Lower Bounds Against Non-Commutative Models of

Algebraic Computation

Prerona Chatterjee (joint work with Pavel Hrube3)
Tel Aviv University

January 24, 2023

Objects of study: Polynomials over some underlying field.

Objects of study: Polynomials over some underlying field.

f(x) € F[x]

Objects of study: Polynomials over some underlying field.

f(x) € F[x]

Question: Can it be computed efficiently using the given model of computation?

Objects of study: Polynomials over some underlying field.

f(x) € F[x]
Question: Can it be computed efficiently using the given model of computation?

Model of interest today: Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

@ a1(x1 + x2) (x5 +) + (x1 + x2)(a2x2 + @)

Algebraic Circuits

@ a1(x1 + x2) (x5 +) + (x1 + x2)(a2x2 + @)

Objects of Study
Polynomials over n variables of degree d.

Algebraic Circuits

@ a1(x1 + x2) (x5 +) + (x1 + x2)(a2x2 + @)

Objects of Study
Polynomials over n variables of degree d.

Central Question: Find explicit polynomials that
cannot be computed by circuits of size poly(n,d).

A lot...

A lot...
Super-polynomial Lower Bound Against Constant Depth Circuits

[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...

A lot...
Super-polynomial Lower Bound Against Constant Depth Circuits
[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {f, 4(x)}, , such

1
that any constant depth-A circuit computing f, 4(x) has must have size n(?**)

A lot...
Super-polynomial Lower Bound Against Constant Depth Circuits
[Nisan-Wigderson], ..., [Gupta-Kamath-Kayal-Saptharishi], ..., [Kumar-Saraf], ...

[Limaye-Srinivasan-Tavenas]: There is an explicit family of polynomials {f, 4(x)}, , such

1
that any constant depth-A circuit computing f, 4(x) has must have size n(?**)

This is especially cool in the algebraic world.

Depth reduction results exist, which show that "good enough” super-polynomial lower bounds
against constant depth circuits imply super-polynomial lower bounds against general circuits.

Ok! But what about general circuits?

Unfortunately, very little... :(

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

But do there exist "hard” polynomials?

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

But do there exist "hard” polynomials? Yes! In fact a random polynomial is hard!

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

But do there exist "hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubes-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Q (("Zd)> to compute it.

Ok! But what about general circuits?

Unfortunately, very little... :(

[Baur-Strassen]: Any algebraic circuit computing >_7_; x? has size at least Q(nlog d).

But do there exist "hard” polynomials? Yes! In fact a random polynomial is hard!

[Hrubes-Yehudayoff]: Over any field, most zero-one coefficient polynomials over n variables

of degree d require circuits of size Q (("Zd)> to compute it.

Find an explicit polynomial that is hard!

The Non-Commutative Setting

fOGy)=(x+y) X (x+y) =X +xy+yx+y> #x° +2xy + y°

The Non-Commutative Setting

fOGy)=(x+y) X (x+y) =X +xy+yx+y> #x° +2xy + y°

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

The Non-Commutative Setting

Fx,y) = (x+y) X (x +y) =x" +xy +yx+y* #x° +2xy +
Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous
non-commutative formulas and ABPs.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous
non-commutative formulas and ABPs.

No such result known in the general setting.

We should be able to...

[Nisan]: Exponential lower bound against non-commutative ABPs and formulas.

The best known lower bound against general ABPs, formulas is quadratic [C-Kumar-She-Volk].

[Tavenas-Limaye-Srinivasan]: Super-polynomial separation between homogeneous
non-commutative formulas and ABPs.

No such result known in the general setting.

[Tavenas-Limaye-Srinivisan]: There is an explicit family of polynomials {f, 4(x)}, , such that
).

D=

any constant depth-A homogeneous circuit computing f, 4(x) must have size e

Our Main Result

The best lower bound against NC circuits continues to be Q(nlog d).

Our Main Result

The best lower bound against NC circuits continues to be Q(nlog d).

Can we at least do better in the homogeneous case?

Our Main Result

The best lower bound against NC circuits continues to be Q(nlog d).

Can we at least do better in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d = Z Xjy * o Xiy

1<ip<---<ig<n

has size Q(nd") where d’ = min(d, n — d).

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing xj - - - x4 must have size Q(d).

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing xj - - - x4 must have size Q(d).

f: Homogeneous non-commutative polynomial of degree d.

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing xj - - - x4 must have size Q(d).

f: Homogeneous non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing xj - - - x4 must have size Q(d).

f: Homogeneous non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f=xy - Xxyq

A simple proof of an obvious fact

Obvious Fact: Any homogeneous circuit computing xj - - - x4 must have size Q(d).

f: Homogeneous non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f=x1- X4y = FO) = X1, fFld) — Xd, F() = Xixjy1 forevery1 <i<d-1.

A simple proof of an obvious fact

f: Homogeneous non-commutative polynomial of degree d.
f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

A simple proof of an obvious fact

f: Homogeneous non-commutative polynomial of degree d.
f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

w(f) = rank (span]F ({f(o), FO f(d)})>)

A simple proof of an obvious fact

f: Homogeneous non-commutative polynomial of degree d.
f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

w(f) = rank (span]F ({f(o), FO f(d)})>)

C: Homogeneous non-commutative circuit.

p(C) = rank | spang U{g(o’,g(”,-.-,g(d)}
gec

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.

Proof Sketch: Use induction.

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.

Proof Sketch: Use induction. No change in rank at + gates.

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.

Proof Sketch: Use induction. No change in rank at + gates.
Rank can increase by at most 1 at x gates.

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.
Proof Sketch: Use induction. No change in rank at + gates.
Rank can increase by at most 1 at x gates.

We already saw that for f = xy -+ x4, u(f) =d + 1.

10

A simple proof of an obvious fact

g): Polynomial got from g by setting variables in positions other than i, i + 1 to 1.

u(g) = rank (spanF ({g(o),g(l), oo ,g(d)}>))

Claim: If C is a homogeneous non-commutative circuit of size s, then p(C) < s+ 1.
Proof Sketch: Use induction. No change in rank at + gates.
Rank can increase by at most 1 at x gates.

We already saw that for f = xy -+ x4, u(f) =d + 1. Therefore s > d.

10

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

d

homogeneous non-commutative circuit computing it must have size € ogd)

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

d

homogeneous non-commutative circuit computing it must have size € ogd)

The tweak: For a homogeneous non-commutative polynomial f of degree d, define

£(0) by setting, in f, variables in positions other than {i,i+1,...i+ logd} to 1.

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

d

homogeneous non-commutative circuit computing it must have size € ogd)

The tweak: For a homogeneous non-commutative polynomial f of degree d, define

£(0) by setting, in f, variables in positions other than {i,i+1,...i+ logd} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then py(C) < O(slogd).

11

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

homogeneous non-commutative circuit computing it must have size € (@ .

The tweak: For a homogeneous non-commutative polynomial f of degree d, define

£(0) by setting, in f, variables in positions other than {i,i+1,...i+ logd} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then py(C) < O(slogd).

Therefore all we need is a monomial, f, over {xo,x1} of degree d such that p,(f) > Q(d).

11

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.

Therefore, if By is the monomial corresponding to this de Bruijn sequence, then u(Bqy) > Q(d).

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.

Therefore, if By is the monomial corresponding to this de Bruijn sequence, then u(Bqy) > Q(d).

How can non-homogeneity possibly help in computing a monomial?

12

Using it to prove a “not so obvious” fact

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.

Therefore, if By is the monomial corresponding to this de Bruijn sequence, then u(Bqy) > Q(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

12

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, O, f, ..., 0, f}.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, O, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, O, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

w({0x f, 0, ..., 05 f}) > Q(nd).

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, O, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

w({0x f, 0, ..., 05 f}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, O, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

w({0x f, 0, ..., 05 f}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x Bd(xél)7xil)) qFoooqF Xan(Xé"), Xl(")) already (almost) has the required property.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

({0 Fr D s ., O F1) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

W({O Fr D ., O F1) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

W({O Fr D ., O F1) > Q(nd).

Therefore we have an Q(nd) lower bound against homogeneous non-commutative circuits.

13

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

W({O Fr D ., O F1) > Q(nd).

Therefore we have an Q(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(nlog? d).

13

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

Step 1:

PN

& @

ayf o1f ofh - anf’!

|

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

Step 1:
oy oyf apft - apf’
||
A ® 0 0
: 066
& @

Step 2: Write each of {0;f}; using 0,f" and {0;f"},.

14

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

Step 1:

PR

ayf o1f ofh - Anf’

|

O—e
S—e
®—e

&

Step 2: Write each of {9;f}; using 0,f" and {0;f'},. Add (the < 10 extra) edges accordingly.

14

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;).

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;). Given w = (w, ..., w,), define w-homogeneous.

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;). Given w = (w, ..., w,), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f € F[x], then there is a
w-homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x,}.

15

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;). Given w = (w, ..., w,), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f € F[x], then there is a
w-homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x,}.

ayf o1f! ofh - Onf’

L

—e
—e
®—e

C) < 0

L 15

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

We can then define the formal derivative to be 0 f = f;.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

We can then define the formal derivative to be 0 f = f;.

Chain rules can be defined formally as well.

16

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

We can then define the formal derivative to be 0 f = f;.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f € F[x], then there is a
homogeneous NC circuit of size at most 5s that simultaneously compute {01 x,f, ..., 01 x,f }.

16

Where are we at?

C: Homogeneous circuit of size s computing f.

17

Where are we at?

C: Homogeneous circuit of size s computing f.

C’: Homogeneous circuit of size 5s that simultaneously compute {015 f, 01 50f, ..., 01xf}.

17

Where are we at?

C: Homogeneous circuit of size s computing f.

C’: Homogeneous circuit of size 5s that simultaneously compute {015 f, 01 50f, ..., 01xf}.

u(C') <bBs+1

17

Where are we at?

C: Homogeneous circuit of size s computing f.

C’: Homogeneous circuit of size 5s that simultaneously compute {015 f, 01 50f, ..., 01xf}.
u(C') <bBs+1

Task: Find n-variate, degree-d f such that if out(C') = {01 5, f,01.5f,..., 01}, then

p(out(C")) = Q(nd).

17

Where are we at?

C: Homogeneous circuit of size s computing f.

C’: Homogeneous circuit of size 5s that simultaneously compute {015 f, 01 50f, ..., 01xf}.
u(C') <bBs+1

Task: Find n-variate, degree-d f such that if out(C') = {01 5, f,01.5f,..., 01}, then

p(out(C")) = Q(nd).

Use the fact that p(out(C’)) < u(C') to complete the proof.

17

Recalling the measure and the polynomial

fi,...,f,: Homogeneous non-commutative polynomials of degree d.

18

Recalling the measure and the polynomial

fi,...,f,: Homogeneous non-commutative polynomials of degree d.

£0)

i

: Polynomial got from f; by setting variables in positions other than j, j + 1 to 1.

18

Recalling the measure and the polynomial

fi,...,f,: Homogeneous non-commutative polynomials of degree d.

£0)

i

: Polynomial got from f; by setting variables in positions other than j, j + 1 to 1.

w(fy,...f,) =rank (spanF (U {fi(o), fi(l),...,f,-(d)}>> .

18

Recalling the measure and the polynomial

fi,...,f,: Homogeneous non-commutative polynomials of degree d.

f,-(j): Polynomial got from f; by setting variables in positions other than j, j + 1 to 1.

w(fy,...f,) =rank (spanF (U {fi(o), fi(l),...,f,-(d)}>> .

=1

The hard polynomial

OSymm%H(x) = E XipXip =+ Xiy, g

1§i1<"'<i%+1gn

18

Polynomial with a large measure

f = OSymn’g_'_l(x) = Z Xiy Xiy =+ X,‘lJrg

1< <o <ig 1 <n

19

Polynomial with a large measure

f = OSymn’g_'_l(x) = Z Xiy Xiy =+ X,‘lJrg

1< <o <ig 1 <n

fi=Oif= Y. XXy

i<ip <o <i

19

Polynomial with a large measure

f = OSymn’g_'_l(x) = Z Xiy Xiy =+ X,‘lJrg

1< <o <ig 1 <n

fi=Oif= Y. XXy

i<ip <o <i

IN
3

n
2

Claim: The following set of size Q(n?) is linearly independent.

19

Polynomial with a large measure

X§+1X§+2 X2X§+2 cee see Xp_oXp—1 X%—lxn—l Xp—1Xn *°* Xan

20

Polynomial with a large measure

Xg+lxg+2 e X2X§+2 Xp—2Xn—1 *°° X%—lxn—l Xp—1Xn *°* Xan
(1,35)
(1,1)
: Xk X|

(22 Go1) coefhun (F7)
(g - 271)
(g_ 7%)

(g - 171)

20

Polynomial with a large measure

Xg+lxg+2 e X2X§+2 Xp—2Xn—1 *°° X%—lxn—l Xp—1Xn *°* Xan
(L, 3)
(1,1)
: A The matrix is lower triangular with
: _ the diagonal entries being all 1.
(221 Gr) | coeffs (£7)
(g - 2a 1)
(g 5 %)
(g - 17 1)

20

Polynomial with a large measure

X§+1X§+2 X2X§+2 cee see Xp_oXp—1 X%—lxn—l Xp—1Xn *°* Xan

Xk X o . .
kA The matrix is lower triangular with

_ the diagonal entries being all 1.
Uri) |coeff ()

This completes the proof of the main result.

20

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).

21

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).

How?

21

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).
How?

Use the following fact recursively.

OSym,, 4(x1,- -, %) = OSym,,_q y_1(x1, .-+, Xn—1) - Xp + OSym,,_; 4(x1,. .., Xa—1)-

21

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?

OSym,, 4(x1, - .., xn) = coeffra (TT7_1 (1 + txi))

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?

OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?
OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

Think of f =TI (1 + 00), 8 = [Ty (1 +) € F(x) [2].

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?
OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

Think of f =TI (1 + 00), 8 = [Ty (1 +) € F(x) [2].

Do polynomial multiplication recursively log n times.

22

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?
OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

Think of f =TI (1 + 00), 8 = [Ty (1 +) € F(x) [2].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can
be done in time O(nlog n) using FFT.

22

e Can we show a {(d) lower bound against general non-commutative circuits?

23

e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

23

Open Questions

e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size d + O(s).

23

e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size d + O(s).

If true, then the answer to the second question is "yes".

23

Hardness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.

24

ness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.

e We seem to understand very little in the low degree (let alone constant degree) setting.

24

Hardness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.

e We seem to understand very little in the low degree (let alone constant degree) setting.

e All the advantages of the non-commutative setting seems to be lost if degree is constant.

24

Hardness Amplification

[Carmossino-lmpagliazzo-Lovett-Mihajlin]: Super-linear lower bounds (nQ(%J’E)) against
non-commutative circuits for constant degree polynomials imply exponential lower bounds.

e We seem to understand very little in the low degree (let alone constant degree) setting.

e All the advantages of the non-commutative setting seems to be lost if degree is constant.

Question: Can we show a similar statement (or any non-trivial hardness amplification
statement) in the non-constant degree setting?

24

Open Questions

Thank you!

25

