Lower Bounds Against Non-Commutative Models of Algebraic Computation

Prerona Chatterjee [includes joint work with Pavel Hrubeš (Institute of Mathematics, CAS)]
Tel Aviv University
March 22, 2023

Algebraic Circuit Complexity

$$
P \stackrel{?}{=} \mathrm{NP}
$$

Algebraic Circuit Complexity

$$
P \stackrel{?}{=} \mathrm{NP}
$$

- NP $\stackrel{?}{=} \mathrm{co}-\mathrm{NP}$

Algebraic Circuit Complexity

$$
P \stackrel{?}{=} \mathrm{NP}
$$

- NP $\stackrel{?}{=} \mathrm{co}-\mathrm{NP}$
- Is MCSP NP-hard?

Algebraic Circuit Complexity

$$
P \stackrel{?}{=} \mathrm{NP}
$$

- NP $\stackrel{?}{=} \mathrm{co}-\mathrm{NP}$
- Is MCSP NP-hard?

$$
\text { Algebraic Circuit Complexity : VP } \stackrel{?}{=} \text { VNP }
$$

Algebraic Circuit Complexity

$$
\mathrm{P} \stackrel{?}{=} \mathrm{NP}
$$

- NP ? $\stackrel{?}{=}$ co - NP
- Is MCSP NP-hard?

$$
\begin{gathered}
\text { Algebraic Circuit Complexity : VP } \stackrel{?}{=} \text { VNP } \\
V P=V N P \stackrel{G R H}{ } P=N P
\end{gathered}
$$

Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

Algebraic Circuits

Objects of Study

Polynomials over n variables of degree d.

Easy: Most polynomials require $\exp (n, d)$ sized circuits.

Algebraic Circuits

Objects of Study

Polynomials over n variables of degree d.

Easy: Most polynomials require $\exp (n, d)$ sized circuits.

Central Question

$\mathrm{VP} \stackrel{?}{=} \mathrm{VNP}$: Find explicit polynomials that cannot be computed by circuits of size poly (n, d).

What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d \times p(-O(\Delta))}$.

What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp (-O(\Delta))}}$.

In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma \Pi \Sigma$.

What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp (-O(\Delta))}}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma \Pi \Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma \Pi \Sigma \Pi$ of size $s^{O(\sqrt{d})}$.

What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d \times p(-O(\Delta))}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma \Pi \Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma \Pi \Sigma \Pi$ of size $s^{O(\sqrt{d})}$. [Gupta-Kamath-Kayal-Saptharishi]: Size s circuits can be converted to $\Sigma \Pi \Sigma$ of size $s^{O(\sqrt{d})}$.

What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d \times p(-O(\Delta))}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma \Pi \Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma \Pi \Sigma \Pi$ of size $s^{O(\sqrt{d})}$. [Gupta-Kamath-Kayal-Saptharishi]: Size s circuits can be converted to $\Sigma \Pi \Sigma$ of size $s^{O(\sqrt{d})}$.

The General Setting

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ has size at least $\Omega(n \log d)$.

Other Important Models of Algebraic Computations

Other Important Models of Algebraic Computations

$$
\alpha_{1}\left(x_{1}+x_{2}\right)\left(x_{3}+\alpha\right)+\left(x_{1}+x_{2}\right)\left(\alpha_{2} x_{2}+\alpha\right)
$$

Other Important Models of Algebraic Computations

$$
\alpha_{1}\left(x_{1}+x_{2}\right)\left(x_{3}+\alpha\right)+\left(x_{1}+x_{2}\right)\left(\alpha_{2} x_{2}+\alpha\right)
$$

Other Important Models of Algebraic Computations

$$
\alpha_{1}\left(x_{1}+x_{2}\right)\left(x_{3}+\alpha\right)+\left(x_{1}+x_{2}\right)\left(\alpha_{2} x_{2}+\alpha\right)
$$

Other Important Models of Algebraic Computations

$$
\alpha_{1}\left(x_{1}+x_{2}\right)\left(x_{3}+\alpha\right)+\left(x_{1}+x_{2}\right)\left(\alpha_{2} x_{2}+\alpha\right)
$$

Are the inclusions tight?

What is Known?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$

What is Known?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $\mathrm{VF}=\mathrm{VF}_{\log d}$ [Limaye-Srinivasan-Tavenas]

- For any constant $\Gamma, \mathrm{VF}_{\Gamma-1} \subsetneq \mathrm{VF}_{\Gamma}$.

What is Known?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$ [Limaye-Srinivasan-Tavenas]

- For any constant $\Gamma, \mathrm{VF}_{\Gamma-1} \subsetneq \mathrm{VF}_{\Gamma}$.
- For any $\Gamma=o(\log \log d), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.

What is Known?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$

> [Limaye-Srinivasan-Tavenas]

- For any constant $\Gamma, \mathrm{VF}_{\Gamma-1} \subsetneq \mathrm{VF}_{\Gamma}$.
- For any $\Gamma=o(\log \log d), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.

[C-Kumar-She-Volk]

There is a polynomial over n variables of degree n s.t.

- it can be computed by a circuit of size $O\left(n \log ^{2} n\right)$
- any formula/layered ABP computing it must have size at least $\Omega\left(n^{2}\right)$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

The Non-Commutative Setting

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$
[Tavenas-Limaye-Srinivasan]

- For any $\Gamma=O(\sqrt{\log d}), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$
[Tavenas-Limaye-Srinivasan]

- For any $\Gamma=O(\sqrt{\log d}), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.
- $\mathrm{VF}_{\text {hom }} \subsetneq \mathrm{VBP}_{\text {hom }}$.

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$
[Tavenas-Limaye-Srinivasan]

- For any $\Gamma=O(\sqrt{\log d}), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.
- $\mathrm{VF}_{\text {hom }} \subsetneq \mathrm{VBP}_{\text {hom }}$.
[Nisan]: VBP \subsetneq VP.

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$
[Tavenas-Limaye-Srinivasan]

- For any $\Gamma=O(\sqrt{\log d}), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.
- $\mathrm{VF}_{\text {hom }} \subsetneq \mathrm{VBP}_{\text {hom }}$.

$$
\text { [Nisan]: VBP } \subsetneq \text { VP. }
$$

[Carmossino-Impagliazzo-Lovett-Mihajlin](%5B) Super-linear lower bounds against non-commutative circuits for constant degree polynomials $\Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.

We should be able to...

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF $=\mathrm{VF}_{\log d}$
[Tavenas-Limaye-Srinivasan]

- For any $\Gamma=O(\sqrt{\log d}), \mathrm{VF}_{\Gamma} \subsetneq \mathrm{VBP}$.
- $\mathrm{VF}_{\text {hom }} \subsetneq \mathrm{VBP}_{\text {hom }}$.

$$
\text { [Nisan]: VBP } \subsetneq \text { VP. }
$$

[Carmossino-Impagliazzo-Lovett-Mihajlin](%5B) Super-linear lower bounds against non-commutative circuits for constant degree polynomials $\Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
$\mathrm{VP} \stackrel{?}{=} \mathrm{VNP}$ in the
Non-Commutative Setting

A New Lower Bound

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

A New Lower Bound

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

A New Lower Bound

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Theorem [C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

A New Lower Bound

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.
Can we do better at least in the homogeneous case?

Theorem [C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.
Further, there is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes $\operatorname{OSym}_{n, n / 2}(\mathbf{x})$.

Usual Template for Proving
Algebraic Circuit Lower Bounds

The Measure

Usual Template for Proving
 Algebraic Circuit Lower Bounds

Define a measure μ such that

The Measure

Usual Template for Proving
 Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d) ;
$$

leading to a lower bound on s.

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

The Measure we Use

f : Hom. non-commutative polynomial of degree d.

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d) ;
$$

leading to a lower bound on s.

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d) ;
$$

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d)
$$

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right)
$$

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d)
$$

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right)
$$

Example:

$f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1}$

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d) ;
$$

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

Example:

$$
f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1} \Longrightarrow f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1} .
$$

The Measure

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

- for any polynomial F computed by an s-sized instance of the model,

$$
\mu(F) \leq f(n, d, s)
$$

- for the hard polynomial, F_{0},

$$
\mu\left(F_{0}\right) \geq f_{0}(n, d)
$$

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right)
$$

Example:

$$
f=x_{1} \cdots x_{d}+x_{d} \cdots x_{1} \Longrightarrow f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1} .
$$

Main Lemma: For any F that is computable by a homogeneous non-commutative circuit of size s,

$$
\mu(F) \leq s
$$

Proof Overview

1. [Hom. version of [Baur-Strassen]] If $F\left(x_{1}, \ldots, x_{n}\right)$ is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in $\left\{\partial_{1, x_{1}} F, \ldots, \partial_{1, x_{n}} F\right\}$ are simultaneously computable by a homogeneous (non-commutative) circuit of size $5 s$.

Proof Overview

1. [Hom. version of [Baur-Strassen]] If $F\left(x_{1}, \ldots, x_{n}\right)$ is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in $\left\{\partial_{1, x_{1}} F, \ldots, \partial_{1, x_{n}} F\right\}$ are simultaneously computable by a homogeneous (non-commutative) circuit of size 5 s .
2. Since the polynomials in $\left\{\partial_{1, x_{1}} F, \ldots, \partial_{1, x_{n}} F\right\}$ are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(\partial_{1, x_{1}} F, \ldots, \partial_{1, x_{n}} F\right) \leq s
$$

Proof Overview

1. [Hom. version of [Baur-Strassen]] If $F\left(x_{1}, \ldots, x_{n}\right)$ is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in $\left\{\partial_{1, x_{1}} F, \ldots, \partial_{1, \chi_{n}} F\right\}$ are simultaneously computable by a homogeneous (non-commutative) circuit of size $5 s$.
2. Since the polynomials in $\left\{\partial_{1, \chi_{1}} F, \ldots, \partial_{1, \chi_{n}} F\right\}$ are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(\partial_{1, x_{1}} F, \ldots, \partial_{1, x_{n}} F\right) \leq s
$$

3. For $F_{0}=\operatorname{OSym}_{n, d}(\mathbf{x})$,

$$
\mu\left(\partial_{1, x_{1}} F_{0}, \ldots, \partial_{1, x_{n}} F_{0}\right) \geq n d
$$

[CILM] and Related Questions

\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right) lower bound for P_{N, D(N)}(\mathbf{x}) \Longrightarrow improved lower bound for Q_{n, d(n)}(\mathbf{x})
\]

where the improvement degrades as $D(N)$ gets larger and approaches N.

[CILM] and Related Questions

[Carmossino-Impagliazzo-Lovett-Mihajlin](%5B):
$\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right)$ lower bound for $P_{N, D(N)}(\mathbf{x}) \Longrightarrow$ improved lower bound for $Q_{n, d(n)}(\mathbf{x})$
where the improvement degrades as $D(N)$ gets larger and approaches N. In particular, for $D(N)=N^{\varepsilon}$, the improved lower bound is worse than $\Omega(n d)$.

[CILM] and Related Questions

[Carmossino-Impagliazzo-Lovett-Mihajlin](%5B):
$\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right)$ lower bound for $P_{N, D(N)}(\mathbf{x}) \Longrightarrow$ improved lower bound for $Q_{n, d(n)}(\mathbf{x})$
where the improvement degrades as $D(N)$ gets larger and approaches N.
In particular, for $D(N)=N^{\varepsilon}$, the improved lower bound is worse than $\Omega(n d)$.

Related Questions:

- Can we show $\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right)$ lower bounds for $D(N)=\operatorname{sub} \operatorname{poly}(N)$?

[CILM] and Related Questions

[Carmossino-Impagliazzo-Lovett-Mihajlin](%5B):
$\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right)$ lower bound for $P_{N, D(N)}(\mathbf{x}) \Longrightarrow$ improved lower bound for $Q_{n, d(n)}(\mathbf{x})$
where the improvement degrades as $D(N)$ gets larger and approaches N.
In particular, for $D(N)=N^{\varepsilon}$, the improved lower bound is worse than $\Omega(n d)$.

Related Questions:

- Can we show $\Omega\left(N^{\frac{\omega}{2}+\varepsilon}\right)$ lower bounds for $D(N)=\operatorname{sub}$ poly (N) ?
- Hardness Amplification statements when $D(N)=\operatorname{super}$ poly (N) ?
$\mathrm{VF} \stackrel{?}{=} \mathrm{VBP}$ in the
Non-Commutative Setting

Nisan's Characterisation

Monomials of degree $d-i$ f is a polynomial of degree d.

Nisan's Characterisation

Monomials of degree $d-i$ f is a polynomial of degree d.

Nisan's Characterisation

Monomials of degree $d-i$

f is a polynomial of degree d.

Nisan (1991): For every $1 \leq i \leq d$, the number of vertices in the i-th layer of the smallest ABP computing f is equal to the rank of $M_{f}(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f}(i)\right)
$$

Nisan's Characterisation

Monomials of degree $d-i$

$$
f \text { is a polynomial of degree } d \text {. }
$$

Nisan (1991): For every $1 \leq i \leq d$, the number of vertices in the i-th layer of the smallest ABP computing f is equal to the rank of $M_{f}(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f}(i)\right)
$$

The Lower Bound: There is a bivariate polynomial of degree $2 d$ such that any formula/ABP computing it has size $\Omega\left(2^{d}\right)$.

Nisan's Characterisation

Monomials of degree $d-i$

$$
f \text { is a polynomial of degree } d \text {. }
$$

Nisan (1991): For every $1 \leq i \leq d$, the number of vertices in the i-th layer of the smallest ABP computing f is equal to the rank of $M_{f}(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f}(i)\right)
$$

The Lower Bound: There is a bivariate polynomial of degree $2 d$ such that any formula/ABP computing it has size $\Omega\left(2^{d}\right)$. That is, $\mathrm{VBP}_{\mathrm{nc}} \subsetneq \mathrm{VP}_{\mathrm{nc}}$.

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF} \mathrm{Fn}_{\mathrm{nc}}[\log d]
$$

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF} \mathrm{Fn}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\begin{gathered}
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF}_{\mathrm{nc}}[\log d] \\
\text { [Tavenas-Limaye-Srinivasan }] \\
\mathrm{VF} \mathrm{nc}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
\end{gathered}
$$

Question: Can this gap be closed?
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree n polynomial.

Progress Towards VF $\stackrel{?}{=}$ VBP

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree n polynomial.
- Proof works in a slightly more general "unordered" setting.

Progress Towards VF $\stackrel{?}{=}$ VBP

Nisan's Question: $\mathrm{VF}_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF} \mathrm{Fn}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree n polynomial.
- Proof works in a slightly more general " unordered" setting.
[Cha]: $\mathrm{VF}_{\text {abcd }} \subsetneq \mathrm{VBP}$.

Progress Towards VF $\stackrel{?}{=}$ VBP

Nisan's Question: $V F_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF} \mathrm{Fn}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \mathrm{hom}} \subsetneq \mathrm{VBP}$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree n polynomial.
- Proof works in a slightly more general " unordered" setting.

$$
\text { [Cha]: } \mathrm{VF}_{\mathrm{abcd}} \subsetneq \mathrm{VBP} .
$$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree $\log n$ polynomial.

Progress Towards VF $\stackrel{?}{=}$ VBP

Nisan's Question: $V F_{\mathrm{nc}} \stackrel{?}{=} \mathrm{VBP}_{\mathrm{nc}}$
[Fournier-Limaye-Malod-Srinivasan-Tavenas]

$$
\mathrm{VF}_{\mathrm{nc}}=\mathrm{VF} \mathrm{Fn}_{\mathrm{nc}}[\log d]
$$

[Tavenas-Limaye-Srinivasan]

$$
\mathrm{VF}_{\mathrm{nc}}[\sqrt{\log d}] \subsetneq \mathrm{VBP} .
$$

Question: Can this gap be closed?
[Tavenas-Limaye-Srinivasan]: $\mathrm{VF}_{\mathrm{nc}, \text { hom }} \subsetneq \mathrm{VBP}$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree n polynomial.
- Proof works in a slightly more general " unordered" setting.

$$
\text { [Cha]: } \mathrm{VF}_{\mathrm{abcd}} \subsetneq \mathrm{VBP} .
$$

- The lower bound is $n^{\Omega(\log \log n)}$ for a degree $\log n$ polynomial.
- Number of buckets is n.

Open Threads

1. Are there VP natural proofs for $\mathrm{VP}_{\mathrm{nc}}$?

Open Threads

1. Are there VP natural proofs for $\mathrm{VP}_{\mathrm{nc}}$?
2. Further connections between proof complexity lower bounds and lower bounds in the algebraic non-commutative setting.

Open Threads

1. Are there VP natural proofs for $\mathrm{VP}_{\mathrm{nc}}$?
2. Further connections between proof complexity lower bounds and lower bounds in the algebraic non-commutative setting.

Thank you!

