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Objects of Study
Polynomials over n variables of degree d.

Central Question: Find explicit polynomials that
cannot be computed by circuits of size poly(n,d).
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Super-polynomial Lower Bound Against Constant Depth Circuits
[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {f, 4(x)}, , such

1
that any constant depth-A circuit computing f, 4(x) has must have size n(?**)

This is especially cool in the algebraic world.

Depth reduction results exist, which show that "good enough” super-polynomial lower bounds
against constant depth circuits imply super-polynomial lower bounds against general circuits.
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Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

But do there exist "hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubes-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Q ( ("Zd)> to compute it.

Find an explicit polynomial that is hard!
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Can we do something better in this setting?
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[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous
non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {f, 4(x)}, , such that
).

D=

any constant depth-A homogeneous circuit computing f, 4(x) must have size e
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Our Main Result

The best lower bound against NC circuits continues to be Q(nlog d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d = Z Xjy * o Xiy

1<ip<---<ig<n

has size Q(nd") where d’ = min(d, n — d).
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A simple proof of an obvious fact

f: Homogeneous non-commutative polynomial of degree d.
f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

w(f) = rank (span]F ({f(o), FO f(d)})> )

C: Homogeneous non-commutative circuit.

p(C) = rank | spang U{g(o’,g(”,-.-,g(d)}
gec
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A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>) )

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.
Proof Sketch: Use induction.  No change in rank at + gates.
Rank can increase by at most 1 at x gates.

We already saw that for f = xy -+ x4, u(f) =d + 1. Therefore s > d.

10
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Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

homogeneous non-commutative circuit computing it must have size € (@ .

The tweak: For a homogeneous non-commutative polynomial f of degree d, define

£(0) by setting, in f, variables in positions other than {i,i+1,...i+ logd} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then py(C) < O(slogd).

Therefore all we need is a monomial, f, over {xo,x1} of degree d such that p,(f) > Q(d).

11
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Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.

Therefore, if By is the monomial corresponding to this de Bruijn sequence, then u(Bqy) > Q(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?
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e Suppose there is an n-variate, degree-d polynomial f such that

w({0x f, 0, ..., 05 f}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x Bd(xél)7xil)) qFoooqF Xan(Xé"), Xl(")) already (almost) has the required property.
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Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

W({O Fr D ., O F1) > Q(nd).

Therefore we have an Q(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(nlog? d).

13



Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.
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Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

Step 1:

PR

ayf o1f  ofh - Anf’

|

O—e
S—e
®—e

&

Step 2: Write each of {9;f}; using 0,f" and {0;f'},. Add (the < 10 extra) edges accordingly.
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Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
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Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;). Given w = (w, ..., w,), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f € F[x], then there is a
w-homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x,}.

ayf o1f!  ofh - Onf’

L

—e
—e
®—e

C) < 0
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Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.
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Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

We can then define the formal derivative to be 0 f = f;.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f € F[x], then there is a
homogeneous NC circuit of size at most 5s that simultaneously compute {01 x,f, ..., 01 x,f }.
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Where are we at?

C: Homogeneous circuit of size s computing f.

C’: Homogeneous circuit of size 5s that simultaneously compute {015 f, 01 50f, ..., 01xf}.
u(C') <bBs+1

Task: Find n-variate, degree-d f such that if out(C') = {01 5, f,01.5f,..., 01}, then

p(out(C")) = Q(nd).

Use the fact that  p(out(C’)) < u(C')  to complete the proof.

17
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Recalling the measure and the polynomial

fi,...,f,: Homogeneous non-commutative polynomials of degree d.

f,-(j): Polynomial got from f; by setting variables in positions other than j, j + 1 to 1.

w(fy,...f,) =rank (spanF (U {fi(o), fi(l),...,f,-(d)}>> .

=1

The hard polynomial

OSymm%H(x) = E XipXip =+ Xiy, g

1§i1<"'<i%+1gn
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Polynomial with a large measure
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Polynomial with a large measure

f = OSymn’g_'_l(x) = Z Xiy Xiy =+ X,‘lJrg

1< <o <ig 1 <n

fi=Oif= Y. XXy

i<ip <o <i

IN
3

n
2

Claim: The following set of size Q(n?) is linearly independent.
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Xg+lxg+2 e X2X§+2 ...... Xp—2Xn—1 *°° X%—lxn—l Xp—1Xn *°* Xan
(1,35)
(1,1)
: Xk X|

(22 Go1)  coefhun (F7)
(g - 271)
(g_ 7%)

(g - 171)
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Polynomial with a large measure

Xg+lxg+2 e X2X§+2 ...... Xp—2Xn—1 *°° X%—lxn—l Xp—1Xn *°* Xan
(L, 3)
(1,1)
: A The matrix is lower triangular with
: _ the diagonal entries being all 1.
(221 Gr) | coeffs (£7)
(g - 2a 1)
(g 5 %)
(g - 17 1)
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Polynomial with a large measure

X§+1X§+2 X2X§+2 cee see Xp_oXp—1 X%—lxn—l Xp—1Xn *°* Xan

Xk X o . .
kA The matrix is lower triangular with

_ the diagonal entries being all 1.
Uri)  |coeff ()

This completes the proof of the main result.
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The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).
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The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).
How?

Use the following fact recursively.

OSym,, 4(x1,- -, %) = OSym,,_q y_1(x1, .-+, Xn—1) - Xp + OSym,,_; 4(x1,. .., Xa—1)-
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Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.
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Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?
OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

Think of f =TI (1 + 00), 8 = [Ty (1 + ) € F(x) [2].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can
be done in time O(nlog n) using FFT.
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e Can we show a {(d) lower bound against general non-commutative circuits?
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Open Questions

e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size d + O(s).
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e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is "yes".
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Hardness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.
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Hardness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.

e We seem to understand very little in the low degree (let alone constant degree) setting.

e All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification
statement) in the non-constant degree setting?
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Open Questions

Thank you!
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