Lower Bounds in Algebraic Circuit Complexity

Prerona Chatterjee

Tata Institute of Fundamental Research, Mumbai

September 1, 2021

Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.

Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.

X111 X120 Xin

X21 X2 ottt Xop
det

Xnl Xp2 Xnn

Det,() = 3 (<1 [[(s
=1

oES,

Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.

det

Det,(x) =

X11 X12
X1 X22
Xnl Xn2

oES,

> (-1

X1n

X2n

an'l

n
)Sgn(o) H Xio (i)
i=1

1
X1(2)

IMM, 4(

1 d d d
R
X2n Xo1© Xt ottt Xpy

><...><)
I

- Y Y I

ko,kg=1 ki,....kg_1=1 i=1

Polynomials

Polynomials need to be computed frequently as sub-routines of various algorithms.

X1 X2 v Xip Xl(}) Xl(é) e X1(:,l,) X1(;I) X1(g) e Xl(:)

Xo1 Xon -+ Xop I I XD A
det X oo X) . .

Xnl Xp2 Xnn XISP XIS;) 000 X,("11) XIS;.!) X,Sg) 000 X,SZ)

n n n d]
Deta(x) = 3 (=1 [xw0s IMMaa() = Y > [Ix.
g€S, i=1 ko,kd=1 ki,...,kg—1=1 i=1

Can the given polynomial be computed efficiently?

Algebraic Models of Computation

Algebraic Models of Computation

X1 X2 X2 X3 X1 X2 X1 X3

Algebraic Branching Programs

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: f4(x) =3, wt(p)

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly(n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d). @

VP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d).
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VNP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d).
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VNP: Explicit Polynomials
VP
Are the inclusions tight? VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Some Natural Restrictions

Det,(x) = Z (—1)&() HXio(i)
i=1

oc€ES,

Some Natural Restrictions

Homogenity n
Every monomial is of Det,(x) = Z (—1)%"(@) HXI.G(’.)
the same degree. 7ES i=1

Some Natural Restrictions

Homogenity o n
sgn(o
Every monomial is of Det,(x) = Z (—1)%® HXI.G(’.)
the same degree. 7ES i=1

Homogeneous Circuits
Every gate computes a homogeneous
polynomial.

Some Natural Restrictions

Homogenity & n Multilinearity
_ sgn .
Every monomial is of Dety(x) = Z (—1)% HX"G(") No variable occurs more than
the same degree. T = once in any monomial.

Homogeneous Circuits
Every gate computes a homogeneous
polynomial.

Some Natural Restrictions

Homogenity & n Multilinearity
o sgn(o .
Every monomial is of Dety(x) = Z (—1)* HX"G(") No variable occurs more than
the same degree. T = once in any monomial.
Homogeneous Circuits Multilinear Circuits
Every gate computes a homogeneous Every gate computes a multilinear polynomial.

polynomial.

Some Natural Restrictions

Homogenity & n Multilinearity
o sgn(o .
Every monomial is of Dety(x) = Z (—1)* HX"G(") No variable occurs more than
the same degree. T = once in any monomial.
Homogeneous Circuits Muiltilinear Circuits
Every gate computes a homogeneous Every gate computes a multilinear polynomial.

polynomial.

Non-Commutative Circuits
The multiplication gates are non-commutative.

Some Natural Restrictions

Homogenity & n Multilinearity
o sgn(o .

Every monomial is of Dety(x) = Z (—1)* HX"G(") No variable occurs more than

the same degree. T = once in any monomial.

Homogeneous Circuits Muiltilinear Circuits
Every gate computes a homogeneous Every gate computes a multilinear polynomial.
polynomial.
Constant Depth Circuits
Non-Commutative Circuits Length of the longest root-to-leaf path is a

The multiplication gates are non-commutative. constant independent of n.

The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]
Size s circuits computing n-variate degree d
polynomials can be converted into depth-4

circuits of size sO(Vd).

The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]
Size s circuits computing n-variate degree d
polynomials can be converted into depth-4

circuits of size sO(Vd).

[Gupta-Kamath-Kayal-Saptharishi]
Size s circuits computing n-variate degree d
polynomials can be converted into depth-3

circuits of size sO(Vd),

The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d [Limaye-Srinivasan-Tavenas]
polynomials can be converted into depth-4 IMM,, 1og n(x) can not be computed by
circuits of size sO(Vd), constant depth circuits of size poly(n).

[Gupta-Kamath-Kayal-Saptharishi]
Size s circuits computing n-variate degree d
polynomials can be converted into depth-3

circuits of size sO(Vd),

The Great Success: Constant Depth Circuits

[Valiant-Skyum-Berkowitz-Rackoff]

Efficient circuits can be converted into efficient circuits of depth O(log d).

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d [Limaye-Srinivasan-Tavenas]
polynomials can be converted into depth-4 IMM,, 1og n(x) can not be computed by
circuits of size sO(Vd), constant depth circuits of size poly(n).
[Gupta-Kamath-Kayal-Saptharishi] The lower bound is (V) for depth-3 and
Size s circuits computing n-variate degree d depth-4, proving that the depth reduction
polynomials can be converted into depth-3 statements are tight.

circuits of size sO(Vd),

Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by
efficient multilinear ABPs but not by any efficient multilinear formula.

Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by
efficient multilinear ABPs but not by any efficient multilinear formula.

Non-Commutative Setting

[Nisan]: There is an explicit non-commutative polynomial that is computable by efficient
circuits but not by any efficient ABP.

Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by
efficient multilinear ABPs but not by any efficient multilinear formula.

Non-Commutative Setting

[Nisan]: There is an explicit non-commutative polynomial that is computable by efficient
circuits but not by any efficient ABP.

[Limaye-Srinivasan-Tavenas]: There is an explicit non-commutative polynomial that is
computable by homogeneous ABPs but not by any efficient homogeneous formula.

Successes in Other Restricted Models

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]: There is an explicit polynomial that is computable by
efficient multilinear ABPs but not by any efficient multilinear formula.

Non-Commutative Setting

[Nisan]: There is an explicit non-commutative polynomial that is computable by efficient
circuits but not by any efficient ABP.

[Limaye-Srinivasan-Tavenas]: There is an explicit non-commutative polynomial that is
computable by homogeneous ABPs but not by any efficient homogeneous formula.

[Cha]: There is a tight separation between ABPs and some syntactically structured formulas.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing Y7, x? requires Q(nlog d) wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing Y7, x? requires Q(nlog d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing >, x¢ requires Q(nd) vertices.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing Y7, x? requires Q(nlog d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing >, x¢ requires Q(nd) vertices.

General ABPs
[C-Kumar-She-Volk]: Any ABP computing >_"_; x¢ requires Q(nd) vertices.

Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n*-variate Det,(x) requires Q(n%) wires.

Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n*-variate Det,(x) requires Q(n%) wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an n-variate multilinear polynomial
such that any formula computing it requires Q(n?/log n) wires.

Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n*-variate Det,(x) requires Q(n%) wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an n-variate multilinear polynomial
such that any formula computing it requires Q(n?/log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESym,, ;,(x) requires Q(n?) vertices, where

ESYM,, 4(x) = Z X - X

i <---<ig€[n]

ural Proofs

Are the proof techniques used against structured models useful against general models?

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

Set of all
polynomials

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

P:P(f)=0 Set of all
polynomials

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

P P(f)=0 Set of all
polynomials

Explicit polynomials

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

P:P(f)=0

Set of all
polynomials

Explicit polynomials

[C-Kumar-Ramya-Saptharishi-Tengse]:
Let VP’ be the polynomials in VP that
additionally have {—1,0,1} coefficients.

Then, VP’ has VP natural proofs.

10

Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

P P(f)=0 Set of all
polynomials

Explicit polynomials

[C-Kumar-Ramya-Saptharishi-Tengse]:
Let VP’ be the polynomials in VP that
additionally have {—1,0,1} coefficients.

Then, VP’ has VP natural proofs.

[K-R-S-T]: Suppose the Permanent polynomial is 2" _hard for constant € > 0. In this case, if

VP has natural proofs, then there is also a natural proof P that has explicit non-roots.

10

There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

11

There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions | Have Been Thinking About...

e Super-quadratic lower bound against homogeneous formulas?

11

There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions | Have Been Thinking About...

e Super-quadratic lower bound against homogeneous formulas?

e Super-quadratic lower bounds against (homogeneous) multilinear ABPs?

11

There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions | Have Been Thinking About...

e Super-quadratic lower bound against homogeneous formulas?
e Super-quadratic lower bounds against (homogeneous) multilinear ABPs?

e Separation between ABPs and formulas in the non-commutative setting?

11

There is So Much Left To Do

We have made great progress in this field. But there is still a lot that we do not know.

Some Concrete Questions | Have Been Thinking About...

e Super-quadratic lower bound against homogeneous formulas?
e Super-quadratic lower bounds against (homogeneous) multilinear ABPs?
e Separation between ABPs and formulas in the non-commutative setting?

e Does VP have natural proofs? Maybe under some natural assumptions?

11

Questions?

12

Algebraic Branching Programs

13

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

13

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p

13

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: f4(x) = >, wt(p)

13

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}
e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: f4(x) = >, wt(p)

Question: Is there an explicit polynomial that can not be computed by efficient ABPs?

13

Lower Bounds Against ABPs

Previous Work

[Baur-Strassen]: Any ABP computing Y7, x? requires Q(nlog d) wires.

14

Lower Bounds Against ABPs

Previous Work
[Baur-Strassen]: Any ABP computing Y7, x? requires Q(nlog d) wires.

[Kumar]: Any ABP with (d + 1) layers computing >_7_, x¢ has Q(nd) vertices.

14

Lower Bounds Against ABPs

Previous Work
[Baur-Strassen]: Any ABP computing Y7, x? requires Q(nlog d) wires.

[Kumar]: Any ABP with (d + 1) layers computing >_7_, x¢ has Q(nd) vertices.

Our Result

[C-Kumar-She-Volk]: Any ABP computing Y7 , x? requires Q(nd) vertices.

14

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'

tk
Pnd = Z[S, vi] - [vi,]
i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'

ty tk
Pog =3 [s.vi]-[vit] = g hi
i=1 i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

tk
For R= (aj-hi+B;-g +ai-B),
i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = 27:1 Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

ty t
For R = Z(a".h;+6i'gi/+ai'ﬂf)v Pn,d = (Zgil . hf) +R
i=1

i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = Z?:l Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

ty tx ty
For R= (a;-hj+Bi-g +ai-Bi), Pra= (Zg,-’ : h;) +R = P,g—R=) g/ h.
i=1

i=1 i=1

15

The Homogeneous Case: Proof Overview

Pﬂ,d(x) = Z?:l Xid'
ti

Pog = [s,vil - [vit] =D & hi=> (g +)-(h+5)
i=1 i=1

i=1

ty tx ty
For R= (a;-hj+Bi-g +ai-Bi), Pra= (Zg,-’ : h;) +R = P,g—R=) g/ h.
i=1

i=1 i=1

Note: deg(g/),deg(h!) < [d — 1] for every i € [d — 1]. Thus deg(R) < d — 1.

15

The Homogeneous Case: Proof Overview (contd.)

Prd— R = kazl g - h where Pnd = 27:1 Xid

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0(Pna—R)} ={d-x'~' - axi(R)}ie[n]

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

16

The Homogeneous Case: Proof Overview (contd.)

t)
Poa—R=>/,8 H where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

V = Set of common zeroes of S and S’

16

The Homogeneous Case: Proof Overview (contd.)

t)
Poa—R=>/,8 H where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

16

The Homogeneous Case: Proof Overview (contd.)

t)
Poa—R=>/,8 H where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' Cy

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

R=0 = 5:{d-x1d_1,...,d-xg_1}

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

R=0 = S={d-x'....dx"'} = dm(l)=0

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)

deg(R)<d—-1 = dim(V)=0

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {zj (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)
deg(R)<d—-1 = dim(V)=0

d|m(V’) >n— 2t

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {ZJ (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)
deg(R)<d—-1 = dim(V)=0

dim(V)>n—-2ty = n—-2t,<0

16

The Homogeneous Case: Proof Overview (contd.)

—R= Z, 18] where Pog =1, x7
Look at the first order derivatives.

S ={0u(Pra R} ={d X'~ 0.(R)} 0y 5= {ZJ (g - Ol + h- 5Xl.gj’)}

i€[n]

) = Set of common zeroes of S and S’ = Set of common zeroes of {gj, J}je[t]
k

V' CV = dim(V') < dim(V)
deg(R)<d—-1 = dim(V)=0

dim(V)>n—-2ty = n—-2t, <0 = t, >n/2

16

Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

17

Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers

17

Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f—Zx +ZA x) + 6(x)

17

Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f—Zx +ZA x) + 6(x)

where A;(0) = 0 = B;(0) and deg(d(x)) < d,

17

Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing >_7_; x? has Q(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

= Zx - Z Ai()+ 5(x)
where Ai(0) =0 = B;(0) and deg(d(x)) < d, has at least

((n/2) —r)-(d—1) vertices.

Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

18

Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,

18

Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,

e the size does not increase,

18

Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,
e the size does not increase,

e the polynomial being computed continues to look like

n re+1
fopr = led + ZA,‘(X) - Bi(x) + 6p41(x)
i=1 i=1

18

Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

e the number of layers is reduced by a constant fraction,
e the size does not increase,
e the polynomial being computed continues to look like

re+1

fz+1 ZX +ZA +64+1()

where A;(0)=0=B;(0) and deg(d,1(x)) < d,

e number of error terms collected is small.

18

The Induction Step

{-th step

19

The Induction Step

{-th step

Given: A,

Size = s
Number of layers = d
Number of error terms = ry

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,

) Size = spy1
Size = 54

Number of layers = d
Number of error terms = ry

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,

. Size = 541 < 5
Size = 54

Number of layers = d
Number of error terms = ry

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
. Size = 541 < 5
Size = s
Number of layers — d Number of layers = dpi1

Number of error terms = ry

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
. Size = 541 < 5
Size = sy 2
Number of layers = d Number of layers = dp1 < §dz

Number of error terms = ry

19

The Induction Step

£th step
Want to construct: A, ;
Given: A,
- Size = sp11 < s
Size = s Number of |) <2d
Number of layers = d, umber ot layers = de+1 = 30

Number of error terms = ry Number of error terms = rpq

19

The Induction Step

{-th step

. Want to construct: A, ;
Given: A,

. Size = 541 < 5
Size = 54

2
Number of layers = d Number of layers = dp1 < §dz

Se
Number of error terms = r; Number of error terms = rpo 1 < rp+ ——= /3

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
) Size = sp11 < ¢
Size = s 2
= < Z

Number of layers = dj Number of layers = dpy1 < 3d[
s

Number of error terms = ry Number of error terms = rpy 1 < rp + d—j?)
0

Number of Steps: ©(log n)

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
) Size = sp11 < ¢
Size = s 2
Number of layers = d Number of layers = dp1 < §dz
Sy

Number of error terms = r; Number of error terms = rpo 1 < rp+ ——= /3

Number of Steps: ©(log n) Number of Error Terms: ¢ - n where € can be chosen.

19

The Induction Step

{-th step
. Want to construct: A, ;
Given: A,
. Size = 541 < 5
Size = s 2
Number of layers = d Number of layers = dp1 < §dz
5
Number of error terms = ry Number of error terms = rpy 1 < rp + d—j?)
4
Number of Steps: ©(log n) Number of Error Terms: ¢ - n where € can be chosen.

The Lower Bound: ((n/2) —¢-n)-(d —1)

19

Proof of the Induction Step

O

20

Proof of the Induction Step

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

Ormmnme= . SR 0

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

Appi=0-fi+a-h

20

Proof of the Induction Step

A =hf-h

—— fh=f+a —— —— hHL=Ff(H+ —

a
g) a2
QO

Api=B8-h+a-b=A—f-f+a-p

20

Proof of the Induction Step

A =hf-h

O

Appi=0-fi+a-h

20

Proof of the Induction Step

A =hf-h

O

Appi=0-fi+a-h

OO e E

20

Proof of the Induction Step

Ac="H-h

Appi=0-fi+a-h

20

Algebraic Formulas And Lower Bounds Against Them

X2 4+3x%y +3x2 +yd = (x +y)°®

(x+y) (x+y) (x+y)

21

Algebraic Formulas And Lower Bounds Against Them

[Kalorkoti]: Any formula computing Det,x,(x) has

X + 3x2y v 3xy2 v y3 = (x4 y)3 atleast Q(n3) wires.

(x+y) (x+y) (x+vy)

21

Algebraic Formulas And Lower Bounds Against Them

S a2y a2y s [Kalorkoti]: Any formula computing Det,x,(x) has
X*+3x7y +3xy" +y* = (x+y) atleast Q(n3) wires.

[Shpilka, Yehudayoff] (using Kalorkoti's method):
There is a multilinear polynomial such that any formula

° computing it requires Q(n?/log n) wires.

(x+y) (x+y) (x+vy)

21

Algebraic Formulas And Lower Bounds Against Them

X2 4+3x%y +3x2 +yd = (x +y)°®

(x+y) (x+y) (x+vy)

[Kalorkoti]: Any formula computing Det,x,(x) has
atleast Q(n3) wires.

[Shpilka, Yehudayoff] (using Kalorkoti's method):
There is a multilinear polynomial such that any formula
computing it requires Q(n?/log n) wires.

Our Result: Any formula computing ESYM,, 9.1,(x) has
atleast Q(n?) vertices, where

0.1n

ESYMpo1n(x) = 3 IR

ih1<--<ip.1n€[n] Jj=1

21

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, Zle x!y; requires Q(n?) wires.

22

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

22

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

22

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.

22

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.

e Multilinearisation of the SY polynomial gives an (n?/ log n) lower bound.

22

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing >, ZJ 1 ,yj requires Q(n?) wires.

Why is Our Result Interesting Then?

e This is trivial to show since there are n variables that have individual degree n.

e Interesting only when the bound is w(}_;c, di) when dj is the individual degree of x;.

Multilinear Polynomials Are An Interesting Subclass

e Individual Degree of every variable is 1.
e Multilinearisation of the SY polynomial gives an (n?/ log n) lower bound.

e Kalorkoti's method can not give a better bound against multilinear polynomials.

22

Conclusion

Proving Lower Bounds is Cool!

You should do it too... :)

23

Conclusion

Proving Lower Bounds is Cool!

You should do it too... :)

Thank You !

Webpage: preronac.bitbucket.io Email: prerona.ch@gmail.com

23

