Lower Bounds Against Non-Commutative Models of Algebraic Computation

Prerona Chatterjee (joint work with Pavel Hrubeš)
Tel Aviv University
January 24, 2023

The Question

Objects of study: Polynomials over some underlying field.

The Question

Objects of study: Polynomials over some underlying field.

$$
f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]
$$

The Question

Objects of study: Polynomials over some underlying field.

$$
f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]
$$

Question: Can it be computed efficiently using the given model of computation?

The Question

Objects of study: Polynomials over some underlying field.

$$
f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]
$$

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

Polynomials over n variables of degree d.

Algebraic Circuits

What is known?

A lot...

What is known?

> A lot...
> Super-polynomial Lower Bound Against Constant Depth Circuits
> [Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...
[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials $\left\{f_{n, d}(\mathbf{x})\right\}_{n, d}$ such that any constant depth- Δ circuit computing $f_{n, d}(\mathbf{x})$ has must have size $n^{\Omega\left(d^{\frac{1}{4}}\right)}$.

What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...
[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials $\left\{f_{n, d}(\mathbf{x})\right\}_{n, d}$ such that any constant depth- Δ circuit computing $f_{n, d}(\mathbf{x})$ has must have size $n^{\Omega\left(d^{\frac{1}{4} \Delta}\right)}$.

This is especially cool in the algebraic world.
Depth reduction results exist, which show that "good enough" super-polynomial lower bounds against constant depth circuits imply super-polynomial lower bounds against general circuits.

Ok! But what about general circuits?

Unfortunately, very little... :(

Ok! But what about general circuits?

Unfortunately, very little... :(
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

Ok! But what about general circuits?

Unfortunately, very little... :(
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

But do there exist "hard" polynomials?

Ok! But what about general circuits?

Unfortunately, very little... :(
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

But do there exist "hard" polynomials? Yes! In fact a random polynomial is hard!

Ok! But what about general circuits?

Unfortunately, very little... :(
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

But do there exist "hard" polynomials? Yes! In fact a random polynomial is hard!
[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables of degree d require circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$ to compute it.

Ok! But what about general circuits?

Unfortunately, very little... :(
[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

But do there exist "hard" polynomials? Yes! In fact a random polynomial is hard!
[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables of degree d require circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$ to compute it.

Find an explicit polynomial that is hard!

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.
The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.
The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].
[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous non-commutative formulas and ABPs.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.
The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].
[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous non-commutative formulas and ABPs.

No such result known in the general setting.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.
The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].
[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous non-commutative formulas and ABPs.

No such result known in the general setting.
[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials $\left\{f_{n, d}(\mathbf{x})\right\}_{n, d}$ such that any constant depth- Δ homogeneous circuit computing $f_{n, d}(\mathbf{x})$ must have size $n^{\Omega\left(d^{\frac{1}{\Delta}}\right)}$.

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Can we at least do better in the homogeneous case?

Our Main Result

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega\left(n d^{\prime}\right)$ where $d^{\prime}=\min (d, n-d)$.

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing $x_{1} \cdots x_{d}$ must have size $\Omega(d)$.

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing $x_{1} \cdots x_{d}$ must have size $\Omega(d)$.
f : Homogeneous non-commutative polynomial of degree d.

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing $x_{1} \cdots x_{d}$ must have size $\Omega(d)$.
f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing $x_{1} \cdots x_{d}$ must have size $\Omega(d)$.
f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $\quad f=x_{1} \cdots x_{d}$

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing $x_{1} \cdots x_{d}$ must have size $\Omega(d)$.
f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Example: $\quad f=x_{1} \cdots x_{d} \Longrightarrow f^{(0)}=x_{1}, \quad f^{(d)}=x_{d}, \quad f^{(i)}=x_{i} x_{i+1} \quad$ for every $1 \leq i \leq d-1$.

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right)
$$

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.
Proof Sketch: Use induction.

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.
Proof Sketch: Use induction. No change in rank at + gates.

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.
Proof Sketch: Use induction. No change in rank at + gates. Rank can increase by at most 1 at \times gates.

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.
Proof Sketch: Use induction. No change in rank at + gates. Rank can increase by at most 1 at \times gates.

We already saw that for $f=x_{1} \cdots x_{d}, \mu(f)=d+1$.

A simple proof of an obvious fact

$g^{(i)}$: Polynomial got from g by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(g)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Claim: If \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu(\mathcal{C}) \leq s+1$.
Proof Sketch: Use induction. No change in rank at + gates. Rank can increase by at most 1 at \times gates.

We already saw that for $f=x_{1} \cdots x_{d}, \mu(f)=d+1$. Therefore $s \geq d$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

In this case, if \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu_{\ell}(\mathcal{C}) \leq O(s \log d)$.

Using it to prove a "not so obvious" fact

Theorem: There exists an explicit monomial over $\left\{x_{0}, x_{1}\right\}$ of degree d such that any homogeneous non-commutative circuit computing it must have size $\Omega\left(\frac{d}{\log d}\right)$.

The tweak: For a homogeneous non-commutative polynomial f of degree d, define $f^{(i)}$ by setting, in f, variables in positions other than $\{i, i+1, \ldots i+\log d\}$ to 1 .

In this case, if \mathcal{C} is a homogeneous non-commutative circuit of size s, then $\mu_{\ell}(\mathcal{C}) \leq O(s \log d)$.
Therefore all we need is a monomial, f, over $\left\{x_{0}, x_{1}\right\}$ of degree d such that $\mu_{\ell}(f) \geq \Omega(d)$.

Using it to prove a "not so obvious" fact

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Using it to prove a "not so obvious" fact

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.

Using it to prove a "not so obvious" fact

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

Using it to prove a "not so obvious" fact

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

How can non-homogeneity possibly help in computing a monomial?

Using it to prove a "not so obvious" fact

de Bruijn Sequence (of order $\log d$): It is a cyclic sequence in the alphabet $\{0,1\}$ in which every string of length $\log d$, occurs exactly once as a substring.

Fact: There is a length- d de Bruijn sequence of order $\log d$.
Therefore, if B_{d} is the monomial corresponding to this de Bruijn sequence, then $\mu\left(B_{d}\right) \geq \Omega(d)$.

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Note: $f=x_{1} B_{d}\left(x_{0}^{(1)}, x_{1}^{(1)}\right)+\cdots+x_{n} B_{d}\left(x_{0}^{(n)}, x_{1}^{(n)}\right)$ already (almost) has the required property.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Therefore we have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Therefore we have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size $O\left(n \log ^{2} d\right)$.

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Step 2: Write each of $\left\{\partial_{i} f\right\}_{i}$ using $\partial_{v} f^{\prime}$ and $\left\{\partial_{i} f^{\prime}\right\}_{i}$.

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of

Step 1:

Step 2: Write each of $\left\{\partial_{i} f\right\}_{i}$ using $\partial_{v} f^{\prime}$ and $\left\{\partial_{i} f^{\prime}\right\}_{i}$. Add (the ≤ 10 extra) edges accordingly.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.
Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right) . \quad$ Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.
Lemma: If there is a w-homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a \mathbf{w}-homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{X_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{X_{n}} f\right\}$.

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{\chi_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{\chi_{n}} f\right\}$.

Weights: $w_{i}=w t\left(x_{i}\right)$.
Given $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$, define \mathbf{w}-homogeneous.
Lemma: If there is a w-homogeneous circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a \mathbf{w}-homogeneous circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{X_{1}} f, \partial_{\chi_{2}} f, \ldots, \partial_{X_{n}} f\right\}$.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Chain rules can be defined formally as well.

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)
Given a polynomial f and a variable x, f can be uniquely written as

$$
f=x \cdot f_{0}+f_{1}
$$

where no monomial in f_{1} contains x in the first position.
We can then define the formal derivative to be $\partial_{1, x} f:=f_{0}$.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a homogeneous NC circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{1, \chi_{1}} f, \ldots, \partial_{1, \chi_{n}} f\right\}$.

Where are we at?

\mathcal{C} : Homogeneous circuit of size s computing f.

Where are we at?

\mathcal{C} : Homogeneous circuit of size s computing f.
\mathcal{C}^{\prime} : Homogeneous circuit of size $5 s$ that simultaneously compute $\left\{\partial_{1, x_{1}} f, \partial_{1, x_{2}} f, \ldots, \partial_{1, x_{n}} f\right\}$.

Where are we at?

\mathcal{C} : Homogeneous circuit of size s computing f.
\mathcal{C}^{\prime} : Homogeneous circuit of size $5 s$ that simultaneously compute $\left\{\partial_{1, x_{1}} f, \partial_{1, x_{2}} f, \ldots, \partial_{1, x_{n}} f\right\}$.

$$
\mu\left(\mathcal{C}^{\prime}\right) \leq 5 s+1
$$

Where are we at?

\mathcal{C} : Homogeneous circuit of size s computing f.
\mathcal{C}^{\prime} : Homogeneous circuit of size $5 s$ that simultaneously compute $\left\{\partial_{1, x_{1}} f, \partial_{1, x_{2}} f, \ldots, \partial_{1, x_{n}} f\right\}$.

$$
\mu\left(\mathcal{C}^{\prime}\right) \leq 5 s+1
$$

Task: Find n-variate, degree-d f such that if out $\left(\mathcal{C}^{\prime}\right)=\left\{\partial_{1, \chi_{1}} f, \partial_{1, \chi_{2}} f, \ldots, \partial_{1, \chi_{n}} f\right\}$, then

$$
\mu\left(\operatorname{out}\left(\mathcal{C}^{\prime}\right)\right)=\Omega(n d)
$$

Where are we at?

\mathcal{C} : Homogeneous circuit of size s computing f.
\mathcal{C}^{\prime} : Homogeneous circuit of size $5 s$ that simultaneously compute $\left\{\partial_{1, x_{1}} f, \partial_{1, x_{2}} f, \ldots, \partial_{1, x_{n}} f\right\}$.

$$
\mu\left(\mathcal{C}^{\prime}\right) \leq 5 s+1
$$

Task: Find n-variate, degree- $d f$ such that if out $\left(\mathcal{C}^{\prime}\right)=\left\{\partial_{1, x_{1}} f, \partial_{1, \chi_{2}} f, \ldots, \partial_{1, \chi_{n}} f\right\}$, then

$$
\mu\left(\operatorname{out}\left(\mathcal{C}^{\prime}\right)\right)=\Omega(n d)
$$

Use the fact that $\quad \mu\left(\operatorname{out}\left(\mathcal{C}^{\prime}\right)\right) \leq \mu\left(\mathcal{C}^{\prime}\right) \quad$ to complete the proof.

Recalling the measure and the polynomial

f_{1}, \ldots, f_{n} : Homogeneous non-commutative polynomials of degree d.

Recalling the measure and the polynomial

f_{1}, \ldots, f_{n} : Homogeneous non-commutative polynomials of degree d.
$f_{i}^{(j)}$: Polynomial got from f_{i} by setting variables in positions other than $j, j+1$ to 1.

Recalling the measure and the polynomial

f_{1}, \ldots, f_{n} : Homogeneous non-commutative polynomials of degree d.
$f_{i}^{(j)}$: Polynomial got from f_{i} by setting variables in positions other than $j, j+1$ to 1.

$$
\mu\left(f_{1}, \ldots f_{n}\right)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{i=1}^{n}\left\{f_{i}^{(0)}, f_{i}^{(1)}, \ldots, f_{i}^{(d)}\right\}\right)\right)
$$

Recalling the measure and the polynomial

f_{1}, \ldots, f_{n} : Homogeneous non-commutative polynomials of degree d.
$f_{i}^{(j)}$: Polynomial got from f_{i} by setting variables in positions other than $j, j+1$ to 1.

$$
\mu\left(f_{1}, \ldots f_{n}\right)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{i=1}^{n}\left\{f_{i}^{(0)}, f_{i}^{(1)}, \ldots, f_{i}^{(d)}\right\}\right)\right)
$$

The hard polynomial

$$
\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{\frac{i}{2}+1} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{1+\frac{n}{2}}}
$$

Polynomial with a large measure

$$
f=\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{\frac{n}{2}+1} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{1+\frac{n}{2}}}
$$

Polynomial with a large measure

$$
\begin{gathered}
f=\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{\frac{n}{2}+1} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{1+\frac{n}{2}}} \\
f_{i}=\partial_{1, x_{i}} f=\sum_{i<i_{1}<\cdots<i_{\frac{n}{2}} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{\frac{n}{2}}}
\end{gathered}
$$

Polynomial with a large measure

$$
\begin{gathered}
f=\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{\frac{n}{2}+1} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{1+\frac{n}{2}}} \\
f_{i}=\partial_{1, x_{i}} f=\sum_{i<i_{1}<\cdots<i_{\frac{n}{2}} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{\frac{n}{2}}}
\end{gathered}
$$

Claim: The following set of size $\Omega\left(n^{2}\right)$ is linearly independent.

$$
\left\{f_{i}^{(j)}: 1 \leq i \leq \frac{n}{2}, \quad 0<j<\frac{n}{2}\right\} .
$$

Polynomial with a large measure

$$
X_{\frac{n}{2}+1} X_{\frac{n}{2}+2} \cdots x_{2} X_{\frac{n}{2}+2} \cdots \cdots x_{n-2} x_{n-1} \cdots x_{\frac{n}{2}-1} x_{n-1} \quad x_{n-1} x_{n} \cdots x_{\frac{n}{2}} x_{n}
$$

(1, 玍)
$(1,1)$

$$
\left(\frac{n}{2}-2, \frac{n}{2}\right)
$$

$$
\left(\frac{n}{2}-2,1\right)
$$

$$
\left(\frac{n}{2}-1, \frac{n}{2}\right)
$$

$$
\left(\frac{n}{2}-1,1\right)
$$

Polynomial with a large measure

$$
X_{\frac{n}{2}+1} X_{\frac{n}{2}+2} \cdots x_{2} X_{\frac{n}{2}+2} \cdots \cdots x_{n-2} x_{n-1} \cdots x_{\frac{n}{2}-1} x_{n-1} \quad x_{n-1} x_{n} \cdots x_{\frac{n}{2}} x_{n}
$$

(1, $\frac{n}{2}$)
$(1,1)$

$$
\begin{array}{cc}
\vdots & \\
x_{k} x_{l} \\
\vdots & (j, i) \\
\left(\frac{n}{2}-2, \frac{n}{2}\right) & \operatorname{coeff}_{x_{k} \times 1}\left(f_{i}^{(j)}\right) \\
\vdots & \\
\left(\frac{n}{2}-2,1\right) & \\
\left(\frac{n}{2}-1, \frac{n}{2}\right) & \\
\vdots & \\
\left(\frac{n}{2}-1,1\right) &
\end{array}
$$

Polynomial with a large measure

$$
X_{\frac{n}{2}+1} X_{\frac{n}{2}+2} \cdots x_{2} X_{\frac{n}{2}+2} \cdots \cdots x_{n-2} x_{n-1} \cdots x_{\frac{n}{2}-1} x_{n-1} \quad x_{n-1} x_{n} \cdots x_{\frac{n}{2}} x_{n}
$$

(1, $\frac{n}{2}$)
$(1,1)$

$$
\begin{array}{cc}
\vdots & \\
x_{k} x_{l} \\
\vdots & (j, i) \\
\left(\frac{n}{2}-2, \frac{n}{2}\right) & \operatorname{coeff}_{x_{k} \times 1}\left(f_{i}^{(j)}\right) \\
\vdots & \\
\left(\frac{n}{2}-2,1\right) & \\
\left(\frac{n}{2}-1, \frac{n}{2}\right) & \\
\vdots & \\
\left(\frac{n}{2}-1,1\right) &
\end{array}
$$

Polynomial with a large measure

$$
\begin{equation*}
x_{\frac{n}{2}+1} X_{\frac{n}{2}+2} \cdots x_{2} X_{\frac{n}{2}+2} \cdots \cdots x_{n-2} x_{n-1} \cdots x_{\frac{n}{2}-1} x_{n-1} \quad x_{n-1} x_{n} \cdots x_{\frac{n}{2}} x_{n} \tag{n}
\end{equation*}
$$

$(1,1)$

\vdots	$x_{k} x_{l}$	The matrix is lower triangular with the diagonal entries being all 1.
\vdots	(j, i)	$\operatorname{coeff}_{x_{k} x_{l}}\left(f_{i}^{(j)}\right)$

The lower bound is tight

There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.

The lower bound is tight

There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.

How?

The lower bound is tight

There is a homogeneous non-commutative circuit of size $O\left(n^{2}\right)$ that computes $\operatorname{OSym}_{n, \frac{n}{2}+1}(\mathbf{x})$.

How?

Use the following fact recursively.

$$
\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{OSym}_{n-1, d-1}\left(x_{1}, \ldots, x_{n-1}\right) \cdot x_{n}+\operatorname{OSym}_{n-1, d}\left(x_{1}, \ldots, x_{n-1}\right) .
$$

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

$\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{n}\left(1+t x_{i}\right)\right)$

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

$$
\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{n}\left(1+t x_{i}\right)\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right) \cdot \prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right)\right)
$$

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

$$
\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{n}\left(1+t x_{i}\right)\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right) \cdot \prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right)\right)
$$

Think of $\quad f=\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right), g=\prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right) \in \mathbb{F}\langle\mathbf{x}\rangle[t]$.

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

$$
\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{n}\left(1+t x_{i}\right)\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right) \cdot \prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right)\right) .
$$

Think of $\quad f=\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right), g=\prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right) \in \mathbb{F}\langle\mathbf{x}\rangle[t]$.

Do polynomial multiplication recursively $\log n$ times.

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes all the elementary symmetric polynomials simultaneously.

How?

$$
\operatorname{OSym}_{n, d}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{n}\left(1+t x_{i}\right)\right)=\operatorname{coeff}_{t^{d}}\left(\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right) \cdot \prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right)\right) .
$$

Think of $\quad f=\prod_{i=1}^{\frac{n}{2}}\left(1+t x_{i}\right), g=\prod_{i=\frac{n}{2}+1}^{n}\left(1+t x_{i}\right) \in \mathbb{F}\langle\mathbf{x}\rangle[t]$.

Do polynomial multiplication recursively $\log n$ times. Note that polynomial multiplication can be done in time $O(n \log n)$ using FFT.

Open Questions

- Can we show a $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?

Open Questions

- Can we show a $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show a quadratic lower bound for a constant variate polynomial?

Open Questions

- Can we show a $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

$$
f=x_{1} x_{0}^{d-1} f_{1}+x_{0} x_{1} x_{0}^{d-2} f_{2}+\cdots+x_{0}^{d-1} x_{1} f_{d}
$$

can be computed by a non-commutative circuit of size s, then $\left\{f_{1}, \ldots, f_{d}\right\}$ can be simultaneously computed by a non-commutative circuit of size $d+O(s)$.

Open Questions

- Can we show a $\tilde{\Omega}(d)$ lower bound against general non-commutative circuits?
- Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

$$
f=x_{1} x_{0}^{d-1} f_{1}+x_{0} x_{1} x_{0}^{d-2} f_{2}+\cdots+x_{0}^{d-1} x_{1} f_{d}
$$

can be computed by a non-commutative circuit of size s, then $\left\{f_{1}, \ldots, f_{d}\right\}$ can be simultaneously computed by a non-commutative circuit of size $d+O(s)$.

If true, then the answer to the second question is "yes".

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds $\left(n^{\Omega\left(\frac{\omega}{2}+\varepsilon\right)}\right)$ against non-commutative circuits for constant degree polynomials imply exponential lower bounds.

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds $\left(n^{\Omega\left(\frac{\omega}{2}+\varepsilon\right)}\right)$ against non-commutative circuits for constant degree polynomials imply exponential lower bounds.

- We seem to understand very little in the low degree (let alone constant degree) setting.

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds $\left(n^{\Omega\left(\frac{\omega}{2}+\varepsilon\right)}\right)$ against non-commutative circuits for constant degree polynomials imply exponential lower bounds.

- We seem to understand very little in the low degree (let alone constant degree) setting.
- All the advantages of the non-commutative setting seems to be lost if degree is constant.

Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds $\left(n^{\Omega\left(\frac{\omega}{2}+\varepsilon\right)}\right)$ against non-commutative circuits for constant degree polynomials imply exponential lower bounds.

- We seem to understand very little in the low degree (let alone constant degree) setting.
- All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification statement) in the non-constant degree setting?

Open Questions

Thank you!

