
Separating ABPs and some Structured Formulas in the

Non-Commutative Setting

Prerona Chatterjee
Institute of Mathematics, Czech Academy of Sciences

June 29, 2022

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

1

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

1

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

1

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?
VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?
VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?
VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?
VNP

VP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

2

The Current Best Bounds

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing
∑

S⊆[n]
|S|=0.1n

∏
i∈S xi requires Ω(n

2) vertices.

Note: There is a circuit of size O(n log2 n) computing ESYMn,0.1n(x). Therefore this shows a

super-linear separation between formulas and circuits for a multilinear polynomial.

3

The Current Best Bounds

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing
∑

S⊆[n]
|S|=0.1n

∏
i∈S xi requires Ω(n

2) vertices.

Note: There is a circuit of size O(n log2 n) computing ESYMn,0.1n(x). Therefore this shows a

super-linear separation between formulas and circuits for a multilinear polynomial.

3

The Current Best Bounds

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing
∑

S⊆[n]
|S|=0.1n

∏
i∈S xi requires Ω(n

2) vertices.

Note: There is a circuit of size O(n log2 n) computing ESYMn,0.1n(x).

Therefore this shows a

super-linear separation between formulas and circuits for a multilinear polynomial.

3

The Current Best Bounds

General Circuits

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General Formulas

[C-Kumar-She-Volk]: Any formula computing
∑

S⊆[n]
|S|=0.1n

∏
i∈S xi requires Ω(n

2) vertices.

Note: There is a circuit of size O(n log2 n) computing ESYMn,0.1n(x). Therefore this shows a

super-linear separation between formulas and circuits for a multilinear polynomial.

3

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc.

So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆

VBPnc

⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆ VBPnc ⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Lower Bounds for General Models

Circuits [Baur-Strassen]: Ω(n log d) for an n-variate, degree d polynomial.

Formulas [Nisan]: 2Ω(n) for a 2-variate, degree n polynomial in VPnc. So, VFnc ̸= VPnc.

But the proof is via a lower bound against non-commutative Algebraic Branching Programs.

VFnc ⊆ VBPnc ⊆ VPnc

So Nisan actually showed that VBPnc ̸= VPnc.

4

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

Algebraic Branching Programs

s

t

• Label on each edge: Linear polynomials in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

• Size of the ABP: Number of vertices in the ABP

5

The ABP vs Formulas Question

Nisan: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

In comparison, the best lower bound against ABPs in the commutative setting is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
n
i has size Ω(n2).

Since VFnc ⊆ VBPnc, this gives an exponential lower bound against VFnc.

The Question[Nisan]: Is VBPnc = VFnc?

6

The ABP vs Formulas Question

Nisan: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

In comparison, the best lower bound against ABPs in the commutative setting is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
n
i has size Ω(n2).

Since VFnc ⊆ VBPnc, this gives an exponential lower bound against VFnc.

The Question[Nisan]: Is VBPnc = VFnc?

6

The ABP vs Formulas Question

Nisan: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

Since Paln(x0, x1) can be computed by a non-commutative circuit of size O(n), VBPnc ̸= VPnc.

Since VFnc ⊆ VBPnc, this gives an exponential lower bound against VFnc.

The Question[Nisan]: Is VBPnc = VFnc?

6

The ABP vs Formulas Question

Nisan: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

Since Paln(x0, x1) can be computed by a non-commutative circuit of size O(n), VBPnc ̸= VPnc.

Since VFnc ⊆ VBPnc, this gives an exponential lower bound against VFnc.

The Question[Nisan]: Is VBPnc = VFnc?

6

The ABP vs Formulas Question

Nisan: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

Since Paln(x0, x1) can be computed by a non-commutative circuit of size O(n), VBPnc ̸= VPnc.

Since VFnc ⊆ VBPnc, this gives an exponential lower bound against VFnc.

The Question[Nisan]: Is VBPnc = VFnc?

6

Possible Approaches

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

xi in position p → xp,i

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

We only know how to multilinearise formulas when the degree is small [Raz].

7

Possible Approaches

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

xi in position p → xp,i

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

We only know how to multilinearise formulas when the degree is small [Raz].

7

Possible Approaches

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

xi in position p → xp,i

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

We only know how to multilinearise formulas when the degree is small [Raz].

7

Possible Approaches

[Hrubes-Yehudayoff, Raz, Dvir-Malod-Perifel-Yehudayoff]

We know how to prove lower bounds against multilinear formulas.

• It is easy to view non-commutative polynomials as commutative multilinear polynomials:

xi in position p → xp,i

• It is easy to view multilinear polynomials as non-commutative polynomials:

in each monomial, order the variables in ascending order

We only know how to multilinearise formulas when the degree is small [Raz].

7

The Homogeneous Case

xi in position p → xp,i

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

[Tavenas, Limaye, Srinivasan]

Any homogeneous non-commutative formula computing IMMn,n must have size nΩ(log log n).

8

The Homogeneous Case

xi in position p → xp,i

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

[Tavenas, Limaye, Srinivasan]

Any homogeneous non-commutative formula computing IMMn,n must have size nΩ(log log n).

8

The Homogeneous Case

xi in position p → xp,i

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

[Tavenas, Limaye, Srinivasan]

Any homogeneous non-commutative formula computing IMMn,n must have size nΩ(log log n).

8

The Homogeneous Case

xi in position p → xp,i

Any non-commutative formula is automatically multilinear, in fact set-multilinear.

Unclear how to use the previous known techniques even in this case.

[Tavenas, Limaye, Srinivasan]

Any homogeneous non-commutative formula computing IMMn,n must have size nΩ(log log n).

8

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions

Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Main Result

Note: Every monomial in a non-commutative polynomial f (x1, . . . , xn) can be thought of as a

word over the underlying variables {x1, . . . , xn}.

Definitions Let {X1, . . . ,Xm} be a partition of the variables into buckets.

Abecedarian Polynomials: Polynomials in which every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Syntactically Abecedarian Formulas: Non-commutative formulas with a syntactic restriction

that makes them naturally compute abecedarian polynomials.

Main Result:

There is a tight superpolynomial separation between abecedarian formulas and ABPs.

9

Abecedarian Polynomials

Generalises the notion of ordered polynomials ([Hrubes-Wigderson-Yehudayoff]).

Variables can be partitioned into buckets such that every variable in position i is from bucket i .

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Generalises the notion of ordered polynomials ([Hrubes-Wigderson-Yehudayoff]).

Variables can be partitioned into buckets such that every variable in position i is from bucket i .

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Generalises the notion of ordered polynomials ([Hrubes-Wigderson-Yehudayoff]).

Detn(x) =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Generalises the notion of ordered polynomials ([Hrubes-Wigderson-Yehudayoff]).

Permn(x) =
∑
σ∈Sn

x1,σ(1) · · · xn,σ(n)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Generalises the notion of ordered polynomials ([Hrubes-Wigderson-Yehudayoff]).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

ESYMn,d(x) =
∑

1≤i1<...<id≤n

xi1 · · · xid

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Variables in every monomial arranged in non-decreasing order of bucket indices.

f (x)
Order the monomials−−−−−−−−−−−−→
in ascending order

f (nc)(x)

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

10

Abecedarian Polynomials

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

Note:

ESYM
(ord)
n,d =

∑
1≤i1<...<id≤n

x
(1)
i1

· · · x (d)id

is abecedarian w.r.t. both

{
Xk =

{
x
(k)
i

}
i∈[n]

}
k∈[d]

as well as

{
Xi =

{
x
(k)
i

}
k∈[d]

}
i∈[n]

.

10

Abecedarian Polynomials

Abecedarian Polynomials: Non-commutative polynomials in which variables in every monomial

arranged in non-decreasing order of bucket indices.

Buckets Example

{Xi}i∈[n] where Xi = {xij}j∈[n] Detn(x), Permn(x)

{Xi}i∈[n] where Xi = {xi}
CHSYMn,d(x), ESYMn,d(x)

Non-Commutative version of any f ∈ F[x1, . . . , xn]

Abecedarian Formulas: Non-commutative formulas with a syntactic restriction that makes

them naturally compute abecedarian polynomials.

10

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.

• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

The Explicit Statement

linked CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id



• Abecedarian with respect to {Xi : 1 ≤ i ≤ n} where Xi = {xij : 1 ≤ j ≤ n}.
• There is an abecedarian ABP of size O(nd) that computes linked CHSYMn,d(x).

• Any abecedarian formula computing linked CHSYMn,log n(x) has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes linked CHSYMn,log n(x).

If a formula of size s computes a polynomial that is abecedarian with respect to a partition of

size O(log n), then it can be converted into an abecedarian formula of size poly(s).

11

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea of the Abecedarian Formula Lower Bound

• Assume that there is a small abecedarian formula computing hn/2,log n(x).

• Convert to a small homogeneous structured abecedarian formula computing hn/2,log n(x).

• There is a small homogeneous abecedarian formula computing CHSYMn/2,log n(x).

If there is a homogeneous structured abecedarian formula of size s computing hn/2,d(x) and a

homogeneous abecedarian formula of size s ′ computing CHSYMn/2,d′(x), then there is a

homogeneous abecedarian formula computing CHSYMn/2,d·d′(x) of size s · s ′.

• There is a small homogeneous abecedarian formula computing CHSYMn/2,n/2(x).

• There is a small homogeneous multilinear formula computing ESYMn,n/2(x).

• Use the lower bound against homogeneous multilinear formulas for ESYMn,n/2(x) [HY11].

12

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.
3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

13

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.

3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

13

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.
3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

13

Proof Idea for Converting Formulas into Abecedarian Ones

1. Let F be a formula computing an abecedarian polynomial.

2. Convert F into an abecedarian circuit C.
3. Unravel C to get a syntactiaclly abecedarian formula F ′ computing the same polynomial.

Note: The last step uses ideas similar to those used by Raz to multilinearise formulas. This is

why the transformation is efficient only when the number of buckets in the partition is small.

13

Back to Nisan’s Question

• Can we prove an nΩ(log d) lower bound against homogeneous formulas?

• Can we prove a super-polynomial lower bound against homogeneous formulas for a

polynomial of degree log n?

• Can we prove a super-polynomial lower bound against abecedarian formulas for a

polynomial when the partition size is O(log n)?

• Can ideas from [Raz] or [DMPY] be modified to work for the non-commutative setting?

14

Back to Nisan’s Question

• Can we prove an nΩ(log d) lower bound against homogeneous formulas?

• Can we prove a super-polynomial lower bound against homogeneous formulas for a

polynomial of degree log n?

• Can we prove a super-polynomial lower bound against abecedarian formulas for a

polynomial when the partition size is O(log n)?

• Can ideas from [Raz] or [DMPY] be modified to work for the non-commutative setting?

14

Back to Nisan’s Question

• Can we prove an nΩ(log d) lower bound against homogeneous formulas?

• Can we prove a super-polynomial lower bound against homogeneous formulas for a

polynomial of degree log n?

• Can we prove a super-polynomial lower bound against abecedarian formulas for a

polynomial when the partition size is O(log n)?

• Can ideas from [Raz] or [DMPY] be modified to work for the non-commutative setting?

14

Back to Nisan’s Question

• Can we prove an nΩ(log d) lower bound against homogeneous formulas?

• Can we prove a super-polynomial lower bound against homogeneous formulas for a

polynomial of degree log n?

• Can we prove a super-polynomial lower bound against abecedarian formulas for a

polynomial when the partition size is O(log n)?

• Can ideas from [Raz] or [DMPY] be modified to work for the non-commutative setting?

14

Thank you!

15

