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Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.
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Can the given polynomial be computed efficiently?
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e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VNP: Explicit Polynomials
VP
Are the inclusions tight? VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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Some Natural Restrictions

Homogenity & n Multilinearity
o sgn(o .

Every monomial is of Dety(x) = Z (—1)* HX"G(") No variable occurs more than

the same degree. T = once in any monomial.

Homogeneous Circuits Muiltilinear Circuits
Every gate computes a homogeneous Every gate computes a multilinear polynomial.
polynomial.
Constant Depth Circuits
Non-Commutative Circuits Length of the longest root-to-leaf path is a

The multiplication gates are non-commutative. constant independent of n.
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The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d [Limaye-Srinivasan-Tavenas]
polynomials can be converted into depth-4 IMM,, 1og n(x) can not be computed by
circuits of size sO(Vd), constant depth circuits of size poly(n).
[Gupta-Kamath-Kayal-Saptharishi] The lower bound is (V) for depth-3 and
Size s circuits computing n-variate degree d depth-4, proving that the depth reduction
polynomials can be converted into depth-3 statements are tight.

circuits of size sO(Vd),
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Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by
efficient multilinear ABPs but not by any efficient multilinear formula.

Non-Commutative Setting

[Nisan]: There is an explicit non-commutative polynomial that is computable by efficient
circuits but not by any efficient ABP.

[Limaye-Srinivasan-Tavenas]: There is an explicit non-commutative polynomial that is
computable by homogeneous ABPs but not by any efficient homogeneous formula.

[Cha]: There is a tight separation between ABPs and some syntactically structured formulas.
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General Circuits

[Baur-Strassen]: Any algebraic circuit computing Y7, x? requires Q(nlog d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing >, x¢ requires Q(nd) vertices.

General ABPs
[C-Kumar-She-Volk]: Any ABP computing >_"_; x¢ requires Q(nd) vertices.
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Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n*-variate Det,(x) requires Q(n%) wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an n-variate multilinear polynomial
such that any formula computing it requires Q(n?/log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESym,,  ;,(x) requires Q(n?) vertices, where

ESYM,, 4(x) = Z X - X

i <---<ig€[n]
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Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

P P(f)=0 Set of all
polynomials

Explicit polynomials

[C-Kumar-Ramya-Saptharishi-Tengse]:
Let VP’ be the polynomials in VP that
additionally have {—1,0,1} coefficients.

Then, VP’ has VP natural proofs.

[K-R-S-T]: Suppose the Permanent polynomial is 2" _hard for constant € > 0. In this case, if

VP has natural proofs, then there is also a natural proof P that has explicit non-roots.

10
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There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions | Have Been Thinking About...

e Super-quadratic lower bound against homogeneous formulas?
e Super-quadratic lower bounds against (homogeneous) multilinear ABPs?
e Separation between ABPs and formulas in the non-commutative setting?

e Does VP have natural proofs? Maybe under some natural assumptions?

11
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Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}
e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) = >, wt(p)

Question: Is there an explicit polynomial that can not be computed by efficient ABPs?

13
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Lower Bounds Against ABPs

Previous Work
[Baur-Strassen]: Any ABP computing Y7, x? requires Q(nlog d) wires.

[Kumar]: Any ABP with (d + 1) layers computing >_7_, x¢ has Q(nd) vertices.

Our Result

[C-Kumar-She-Volk]: Any ABP computing Y7 , x? requires Q(nd) vertices.

14
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The Homogeneous Case: Proof Overview

Pﬂ,d(x) = Z?:l Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

ty tx ty
For R= (a;-hj+Bi-g +ai-Bi), Pra= (Zg,-’ : h;) +R = P,g—R=) g/ h.
i=1

i=1 i=1

Note: deg(g/),deg(h!) < [d — 1] for every i € [d — 1]. Thus deg(R) < d — 1.
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—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

R=0 = 5:{d-x1d_1,...,d-xg_1}
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The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

R=0 = S={d-x'....dx"'} = dm(l)=0
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i€[n]
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The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {ZJ (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)
deg(R)<d—-1 = dim(V)=0

dim(V)>n—-2ty = n—-2t, <0 = t, >n/2
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Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f—Zx +ZA x) + 6(x)

where A;(0) = 0 = B;(0) and deg(d(x)) < d,
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Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

= Zx - Z Ai( )+ 5(x)
where Ai(0) =0 = B;(0) and deg(d(x)) < d, has at least

((n/2) —r)-(d—1)  vertices.



Proof Overview Of Our Result (contd.)
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Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,
e the size does not increase,

e the polynomial being computed continues to look like

n re+1
fopr = led + ZA,‘(X) - Bi(x) + 6p41(x)
i=1 i=1
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Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,
e the size does not increase,
e the polynomial being computed continues to look like

re+1

fz+1 ZX +ZA +64+1( )

where  A;(0)=0=B;(0) and deg(d,1(x)) < d,

e number of error terms collected is small.
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The Induction Step

£th step
Want to construct: A, ;
Given: A,
- Size = sp11 < s
Size = s Number of | ) <2d
Number of layers = d, umber ot layers = de+1 = 30

Number of error terms = ry Number of error terms = rpq
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The Induction Step

{-th step

. Want to construct: A, ;
Given: A,

. Size = 541 < 5
Size = 54

2
Number of layers = d Number of layers = dp1 < §dz

Se
Number of error terms = r; Number of error terms = rpo 1 < rp+ ——= /3
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The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
) Size = sp11 < ¢
Size = s 2
= < Z

Number of layers = dj Number of layers = dpy1 < 3d[
s

Number of error terms = ry Number of error terms = rpy 1 < rp + d—j?)
0

Number of Steps: ©(log n)
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The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
) Size = sp11 < ¢
Size = s 2
Number of layers = d Number of layers = dp1 < §dz
Sy

Number of error terms = r; Number of error terms = rpo 1 < rp+ ——= /3

Number of Steps: ©(log n) Number of Error Terms: ¢ - n where € can be chosen.
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The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
. Size = 541 < 5
Size = s 2
Number of layers = d Number of layers = dp1 < §dz
5
Number of error terms = ry Number of error terms = rpy 1 < rp + d—j?)
4
Number of Steps: ©(log n) Number of Error Terms: ¢ - n where € can be chosen.

The Lower Bound: ((n/2) —¢-n)-(d —1)
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Proof of the Induction Step
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Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g ) a2
QO

Api=B8-h+a-b=A—f-f+a-p
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Proof of the Induction Step

A =hf-h
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Appi=0-fi+a-h
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Proof of the Induction Step

A =hf-h

O

Appi=0-fi+a-h

OO e E
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Proof of the Induction Step

Ac="H-h

Appi=0-fi+a-h
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Algebraic Formulas And Lower Bounds Against Them

X2 4+3x%y +3x2 +yd = (x +y)°®

(x+y) (x+y) (x+y)
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Algebraic Formulas And Lower Bounds Against Them

X2 4+3x%y +3x2 +yd = (x +y)°®

(x+y) (x+y) (x+vy)

[Kalorkoti]: Any formula computing Det,x,(x) has
atleast Q(n3) wires.

[Shpilka, Yehudayoff] (using Kalorkoti's method):
There is a multilinear polynomial such that any formula
computing it requires Q(n?/log n) wires.

Our Result: Any formula computing ESYM,, 9.1,(x) has
atleast Q(n?) vertices, where

0.1n

ESYMpo1n(x) = 3 IR

ih1<--<ip.1n€[n] Jj=1

21



Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, Zle x!y; requires Q(n?) wires.
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22



Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

22



Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.

22



Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.

e Multilinearisation of the SY polynomial gives an (n?/ log n) lower bound.

22



Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.
e Multilinearisation of the SY polynomial gives an (n?/ log n) lower bound.

e Kalorkoti's method can not give a better bound against multilinear polynomials.
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Conclusion

Proving Lower Bounds is Cool!

You should do it too... :)
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Conclusion

Proving Lower Bounds is Cool!

You should do it too... :)

Thank You !

Webpage: preronac.bitbucket.io Email: prerona.ch@gmail.com
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