Lower Bounds in Algebraic Circuit Complexity

Prerona Chatterjee

Tata Institute of Fundamental Research, Mumbai

September 14, 2021

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Russell's Principia Mathematica

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Russell's Principia Mathematica

> Gödel's Incompleteness Theorem

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Ok, some statements are not provable.

Russell's Principia Mathematica

> Gödel's Incompleteness Theorem

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Ok, some statements are not provable.

But is there an algorithm that can prove every provable statement?

Entscheidungsproblem

Russell's Principia Mathematica

> Gödel's Incompleteness Theorem

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Ok, some statements are not provable.

But is there an algorithm that can prove every provable statement?

Entscheidungsproblem

Russell's Principia Mathematica

> Gödel's Incompleteness Theorem

What does that even mean?

Hilbert's Conjecture

There is a set of axioms such that:

- Everything provable from these axioms is true.
- Every true statement is provable from these axioms.

Ok, some statements are not provable.

But is there an algorithm that can prove every provable statement?

Entscheidungsproblem

Russell's Principia Mathematica

> Gödel's Incompleteness Theorem

What does that even mean?

Church-Turing Thesis Any computation can be simulated by a Turing Machine.

Church-Turing Thesis

Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Church-Turing Thesis

Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Is the given problem computable?

Church-Turing Thesis Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Is the given problem computable?

Is it computable efficiently?

Church-Turing Thesis

Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Is the given problem computable?

Is it computable efficiently?

 $\textbf{Edmonds}: \ \text{Efficient} \equiv \text{Polynomial Time}$

Church-Turing Thesis

Any computation can be simulated by a Turing Machine.

There is no Turing Machine that can solve every problem.

Is the given problem computable?

Is it computable efficiently?

Edmonds: Efficient \equiv Polynomial Time

• There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.

• There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.

Lower Bound Statements:

• Any Sorting algorithm that uses only comparisons must take time at least $\Omega(n \log n)$.

- There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.
- There is an algorithm that solves the given problem in time at most O(T(n)).

Lower Bound Statements:

• Any Sorting algorithm that uses only comparisons must take time at least $\Omega(n \log n)$.

- There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.
- There is an algorithm that solves the given problem in time at most O(T(n)).

- Any Sorting algorithm that uses only comparisons must take time at least $\Omega(n \log n)$.
- Any algorithm solving the given problem must take time at least $\Omega(T'(n))$.

- There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.
- There is an algorithm that solves the given problem in time at most O(T(n)).
- There is a circuit that computes the given function of size at most O(S(n)).

- Any Sorting algorithm that uses only comparisons must take time at least $\Omega(n \log n)$.
- Any algorithm solving the given problem must take time at least $\Omega(T'(n))$.

- There is an algorithm to solve the Sorting Problem in time at most $O(n \log n)$.
- There is an algorithm that solves the given problem in time at most O(T(n)).
- There is a circuit that computes the given function of size at most O(S(n)).

- Any Sorting algorithm that uses only comparisons must take time at least $\Omega(n \log n)$.
- Any algorithm solving the given problem must take time at least $\Omega(T'(n))$.
- Any circuit computing the given problem must be of size at least $\Omega(S'(n))$.

Agrawal-Kayal-Saxena PRIMES is in P

Algebraic Circuit Complexity Can the given polynomial be computed efficiently?

Agrawal-Kayal-Saxena PRIMES is in P

Agrawal-Kayal-Saxena PRIMES is in P

Algebraic Circuit Complexity

Can the given polynomial be computed efficiently?

Algebraic Models of Computation

Algebraic Models of Computation

• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Questions?

$$Det_n(\mathbf{x}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

$$\boxed{\operatorname{Det}_n(\mathbf{x}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i\sigma(i)}}$$

$$\boxed{\operatorname{Det}_n(\mathbf{x}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i\sigma(i)}}$$

Homogeneous Circuits

Every gate computes a homogeneous polynomial.

$$Det_n(\mathbf{x}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

Multilinearity

No variable occurs more than once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous polynomial.

$$Det_n(\mathbf{x}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

Multilinearity No variable occurs more than once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous polynomial.

Multilinear Circuits

Every gate computes a multilinear polynomial.

$$Det_n(\mathbf{x}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

Multilinearity No variable occurs more than once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous polynomial.

Non-Commutative Circuits

The multiplication gates are non-commutative.

Multilinear Circuits

Every gate computes a multilinear polynomial.

$$Det_n(\mathbf{x}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

Multilinearity No variable occurs more than once in any monomial.

Homogeneous Circuits

Every gate computes a homogeneous polynomial.

Non-Commutative Circuits

The multiplication gates are non-commutative.

Multilinear Circuits

Every gate computes a multilinear polynomial.

Constant Depth Circuits

Length of the longest root-to-leaf path is a constant independent of *n*.

Constant Depth Setting

[Limaye-Srinivasan-Tavenas]: Super-polynomial lower bound.

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4. **Constant Depth Setting**

[Limaye-Srinivasan-Tavenas]: Super-polynomial lower bound.

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]: The lower bound is tight at depth 3. Constant Depth Setting

[Limaye-Srinivasan-Tavenas]: Super-polynomial lower bound.

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]: The lower bound is tight at depth 3. $\label{eq:multilinear} \begin{array}{l} \mbox{Multilinear Setting} \\ \mbox{[Dvir-Malod-Perifel-Yehudayoff]:} \\ \mbox{VF} \subsetneq \mbox{VBP.} \end{array}$

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]: The lower bound is tight at depth 3. $\label{eq:multilinear} \begin{array}{l} \mbox{Multilinear Setting} \\ \mbox{[Dvir-Malod-Perifel-Yehudayoff]:} \\ \mbox{VF} \subsetneq \mbox{VBP.} \end{array}$

Non-Commutative Setting [Nisan]: $VBP \subsetneq VP$.

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]: The lower bound is tight at depth 3. $\label{eq:multilinear} \begin{array}{l} \mbox{Multilinear Setting} \\ \mbox{[Dvir-Malod-Perifel-Yehudayoff]:} \\ \mbox{VF} \subsetneq \mbox{VBP.} \end{array}$

Non-Commutative Setting [Nisan]: $VBP \subsetneq VP$. [L-S-T]: hom $-VF \subsetneq$ hom -VBP.

[Agrawal-Vinay, Koiran, Tavenas]: The lower bound is tight at depth 4.

[Gupta-Kamath-Kayal-Saptharishi]: The lower bound is tight at depth 3.

Multilinear Setting [Dvir-Malod-Perifel-Yehudayoff]: $VF \subsetneq VBP.$

Non-Commutative Setting [Nisan]: $VBP \subsetneq VP$. [L-S-T]: hom $-VF \subsetneq$ hom -VBP. [Cha]: $abcd - VF \subsetneq abcd - VBP$.

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Homogeneous ABPs

[Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

General Formulas

[Kalorkoti]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

General Formulas

[Kalorkoti]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[C-Kumar-She-Volk]: Any formula computing $\text{ESym}_{n,0,1n}(\mathbf{x})$ requires $\Omega(n^2)$ vertices, where

$$\mathrm{ESYM}_{n,d}(\mathbf{x}) = \sum_{i_1 < \cdots < i_d \in [n]} x_{i_1} \cdots x_{i_d}.$$

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[C-Kumar-Ramya-Saptharishi-Tengse]: Natural proofs might exist.

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[C-Kumar-Ramya-Saptharishi-Tengse]: Natural proofs might exist.

Let VP' be the polynomials in VP with $\{-1, 0, 1\}$ coefficients. Then VP' has VP natural proofs.

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[C-Kumar-Ramya-Saptharishi-Tengse]: Natural proofs might exist.

Let VP' be the polynomials in VP with $\{-1, 0, 1\}$ coefficients. Then VP' has VP natural proofs.

[K-R-S-T]: Natural proofs might not exist.

[Forbes-Shpilka-Volk, Grochow-Kumar-Saks-Saraf]: Defined Algebraically Natural Proofs.

[F-S-V]: Natural proofs might not exist.

[C-Kumar-Ramya-Saptharishi-Tengse]: Natural proofs might exist.

Let VP' be the polynomials in VP with $\{-1, 0, 1\}$ coefficients. Then VP' has VP natural proofs.

[K-R-S-T]: Natural proofs might not exist.

Under some believable assumption, VNP does not have VP natural proofs.

Questions?

• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$

- Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$
Algebraic Branching Programs

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

Question: Is there an explicit polynomial that can not be computed by efficient ABPs?

Previous Work

[Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

Previous Work

[Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

[Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Previous Work

[Baur-Strassen]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

[Kumar]: Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Our Result

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

$$P_{n,d}(\mathbf{x}) = \sum_{i=1}^n x_i^d.$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t]$$

$$P_{n,d}(\mathbf{x}) = \sum_{i=1}^n x_i^d.$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i = \sum_{i=1}^{t_k} (g'_i + \alpha_i) \cdot (h'_i + \beta_i)$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i = \sum_{i=1}^{t_k} (g'_i + \alpha_i) \cdot (h'_i + \beta_i)$$

For
$$R = \sum_{i=1}^{t_k} (\alpha_i \cdot h'_i + \beta_i \cdot g'_i + \alpha_i \cdot \beta_i)$$
,

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i = \sum_{i=1}^{t_k} (g'_i + \alpha_i) \cdot (h'_i + \beta_i)$$

For
$$R = \sum_{i=1}^{t_k} (\alpha_i \cdot h'_i + \beta_i \cdot g'_i + \alpha_i \cdot \beta_i), \quad P_{n,d} = \left(\sum_{i=1}^{t_k} g'_i \cdot h'_i\right) + R$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i = \sum_{i=1}^{t_k} (g'_i + \alpha_i) \cdot (h'_i + \beta_i)$$

For
$$R = \sum_{i=1}^{t_k} (\alpha_i \cdot h'_i + \beta_i \cdot g'_i + \alpha_i \cdot \beta_i), \quad P_{n,d} = \left(\sum_{i=1}^{t_k} g'_i \cdot h'_i\right) + R \implies P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i.$$

$$P_{n,d} = \sum_{i=1}^{t_k} [s, v_i] \cdot [v_i, t] = \sum_{i=1}^{t_k} g_i \cdot h_i = \sum_{i=1}^{t_k} (g'_i + \alpha_i) \cdot (h'_i + \beta_i)$$

For
$$R = \sum_{i=1}^{t_k} (\alpha_i \cdot h'_i + \beta_i \cdot g'_i + \alpha_i \cdot \beta_i), \quad P_{n,d} = \left(\sum_{i=1}^{t_k} g'_i \cdot h'_i\right) + R \implies P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i.$$

Note: $\deg(g'_i), \deg(h'_i) \leq [d-1]$ for every $i \in [d-1]$. Thus $\deg(R) \leq d-1$.

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x^d_i$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{d \cdot x_i^{d-1} - \partial_{x_i}(R)\right\}_{i \in [n]}$$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S'

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set} \mathsf{ of common zeroes of } S \mathsf{ and } S'$

$$\mathcal{V}' = \mathsf{Set} \mathsf{ of common zeroes of } \left\{ g'_j, h'_j
ight\}_{j \in [t_k]}$$

$$\mathcal{V}'\subseteq\mathcal{V}$$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{d \cdot x_i^{d-1} - \partial_{x_i}(R)\right\}_{i \in [n]} \qquad S' = \left\{\sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j)\right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

$$\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$$

 $R = 0$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{d \cdot x_i^{d-1} - \partial_{x_i}(R)\right\}_{i \in [n]} \qquad S' = \left\{\sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j)\right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$ $R = 0 \quad \Rightarrow \quad S = \left\{ d \cdot x_1^{d-1}, \dots, d \cdot x_n^{d-1} \right\}$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{d \cdot x_i^{d-1} - \partial_{x_i}(R)\right\}_{i \in [n]} \qquad S' = \left\{\sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j)\right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

$$\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$$
$$R = 0 \quad \Rightarrow \quad S = \left\{ d \cdot x_1^{d-1}, \dots, d \cdot x_n^{d-1} \right\} \quad \Rightarrow \quad \dim(\mathcal{V}) = 0$$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$ $\deg(R) \leq d-1 \implies \dim(\mathcal{V}) = 0$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{d \cdot x_i^{d-1} - \partial_{x_i}(R)\right\}_{i \in [n]} \qquad S' = \left\{\sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j)\right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$ $\deg(R) \leq d-1 \implies \dim(\mathcal{V}) = 0$ $\dim(\mathcal{V}') \geq n - 2t_k$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$ $\deg(R) \leq d-1 \implies \dim(\mathcal{V}) = 0$ $\dim(\mathcal{V}') \geq n - 2t_k \implies n - 2t_k \leq 0$

$$P_{n,d} - R = \sum_{i=1}^{t_k} g'_i \cdot h'_i$$
 where $P_{n,d} = \sum_{i=1}^n x_i^d$

Look at the first order derivatives.

$$S = \{\partial_{x_i}(P_{n,d} - R)\} = \left\{ d \cdot x_i^{d-1} - \partial_{x_i}(R) \right\}_{i \in [n]} \qquad S' = \left\{ \sum_{j=1}^{t_k} (g'_j \cdot \partial_{x_i} h'_j + h'_j \cdot \partial_{x_i} g'_j) \right\}_{i \in [n]}$$

 $\mathcal{V} = \mathsf{Set}$ of common zeroes of S and S' $\mathcal{V}' = \mathsf{Set}$ of common zeroes of $\left\{g'_j, h'_j\right\}_{j \in [t_k]}$

 $\mathcal{V}' \subseteq \mathcal{V} \implies \dim(\mathcal{V}') \leq \dim(\mathcal{V})$ $\deg(R) \leq d-1 \implies \dim(\mathcal{V}) = 0$ $\dim(\mathcal{V}') \geq n - 2t_k \implies n - 2t_k \leq 0 \implies t_k \geq n/2$

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^{n} x_i^d + \sum_{i=1}^{r} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta(\mathbf{x})) < d$,

Any ABP with (d + 1) layers computing $\sum_{i=1}^{n} x_i^d$ has $\Omega(nd)$ vertices.

Step 1: Generalise above statement to get the base case

Any ABP with (d + 1) layers computing a polynomial of the form

$$f = \sum_{i=1}^n x_i^d + \sum_{i=1}^r A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta(\mathbf{x})) < d$, has at least

 $((n/2) - r) \cdot (d - 1)$ vertices.

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

• the number of layers is reduced by a constant fraction,

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,
- the polynomial being computed continues to look like

$$f_{\ell+1} = \sum_{i=1}^n x_i^d + \sum_{i=1}^{r_{\ell+1}} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta_{\ell+1}(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta_{\ell+1}(\mathbf{x})) < d$,

Step 2: Iteratively reduce to Base Case

In each iteration, reduce the number of layers till it becomes (d + 1) such that

- the number of layers is reduced by a constant fraction,
- the size does not increase,
- the polynomial being computed continues to look like

$$f_{\ell+1} = \sum_{i=1}^n x_i^d + \sum_{i=1}^{r_{\ell+1}} A_i(\mathbf{x}) \cdot B_i(\mathbf{x}) + \delta_{\ell+1}(\mathbf{x})$$

where $A_i(0) = 0 = B_i(0)$ and $\deg(\delta_{\ell+1}(\mathbf{x})) < d$,

• number of error terms collected is small.
Given: \mathcal{A}_{ℓ}

Size $= s_{\ell}$ Number of layers $= d_{\ell}$ Number of error terms $= r_{\ell}$

Given: A_{ℓ} Size = s_{ℓ} Number of layers = d_{ℓ} Number of error terms = r_{ℓ} Want to construct: $\mathcal{A}_{\ell+1}$

$$\mathsf{Size} = \mathit{s}_{\ell+1}$$

Given: \mathcal{A}_{ℓ} Size = s_{ℓ} Number of layers = d_{ℓ} Number of error terms = r_{ℓ} Want to construct: $\mathcal{A}_{\ell+1}$

$$\mathsf{Size} = \mathit{s}_{\ell+1} \leq \mathit{s}_{\ell}$$

Given: \mathcal{A}_{ℓ}

 ${
m Size} = s_\ell$ Number of layers $= d_\ell$ Number of error terms $= r_\ell$

Want to construct: $\mathcal{A}_{\ell+1}$

 $\mathsf{Size} = s_{\ell+1} \leq s_\ell$ Number of layers $= d_{\ell+1}$

Given: \mathcal{A}_{ℓ}

Size $= s_{\ell}$ Number of layers $= d_{\ell}$ Number of error terms $= r_{\ell}$

Want to construct: $\mathcal{A}_{\ell+1}$

$${
m Size} = s_{\ell+1} \leq s_\ell$$

Number of layers $= d_{\ell+1} \leq rac{2}{3}d_\ell$

Given: \mathcal{A}_ℓ

Size $= s_{\ell}$ Number of layers $= d_{\ell}$ Number of error terms $= r_{\ell}$

Want to construct: $\mathcal{A}_{\ell+1}$

Size
$$= s_{\ell+1} \le s_{\ell}$$

Number of layers $= d_{\ell+1} \le \frac{2}{3}d_{\ell}$
Number of error terms $= r_{\ell+1}$

21

Given: \mathcal{A}_ℓ

Size $= s_{\ell}$ Number of layers $= d_{\ell}$ Number of error terms $= r_{\ell}$ Want to construct: $\mathcal{A}_{\ell+1}$

Size
$$= s_{\ell+1} \le s_{\ell}$$

Number of layers $= d_{\ell+1} \le \frac{2}{3}d_{\ell}$
Number of error terms $= r_{\ell+1} \le r_{\ell} + \frac{s_{\ell}}{d_{\ell}/3}$

Given: \mathcal{A}_ℓ

Size $= s_{\ell}$ Number of layers $= d_{\ell}$ Number of error terms $= r_{\ell}$ Want to construct: $\mathcal{A}_{\ell+1}$

Size
$$= s_{\ell+1} \le s_{\ell}$$

Number of layers $= d_{\ell+1} \le \frac{2}{3}d_{\ell}$
Number of error terms $= r_{\ell+1} \le r_{\ell} + \frac{s_{\ell}}{d_{\ell}/3}$

Number of Steps: $\Theta(\log n)$

Given: A_{ℓ} Size = s_{ℓ} Number of layers = d_{ℓ} Number of error terms = r_{ℓ} Want to construct: $A_{\ell+1}$

Size
$$= s_{\ell+1} \le s_{\ell}$$

Number of layers $= d_{\ell+1} \le \frac{2}{3}d_{\ell}$
Number of error terms $= r_{\ell+1} \le r_{\ell} + \frac{s_{\ell}}{d_{\ell}/3}$

Number of Steps: $\Theta(\log n)$

Number of Error Terms: $\varepsilon \cdot n$ where ε can be chosen.

Given: A_{ℓ} Size = s_{ℓ} Number of layers = d_{ℓ} Number of error terms = r_{ℓ} Want to construct: $A_{\ell+1}$

Size
$$= s_{\ell+1} \le s_{\ell}$$

Number of layers $= d_{\ell+1} \le \frac{2}{3}d_{\ell}$
Number of error terms $= r_{\ell+1} \le r_{\ell} + \frac{s_{\ell}}{d_{\ell}/3}$

Number of Steps: $\Theta(\log n)$

Number of Error Terms: $\varepsilon \cdot n$ where ε can be chosen.

The Lower Bound: $((n/2) - \varepsilon \cdot n) \cdot (d-1)$

 $\mathcal{A}_{\ell} = \mathit{f}_1 \cdot \mathit{f}_2$

$$\mathcal{A}_{\ell+1} = \beta \cdot f_1 + \alpha \cdot f_2 = \mathcal{A}_{\ell} - f_1' \cdot f_2' + \alpha \cdot \beta$$

 $\mathcal{A}_{\ell} = \mathit{f}_1 \cdot \mathit{f}_2$

 $\mathcal{A}_{\ell} = \mathit{f}_1 \cdot \mathit{f}_2$

 $\mathcal{A}_{\ell} = \mathit{f}_1 \cdot \mathit{f}_2$

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

$$(x+y)\cdot(x+y)\cdot(x+y)$$

$$x^{3} + 3x^{2}y + 3xy^{2} + y^{3} = (x + y)^{3}$$

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}(\mathbf{x})$ has at least $\Omega(n^3)$ wires.

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

$$(x+y)\cdot(x+y)\cdot(x+y)$$

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}(\mathbf{x})$ has at least $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

$$x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$$

$$(x+y)\cdot(x+y)\cdot(x+y)$$

[Kalorkoti]: Any formula computing $\text{Det}_{n \times n}(\mathbf{x})$ has at least $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff] (using Kalorkoti's method): There is a multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

Our Result: Any formula computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$ has at least $\Omega(n^2)$ vertices, where

$$\mathrm{ESYM}_{n,0.1n}(\mathbf{x}) = \sum_{i_1 < \cdots < i_{0.1n} \in [n]} \prod_{j=1}^{0.1n} x_{i_j}.$$

Some Subtelties: Why Multilinear?

[Shpilka-Yehudayoff]: Any formula computing $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{j} y_{j}$ requires $\Omega(n^{2})$ wires.

Why is Our Result Interesting Then?

• This is trivial to show since there are *n* variables that have *individual degree n*.

Why is Our Result Interesting Then?

- This is trivial to show since there are *n* variables that have *individual degree n*.
- Interesting only when the bound is $\omega(\sum_{i \in [n]} d_i)$ when d_i is the individual degree of x_i .

Why is Our Result Interesting Then?

- This is trivial to show since there are *n* variables that have *individual degree n*.
- Interesting only when the bound is $\omega(\sum_{i \in [n]} d_i)$ when d_i is the individual degree of x_i .

Multilinear Polynomials Are An Interesting Subclass

• Individual Degree of every variable is 1.

Why is Our Result Interesting Then?

- This is trivial to show since there are *n* variables that have *individual degree n*.
- Interesting only when the bound is $\omega(\sum_{i \in [n]} d_i)$ when d_i is the individual degree of x_i .

Multilinear Polynomials Are An Interesting Subclass

- Individual Degree of every variable is 1.
- Multilinearisation of the SY polynomial gives an $\Omega(n^2/\log n)$ lower bound.

Why is Our Result Interesting Then?

- This is trivial to show since there are *n* variables that have *individual degree n*.
- Interesting only when the bound is $\omega(\sum_{i \in [n]} d_i)$ when d_i is the individual degree of x_i .

Multilinear Polynomials Are An Interesting Subclass

- Individual Degree of every variable is 1.
- Multilinearisation of the SY polynomial gives an $\Omega(n^2/\log n)$ lower bound.
- Kalorkoti's method can not give a better bound against multilinear polynomials.

Complexity Theory is Cool!

You should do it too... :)

Complexity Theory is Cool!

You should do it too... :)

Thank You !

Webpage: preronac.bitbucket.io

Email: prerona.ch@gmail.com