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Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.
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Can the given polynomial be computed efficiently?
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Algebraic Models of Computation
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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Some Natural Restrictions

Homogenity

Every monomial is of

the same degree.

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

xiσ(i)

Multilinearity

No variable occurs more than

once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous

polynomial.

Non-Commutative Circuits

The multiplication gates are non-commutative.

Multilinear Circuits

Every gate computes a multilinear polynomial.

Constant Depth Circuits

Length of the longest root-to-leaf path is a

constant independent of n.
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The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d

polynomials can be converted into depth-4

circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d

polynomials can be converted into depth-3

circuits of size sO(
√
d).

[Limaye-Srinivasan-Tavenas]

IMMn,log n(x) can not be computed by

constant depth circuits of size poly(n).

The lower bound is nΩ(
√
d) for depth-3 and

depth-4, proving that the depth reduction

statements are tight.
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Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by

efficient multilinear ABPs but not by any efficient multilinear formula.

Non-Commutative Setting

[Nisan]: There is an explicit non-commutative polynomial that is computable by efficient

circuits but not by any efficient ABP.

[Limaye-Srinivasan-Tavenas]: There is an explicit non-commutative polynomial that is

computable by homogeneous ABPs but not by any efficient homogeneous formula.

[Cha]: There is a tight separation between ABPs and some syntactically structured formulas.

7
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Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.
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Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESymn,0.1n(x) requires Ω(n
2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

9
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Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

Set of all

polynomials

C

Explicit polynomials

P : P(f̄ ) = 0

[C-Kumar-Ramya-Saptharishi-Tengse]:

Let VP′ be the polynomials in VP that

additionally have {−1, 0, 1} coefficients.

Then, VP′ has VP natural proofs.

[K-R-S-T]: Suppose the Permanent polynomial is 2n
ε

-hard for constant ε > 0. In this case, if

VP has natural proofs, then there is also a natural proof P that has explicit non-roots.
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There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions I Have Been Thinking About...

• Super-quadratic lower bound against homogeneous formulas?

• Super-quadratic lower bounds against (homogeneous) multilinear ABPs?

• Separation between ABPs and formulas in the non-commutative setting?

• Does VP have natural proofs? Maybe under some natural assumptions?
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Is there an explicit polynomial that can not be computed by efficient ABPs?
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Lower Bounds Against ABPs

Previous Work

[Baur-Strassen]: Any ABP computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

[Kumar]: Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i has Ω(nd) vertices.

Our Result

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.
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The Homogeneous Case: Proof Overview

s t

Pn,d(x) =
∑n

i=1 x
d
i .

Pn,d =

tk∑
i=1

[s, vi ] · [vi , t] =
tk∑
i=1

gi · hi =
tk∑
i=1

(g ′
i + αi ) · (h′i + βi )

For R =

tk∑
i=1

(αi · h′i + βi · g ′
i +αi · βi ), Pn,d =

(
tk∑
i=1

g ′
i · h′i

)
+R =⇒ Pn,d − R =

tk∑
i=1

g ′
i · h′i .

Note: deg(g ′
i ), deg(h

′
i ) ≤ [d − 1] for every i ∈ [d − 1]. Thus deg(R) ≤ d − 1.
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The Homogeneous Case: Proof Overview (contd.)

Pn,d − R =
∑tk

i=1 g
′
i · h′i where Pn,d =

∑n
i=1 x

d
i

Look at the first order derivatives.

S = {∂xi (Pn,d − R)} =
{
d · xd−1

i − ∂xi (R)
}
i∈[n]

S ′ =
{∑tk

j=1(g
′
j · ∂xih′j + h′j · ∂xig ′

j )
}
i∈[n]

V = Set of common zeroes of S and S ′ V ′ = Set of common zeroes of
{
g ′
j , h

′
j

}
j∈[tk ]

V ′ ⊆ V =⇒ dim(V ′) ≤ dim(V)

R = 0 ⇒ S =
{
d · xd−1

1 , . . . , d · xd−1
n

}
⇒ dim(V) = 0

dim(V ′) ≥ n − 2tk =⇒ n − 2tk ≤ 0 =⇒ tk ≥ n/2
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Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f =
n∑

i=1

xdi +
r∑

i=1

Ai (x) · Bi (x) + δ(x)

where Ai (0) = 0 = Bi (0) and deg(δ(x)) < d , has at least

((n/2)− r) · (d − 1) vertices.
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Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

• the number of layers is reduced by a constant fraction,

• the size does not increase,

• the polynomial being computed continues to look like

fℓ+1 =
n∑

i=1

xdi +

rℓ+1∑
i=1

Ai (x) · Bi (x) + δℓ+1(x)

where Ai (0) = 0 = Bi (0) and deg(δℓ+1(x)) < d ,

• number of error terms collected is small.
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The Induction Step

ℓ-th step

Given: Aℓ

Size = sℓ
Number of layers = dℓ
Number of error terms = rℓ

Want to construct: Aℓ+1

Size = sℓ+1 ≤ sℓ

Number of layers = dℓ+1 ≤
2

3
dℓ

Number of error terms = rℓ+1 ≤ rℓ +
sℓ

dℓ/3

Number of Steps: Θ(log n) Number of Error Terms: ε · n where ε can be chosen.

The Lower Bound: ((n/2)− ε · n) · (d − 1)

19
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Proof of the Induction Step

Aℓ = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

Aℓ+1 = β · f1 + α · f2 = Aℓ − f ′1 · f ′2 + α · β

s t

a1

β

a2α
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Algebraic Formulas And Lower Bounds Against Them

x3 + 3x2y + 3xy2 + y3 = (x + y)3

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

[Kalorkoti]: Any formula computing Detn×n(x) has

atleast Ω(n3) wires.

[Shpilka, Yehudayoff] (using Kalorkoti’s method):

There is a multilinear polynomial such that any formula

computing it requires Ω(n2/ log n) wires.

Our Result: Any formula computing ESYMn,0.1n(x) has

atleast Ω(n2) vertices, where

ESYMn,0.1n(x) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .
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Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing
∑n

i=1

∑n
j=1 x

j
i yj requires Ω(n

2) wires.

Why is Our Result Interesting Then?

• This is trivial to show since there are n variables that have individual degree n.

• Interesting only when the bound is ω(
∑

i∈[n] di ) when di is the individual degree of xi .

Multilinear Polynomials Are An Interesting Subclass

• Individual Degree of every variable is 1.

• Multilinearisation of the SY polynomial gives an Ω(n2/ log n) lower bound.

• Kalorkoti’s method can not give a better bound against multilinear polynomials.
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Why is Our Result Interesting Then?

• This is trivial to show since there are n variables that have individual degree n.

• Interesting only when the bound is ω(
∑

i∈[n] di ) when di is the individual degree of xi .
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Conclusion

Proving Lower Bounds is Cool!

You should do it too... :)

Thank You !

Webpage: preronac.bitbucket.io Email: prerona.ch@gmail.com
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