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Spaceof bivariate polynomials over.

fi = x2 fz = y f3 = my

are algebraically dependent since fify-fz2 = 0.
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,

how
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independent ?

Over fields of characteristic zero.

JacobianCriterion : X
, Xz -

- Xj - Xn

fifl . ... fr EF[X, , . .

., Xn] +

are algebraically fi = J(E)
!

independent if T (E) fre 2
⑦

has full rank.
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Testing Algebraic Independence

Over characteristic
zuo fields

, AD(#) -> coRP

due to Jacobian Criterion
.

What about fields of positive characteristic ?

- Person's Bound on the digree of the annihilators

of f.. ... fr> AD(#q) E PSPACE

- Mittmann. Saxena
,

Scheiblechner (2014)

showed that AD(#q) ENP#P
- Guo . Saxena

,
Sinhababu (2019) showed that

AD (#q) E AM & co-AM.
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Testing Algebraic Independence in AM 1 co-AM.

Gre Observation : Let fl ..., fr EF[x .....
xn]·

For any (b ..... br) -Fg let No be the number of
solutions to the system of equations [fi = bi3 .

① For a random point F
- if fr ..., fu are independent ,

then Necas is small.

- if f , .... fo are dependent ,
then Nea is large,

② For a random point 5- Fa
- if f .., fu are independent ,

then No = 0 for most b.

- if f , .... be are dependent ,
then No, 1 for many b.
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+1

Y has min-entropy >n log (t)
(x - y) > (Py(s) - P(s)) 1Supp(x))1d" #"

-1

S = Supp(y) < Supp(X) .

= Pr(s) = 1 - Pu(5)
where 5 = Supp(y) eSupp(X).

P(5) - 151 . ( due to the min-entropy condition.

-d IEM(-11c&
using the assumption on IF1 .

S
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=

· X = f(n) where Un : Uniform distribution over th

# #[z , y , . . . .. Yn] E There is a distribution 7 with
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.

En . An

S = StFV : Ailz
, flal) + 0 Vic[n]] .

Y = f(Us)
.

Claim : · min-entropy of y > n log ()-log ( )
-

·(x-y/pun.
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