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Theory of Computation

Hilbert’s Conjecture

There is a set of axioms such that:

• Everything provable from

these axioms is true.

• Every true statement is

provable from these axioms.

Ok, some statements are not provable.

But is there an algorithm that can

prove every provable statement?

Entscheidungsproblem

Russell’s Principia

Mathematica

Gödel’s Incompleteness

Theorem

What does that even mean?
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Complexity Theory

Church-Turing Thesis

Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Is the given problem computable?

Is it computable efficiently?

Edmonds: Efficient ≡ Polynomial Time
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Upper Bounds and Lower Bounds

Upper Bound Statements:

• There is an algorithm to solve the Sorting Problem in time at most O(n log n).

• There is an algorithm that solves the given problem in time at most O(T (n)).

• There is a circuit that computes the given function of size at most O(S(n)).

Lower Bound Statements:

• Any Sorting algorithm that uses only comparisons must take time at least Ω(n log n).

• Any algorithm solving the given problem must take time at least Ω(T ′(n)).

• Any circuit computing the given problem must be of size at least Ω(S ′(n)).
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Algebraic Complexity Theory

How hard is it perform the given computational task on the given algebraic object?

Agrawal-Kayal-Saxena

PRIMES is in P

Algebraic Circuit Complexity

Can the given polynomial be computed efficiently?

4



Algebraic Complexity Theory

How hard is it perform the given computational task on the given algebraic object?

Agrawal-Kayal-Saxena

PRIMES is in P

Algebraic Circuit Complexity

Can the given polynomial be computed efficiently?

4



Algebraic Complexity Theory

How hard is it perform the given computational task on the given algebraic object?

Agrawal-Kayal-Saxena

PRIMES is in P

Algebraic Circuit Complexity

Can the given polynomial be computed efficiently?

4



Algebraic Complexity Theory

How hard is it perform the given computational task on the given algebraic object?

Agrawal-Kayal-Saxena

PRIMES is in P

Algebraic Circuit Complexity

Can the given polynomial be computed efficiently?

4



Algebraic Models of Computation

+
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

7



Questions?
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Some Natural Restrictions

Homogenity

Every monomial is of

the same degree.

Detn(x) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

xiσ(i)

Multilinearity

No variable occurs more than

once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous

polynomial.

Non-Commutative Circuits

The multiplication gates are non-commutative.

Multilinear Circuits

Every gate computes a multilinear polynomial.

Constant Depth Circuits

Length of the longest root-to-leaf path is a

constant independent of n.
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Successes in Restricted Models

Constant Depth Setting

[Limaye-Srinivasan-Tavenas]:

Super-polynomial lower bound.

[Agrawal-Vinay, Koiran, Tavenas]:

The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]:

The lower bound is tight at depth 3.

Multilinear Setting

[Dvir-Malod-Perifel-Yehudayoff]:

VF ⊊ VBP.

Non-Commutative Setting

[Nisan]: VBP ⊊ VP.

[L-S-T]: hom− VF ⊊ hom− VBP.

[Cha]: abcd− VF ⊊ abcd− VBP.
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Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.
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Lower Bounds for General Models (contd.)

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESymn,0.1n(x) requires Ω(n
2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

12
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Natural Proofs

Are the proof techniques used against structured models useful against general models?

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[C-Kumar-Ramya-Saptharishi-Tengse]: Natural proofs might exist.

Let VP′ be the polynomials in VP with {−1, 0, 1} coefficients. Then VP′ has VP natural proofs.

[K-R-S-T]: Natural proofs might not exist.

Under some believable assumption, VNP does not have VP natural proofs.
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Questions?
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Is there an explicit polynomial that can not be computed by efficient ABPs?
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Lower Bounds Against ABPs

Previous Work

[Baur-Strassen]: Any ABP computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

[Kumar]: Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i has Ω(nd) vertices.

Our Result

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.
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The Homogeneous Case: Proof Overview

s t

Pn,d(x) =
∑n

i=1 x
d
i .

Pn,d =

tk∑
i=1

[s, vi ] · [vi , t] =
tk∑
i=1

gi · hi =
tk∑
i=1

(g ′
i + αi ) · (h′i + βi )

For R =

tk∑
i=1

(αi · h′i + βi · g ′
i +αi · βi ), Pn,d =

(
tk∑
i=1

g ′
i · h′i

)
+R =⇒ Pn,d − R =

tk∑
i=1

g ′
i · h′i .

Note: deg(g ′
i ), deg(h

′
i ) ≤ [d − 1] for every i ∈ [d − 1]. Thus deg(R) ≤ d − 1.
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The Homogeneous Case: Proof Overview (contd.)

Pn,d − R =
∑tk

i=1 g
′
i · h′i where Pn,d =

∑n
i=1 x

d
i

Look at the first order derivatives.

S = {∂xi (Pn,d − R)} =
{
d · xd−1

i − ∂xi (R)
}
i∈[n]

S ′ =
{∑tk

j=1(g
′
j · ∂xih′j + h′j · ∂xig ′

j )
}
i∈[n]

V = Set of common zeroes of S and S ′ V ′ = Set of common zeroes of
{
g ′
j , h

′
j

}
j∈[tk ]

V ′ ⊆ V =⇒ dim(V ′) ≤ dim(V)

R = 0 ⇒ S =
{
d · xd−1

1 , . . . , d · xd−1
n

}
⇒ dim(V) = 0

dim(V ′) ≥ n − 2tk =⇒ n − 2tk ≤ 0 =⇒ tk ≥ n/2
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Proof Overview Of Our Result

Step 0 ([Kumar]): Look at the homogeneous case

Any ABP with (d + 1) layers computing
∑n

i=1 x
d
i has Ω(nd) vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

f =
n∑

i=1

xdi +
r∑

i=1

Ai (x) · Bi (x) + δ(x)

where Ai (0) = 0 = Bi (0) and deg(δ(x)) < d , has at least

((n/2)− r) · (d − 1) vertices.
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Proof Overview Of Our Result (contd.)

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

• the number of layers is reduced by a constant fraction,

• the size does not increase,

• the polynomial being computed continues to look like

fℓ+1 =
n∑

i=1

xdi +

rℓ+1∑
i=1

Ai (x) · Bi (x) + δℓ+1(x)

where Ai (0) = 0 = Bi (0) and deg(δℓ+1(x)) < d ,

• number of error terms collected is small.
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The Induction Step

ℓ-th step

Given: Aℓ

Size = sℓ
Number of layers = dℓ
Number of error terms = rℓ

Want to construct: Aℓ+1

Size = sℓ+1 ≤ sℓ

Number of layers = dℓ+1 ≤
2

3
dℓ

Number of error terms = rℓ+1 ≤ rℓ +
sℓ

dℓ/3

Number of Steps: Θ(log n) Number of Error Terms: ε · n where ε can be chosen.

The Lower Bound: ((n/2)− ε · n) · (d − 1)
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Proof of the Induction Step

Aℓ = f1 · f2

s t
a1 a2

f1 = f ′1 + α f2 = f ′2 + β

Aℓ+1 = β · f1 + α · f2 = Aℓ − f ′1 · f ′2 + α · β

s t

a1

β

a2α
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Algebraic Formulas And Lower Bounds Against Them

x3 + 3x2y + 3xy2 + y3 = (x + y)3

(x + y) · (x + y) · (x + y)

×

+ + +

x y x y x y

[Kalorkoti]: Any formula computing Detn×n(x) has

atleast Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method):

There is a multilinear polynomial such that any formula

computing it requires Ω(n2/ log n) wires.

Our Result: Any formula computing ESYMn,0.1n(x) has

atleast Ω(n2) vertices, where

ESYMn,0.1n(x) =
∑

i1<···<i0.1n∈[n]

0.1n∏
j=1

xij .
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Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing
∑n

i=1

∑n
j=1 x

j
i yj requires Ω(n

2) wires.

Why is Our Result Interesting Then?

• This is trivial to show since there are n variables that have individual degree n.

• Interesting only when the bound is ω(
∑

i∈[n] di ) when di is the individual degree of xi .

Multilinear Polynomials Are An Interesting Subclass

• Individual Degree of every variable is 1.

• Multilinearisation of the SY polynomial gives an Ω(n2/ log n) lower bound.

• Kalorkoti’s method can not give a better bound against multilinear polynomials.
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Conclusion

Complexity Theory is Cool!

You should do it too... :)

Thank You !

Webpage: preronac.bitbucket.io Email: prerona.ch@gmail.com
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