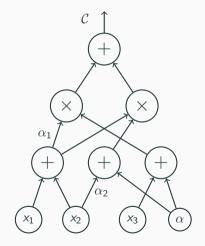
Separating ABPs and some Structured Formulas in the Non-Commutative Setting

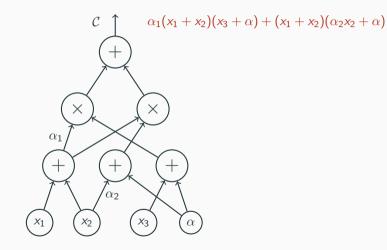
Prerona Chatterjee Institute of Mathematics, Czech Academy of Sciences

June 29, 2022

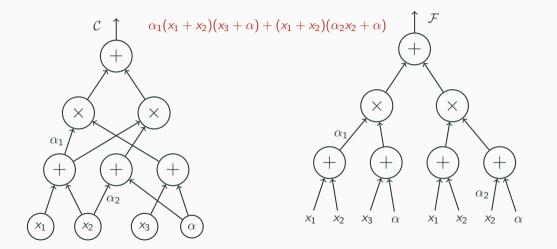
Algebraic Models of Computation



Algebraic Models of Computation



Algebraic Models of Computation



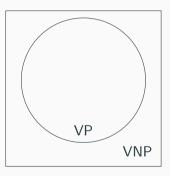
1

VP: Polynomials computable by circuits of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

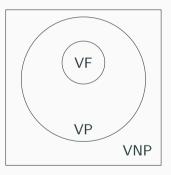
VNP: Explicit Polynomials



VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

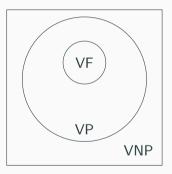


VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?



[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing $\sum_{\substack{S \subseteq [n] \ |S|=0.1n}} \prod_{i \in S} x_i$ requires $\Omega(n^2)$ vertices.

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing $\sum_{\substack{S \subseteq [n] \\ |S|=0.1n}} \prod_{i \in S} x_i$ requires $\Omega(n^2)$ vertices.

Note: There is a circuit of size $O(n \log^2 n)$ computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$.

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing $\sum_{\substack{S \subseteq [n] \\ |S|=0.1n}} \prod_{i \in S} x_i$ requires $\Omega(n^2)$ vertices.

Note: There is a circuit of size $O(n \log^2 n)$ computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$. Therefore this shows a super-linear separation between formulas and circuits for a multilinear polynomial.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Lower Bounds for General Models

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VBP}_{\mathsf{nc}}$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

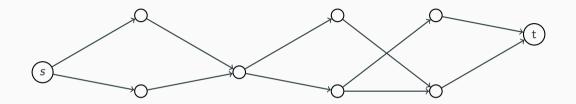
Circuits [Baur-Strassen]: $\Omega(n \log d)$ for an *n*-variate, degree *d* polynomial.

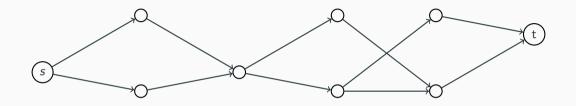
Formulas [Nisan]: $2^{\Omega(n)}$ for a 2-variate, degree *n* polynomial in VP_{nc}. So, VF_{nc} \neq VP_{nc}.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

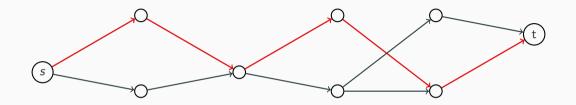
 $\mathsf{VF}_{\mathsf{nc}} \subseteq \mathsf{VBP}_{\mathsf{nc}} \subseteq \mathsf{VP}_{\mathsf{nc}}$

So Nisan actually showed that $\mathsf{VBP}_{\mathsf{nc}} \neq \mathsf{VP}_{\mathsf{nc}}.$

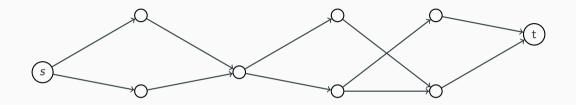




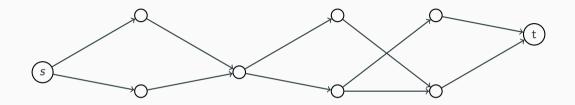
• Label on each edge: Linear polynomials in $\{x_1, x_2, \dots, x_n\}$



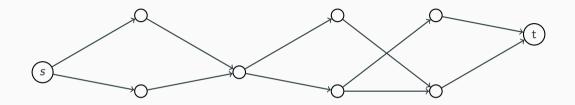
- Label on each edge: Linear polynomials in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: Linear polynomials in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$



- Label on each edge: Linear polynomials in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$
- Size of the ABP: Number of vertices in the ABP



- Label on each edge: Linear polynomials in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} wt(p)$
- Size of the ABP: Number of vertices in the ABP

In comparison, the best lower bound against ABPs in the commutative setting is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_i^n$ has size $\Omega(n^2)$.

Since $\operatorname{Pal}_n(x_0, x_1)$ can be computed by a non-commutative circuit of size O(n), $\operatorname{VBP}_{nc} \neq \operatorname{VP}_{nc}$.

Since $\operatorname{Pal}_n(x_0, x_1)$ can be computed by a non-commutative circuit of size O(n), $\operatorname{VBP}_{nc} \neq \operatorname{VP}_{nc}$.

Since $VF_{nc} \subseteq VBP_{nc}$, this gives an exponential lower bound against VF_{nc} .

Since $\operatorname{Pal}_n(x_0, x_1)$ can be computed by a non-commutative circuit of size O(n), $\operatorname{VBP}_{nc} \neq \operatorname{VP}_{nc}$.

Since $VF_{nc} \subseteq VBP_{nc}$, this gives an exponential lower bound against VF_{nc} .

The Question[Nisan]: Is $VBP_{nc} = VF_{nc}$?

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

 x_i in position $p \rightarrow x_{p,i}$

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

 x_i in position $p \rightarrow x_{p,i}$

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

 x_i in position $p \rightarrow x_{p,i}$

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

We only know how to multilinearise formulas when the degree is small [Raz].

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

[Tavenas, Limaye, Srinivasan]

Any homogeneous non-commutative formula computing $IMM_{n,n}$ must have size $n^{\Omega(\log \log n)}$.

Definitions

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^* X_2^* \cdots X_m^*$.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^* X_2^* \cdots X_m^*$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

Definitions Let $\{X_1, \ldots, X_m\}$ be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form $X_1^* X_2^* \cdots X_m^*$. Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between *abecedarian* formulas and ABPs.

Variables can be partitioned into buckets such that every variable in position *i* is from bucket *i*.

$$\operatorname{Det}_n(\mathbf{x}) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\mathrm{Det}_n(\mathbf{x})$

$$\operatorname{Perm}_n(\mathbf{x}) = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$

$$\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i \in [n]}$ where $X_i = \{x_{ij}\}_{j \in [n]}$	$\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(x)$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$\mathrm{ESYM}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \ldots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

Buckets	Example
$\{X_i\}_{i \in [n]}$ where $X_i = \{x_{ij}\}_{j \in [n]}$	$\operatorname{Det}_n(x), \operatorname{Perm}_n(x)$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x}), ext{ESYM}_{n,d}(\mathbf{x})$

Variables in every monomial arranged in non-decreasing order of bucket indices.

$$f(\mathbf{x}) \qquad \xrightarrow{\text{Order the monomials}}_{\text{in ascending order}} \qquad f^{(nc)}(\mathbf{x})$$

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x}), ext{ESYM}_{n,d}(\mathbf{x})$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Buckets	Example
$\{X_i\}_{i \in [n]}$ where $X_i = \{x_{ij}\}_{j \in [n]}$	$\mathrm{Det}_n(\mathbf{x}), \mathrm{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$\mathrm{CHSYM}_{n,d}(x), \mathrm{ESYM}_{n,d}(x)$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Note:

$$ext{ESYM}_{n,d}^{(\text{ord})} = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1}^{(1)} \cdots x_{i_d}^{(d)}$$

is abecedarian w.r.t. both
$$\left\{X_k = \left\{x_i^{(k)}\right\}_{i \in [n]}\right\}_{k \in [d]}$$
 as well as $\left\{X_i = \left\{x_i^{(k)}\right\}_{k \in [d]}\right\}_{i \in [n]}$

Abecedarian Polynomials: Non-commutative polynomials in which variables in every monomial arranged in non-decreasing order of bucket indices.

Buckets	Example
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_{ij}\}_{j\in[n]}$	$\operatorname{Det}_n(\mathbf{x}), \operatorname{Perm}_n(\mathbf{x})$
$\{X_i\}_{i\in[n]}$ where $X_i = \{x_i\}$	$ ext{CHSYM}_{n,d}(\mathbf{x}), ext{ESYM}_{n,d}(\mathbf{x})$
	Non-Commutative version of any $f \in \mathbb{F}[x_1, \dots, x_n]$

Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes them naturally compute abecedarian polynomials.

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

• Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(\mathbf{x}) has size $n^{\Omega(\log \log n)}$.

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(\mathbf{x}) has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes linked_CHSYM_{n,log n}(**x**).

$$\mathsf{linked_CHSYM}_{n,d}(\mathbf{x}) = \sum_{i_0=1}^n \left(\sum_{i_0 \le i_1 \le \dots \le i_d \le n} x_{i_0,i_1} \cdot x_{i_1,i_2} \cdots x_{i_{d-1},i_d} \right)$$

- Abecedarian with respect to $\{X_i : 1 \le i \le n\}$ where $X_i = \{x_{ij} : 1 \le j \le n\}$.
- There is an abecedarian ABP of size O(nd) that computes linked_CHSYM_{n,d}(x).
- Any abecedarian formula computing linked_CHSYM_{n,log n}(\mathbf{x}) has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes linked_CHSYM_{n,log n}(**x**).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of size $O(\log n)$, then it can be converted into an abecedarian formula of size poly(s).

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.

• Use the lower bound against homogeneous multilinear formulas for $\text{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.

- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(\mathbf{x})$.
- Use the lower bound against homogeneous multilinear formulas for $\text{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

• Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.

$$\text{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 \le \dots \le i_d \le n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $\text{CHSYM}_{n/2,n/2}(\mathbf{x})$.
- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(\mathbf{x})$.
- Use the lower bound against homogeneous multilinear formulas for $\text{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.

$$ext{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $\text{CHSYM}_{n/2,n/2}(\mathbf{x})$.
- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(\mathbf{x})$.
- Use the lower bound against homogeneous multilinear formulas for $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.
- There is a small homogeneous abecedarian formula computing $\operatorname{CHSYM}_{n/2,\log n}(\mathbf{x})$.

$$ext{CHSYM}_{n,d}(\mathbf{x}) = \sum_{1 \leq i_1 \leq \ldots \leq i_d \leq n} x_{i_1} \cdots x_{i_d}$$

- There is a small homogeneous abecedarian formula computing $CHSYM_{n/2,n/2}(\mathbf{x})$.
- There is a small homogeneous multilinear formula computing $\text{ESYM}_{n,n/2}(\mathbf{x})$.
- Use the lower bound against homogeneous multilinear formulas for $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

- Assume that there is a small abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.
- Convert to a small homogeneous structured abecedarian formula computing $h_{n/2,\log n}(\mathbf{x})$.
- There is a small homogeneous abecedarian formula computing $\operatorname{CHSYM}_{n/2,\log n}(\mathbf{x})$.

If there is a homogeneous structured abecedarian formula of size s computing $h_{n/2,d}(\mathbf{x})$ and a homogeneous abecedarian formula of size s' computing $\text{CHSYM}_{n/2,d'}(\mathbf{x})$, then there is a homogeneous abecedarian formula computing $\text{CHSYM}_{n/2,d\cdot d'}(\mathbf{x})$ of size $s \cdot s'$.

- There is a small homogeneous abecedarian formula computing $\text{CHSYM}_{n/2,n/2}(\mathbf{x})$.
- There is a small homogeneous multilinear formula computing $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$.
- Use the lower bound against homogeneous multilinear formulas for $\mathrm{ESYM}_{n,n/2}(\mathbf{x})$ [HY11].

1. Let \mathcal{F} be a formula computing an abecedarian polynomial.

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert ${\mathcal F}$ into an abecedarian circuit ${\mathcal C}.$

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 3. Unravel C to get a syntactiaclly abecedarian formula \mathcal{F}' computing the same polynomial.

- 1. Let \mathcal{F} be a formula computing an abecedarian polynomial.
- 2. Convert \mathcal{F} into an abecedarian circuit \mathcal{C} .
- 3. Unravel C to get a syntactiaclly abecedarian formula \mathcal{F}' computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to *multilinearise* formulas. This is why the transformation is efficient only when the number of buckets in the partition is small.

• Can we prove an $n^{\Omega(\log d)}$ lower bound against homogeneous formulas?

- Can we prove an $n^{\Omega(\log d)}$ lower bound against homogeneous formulas?
- Can we prove a super-polynomial lower bound against homogeneous formulas for a polynomial of degree log *n*?

- Can we prove an $n^{\Omega(\log d)}$ lower bound against homogeneous formulas?
- Can we prove a super-polynomial lower bound against homogeneous formulas for a polynomial of degree log *n*?
- Can we prove a super-polynomial lower bound against abecedarian formulas for a polynomial when the partition size is $O(\log n)$?

- Can we prove an $n^{\Omega(\log d)}$ lower bound against homogeneous formulas?
- Can we prove a super-polynomial lower bound against homogeneous formulas for a polynomial of degree log *n*?
- Can we prove a super-polynomial lower bound against abecedarian formulas for a polynomial when the partition size is $O(\log n)$?
- Can ideas from [Raz] or [DMPY] be modified to work for the non-commutative setting?

Thank you!