constant degree) setting.

• All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification

statement) in the non-constant degree setting?

24

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds
(
nΩ(

ω
2 +ε)

)
against

non-commutative circuits for constant degree polynomials imply exponential lower bounds.

• We seem to understand very little in the low degree (let alone constant degree) setting.

• All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification

statement) in the non-constant degree setting?

24

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds
(
nΩ(

ω
2 +ε)

)
against

non-commutative circuits for constant degree polynomials imply exponential lower bounds.

• We seem to understand very little in the low degree (let alone constant degree) setting.

• All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification

statement) in the non-constant degree setting?

24

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds
(
nΩ(

ω
2 +ε)

)
against

non-commutative circuits for constant degree polynomials imply exponential lower bounds.

• We seem to understand very little in the low degree (let alone constant degree) setting.

• All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification

statement) in the non-constant degree setting?

24

Open Questions

Thank you!

25

