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The Question

Objects of study: Polynomials over some underlying field.

f (x) ∈ F[x]

Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits
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Algebraic Circuits

+

× ×

+ + +
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C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).
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What is known?

A lot...

Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], . . . , [Gupta-Kamath-Kayal-Saptharishi], . . . , [Kumar-Saraf], . . .

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {fn,d(x)}n,d such

that any constant depth-∆ circuit computing fn,d(x) has must have size nΩ(d
1
4∆ ).

This is especially cool in the algebraic world.

Depth reduction results exist, which show that ”good enough” super-polynomial lower bounds

against constant depth circuits imply super-polynomial lower bounds against general circuits.
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Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).

But do there exist ”hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubeš-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Ω

(√(
n+d
d

))
to compute it.

Find an explicit polynomial that is hard!
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The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?
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We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous

non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {fn,d(x)}n,d such that

any constant depth-∆ homogeneous circuit computing fn,d(x) must have size nΩ(d
1
∆ ).
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Our Main Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd ′) where d ′ = min(d , n − d).
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A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing x1 · · · xd must have size Ω(d).

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd =⇒ f (0) = x1, f (d) = xd , f (i) = xixi+1 for every 1 ≤ i ≤ d − 1.
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A simple proof of an obvious fact

f : Homogeneous non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .
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A simple proof of an obvious fact

g (i): Polynomial got from g by setting variables in positions other than i , i + 1 to 1.

µ(g) = rank
(
spanF

({
g (0), g (1), . . . , g (d)

}))
.

Claim: If C is a homogeneous non-commutative circuit of size s, then µ(C) ≤ s + 1.

Proof Sketch: Use induction. No change in rank at + gates.

Rank can increase by at most 1 at × gates.

We already saw that for f = x1 · · · xd , µ(f ) = d + 1. Therefore s ≥ d .
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Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f ) ≥ Ω(d).
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Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?
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Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1 ) + · · ·+ xnBd(x

(n)
0 , x

(n)
1 ) already (almost) has the required property.
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Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.
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Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi ). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·
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Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.
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Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17



Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17



Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17



Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17



Where are we at?

C: Homogeneous circuit of size s computing f .

C′: Homogeneous circuit of size 5s that simultaneously compute {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }.

µ(C′) ≤ 5s + 1

Task: Find n-variate, degree-d f such that if out(C′) = {∂1,x1 f , ∂1,x2 f , . . . , ∂1,xn f }, then

µ(out(C′)) = Ω(nd).

Use the fact that µ(out(C′)) ≤ µ(C′) to complete the proof.

17



Recalling the measure and the polynomial

f1, . . . , fn: Homogeneous non-commutative polynomials of degree d .

f
(j)
i : Polynomial got from fi by setting variables in positions other than j , j + 1 to 1.

µ(f1, . . . fn) = rank

(
spanF

(
n⋃

i=1

{
f
(0)
i , f

(1)
i , . . . , f

(d)
i

}))
.

The hard polynomial

OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

18
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Polynomial with a large measure

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

xi1xi2 · · · xi1+ n
2

fi = ∂1,xi f =
∑

i<i1<···<i n
2
≤n

xi1xi2 · · · xi n
2

Claim: The following set of size Ω(n2) is linearly independent.{
f
(j)
i : 1 ≤ i ≤ n

2
, 0 < j <

n

2

}
.

19
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Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2 )
...

(1, 1)
...
...

( n2 − 2, n
2 )

...

( n2 − 2, 1)

( n2 − 1, n
2 )

...

( n2 − 1, 1)

xkxl

(j , i) coeffxkxl (f
(j)
i )

The matrix is lower triangular with

the diagonal entries being all 1.

This completes the proof of the main result.
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The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

21
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Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi )
)
= coefftd

(∏ n
2

i=1(1 + txi ) ·
∏n

i= n
2+1(1 + txi )

)
.

Think of f =
∏ n

2

i=1(1 + txi ), g =
∏n

i= n
2+1(1 + txi ) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.
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Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is ”yes”.
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Hardness Amplification

[Carmossino-Impagliazzo-Lovett-Mihajlin]: Super-linear lower bounds
(
nΩ(

ω
2 +ε)

)
against

non-commutative circuits for constant degree polynomials imply exponential lower bounds.

• We seem to understand very little in the low degree (let alone constant degree) setting.

• All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification

statement) in the non-constant degree setting?
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Open Questions

Thank you!
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