Lower Bounds Against Non-Commutative Models of Algebraic Computation

Prerona Chatterjee [includes joint work with Pavel Hrubeš (Institute of Mathematics, CAS)] Tel Aviv University

March 22 , 2023

$$P \stackrel{?}{=} NP$$

$$P \stackrel{?}{=} NP$$

• NP
$$\stackrel{?}{=}$$
 co - NP

$$\mathsf{P} \stackrel{?}{=} \mathsf{N}\mathsf{P}$$

• NP
$$\stackrel{?}{=}$$
 co - NP

• Is MCSP NP-hard?

$$P \stackrel{?}{=} NP$$

• NP
$$\stackrel{?}{=}$$
 co - NP

• Is MCSP NP-hard?

Algebraic Circuit Complexity : $VP \stackrel{?}{=} VNP$

$$\mathsf{P} \stackrel{?}{=} \mathsf{N}\mathsf{P}$$

• NP
$$\stackrel{?}{=}$$
 co - NP

• Is MCSP NP-hard?

Algebraic Circuit Complexity : $VP \stackrel{?}{=} VNP$

$$VP = VNP \implies P = NP$$

Objects of Study Polynomials over n variables of degree d.

$$\alpha_1(x_1 + x_2)(x_3 + \alpha) + (x_1 + x_2)(\alpha_2 x_2 + \alpha$$

Objects of Study Polynomials over *n* variables of degree *d*.

Easy: Most polynomials require exp(n, d) sized circuits.

$$\alpha_1(x_1 + x_2)(x_3 + \alpha) + (x_1 + x_2)(\alpha_2 x_2 + \alpha$$

Objects of Study Polynomials over *n* variables of degree *d*.

Easy: Most polynomials require exp(n, d) sized circuits.

Central Question

 $VP \stackrel{?}{=} VNP$: Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).

[Limaye-Srinivasan-Tavenas]: There exists an explicit *n*-variate degree *d* polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp(-O(\Delta))}}$.

[Limaye-Srinivasan-Tavenas]: There exists an explicit *n*-variate degree *d* polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp(-O(\Delta))}}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma\Pi\Sigma$.

[Limaye-Srinivasan-Tavenas]: There exists an explicit *n*-variate degree *d* polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp(-O(\Delta))}}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma\Pi\Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma\Pi\Sigma\Pi$ of size $s^{O(\sqrt{d})}$.

[Limaye-Srinivasan-Tavenas]: There exists an explicit *n*-variate degree *d* polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp(-O(\Delta))}}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma\Pi\Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma\Pi\Sigma\Pi$ of size $s^{O(\sqrt{d})}$. [Gupta-Kamath-Kayal-Saptharishi]: Size s circuits can be converted to $\Sigma\Pi\Sigma$ of size $s^{O(\sqrt{d})}$.

[Limaye-Srinivasan-Tavenas]: There exists an explicit *n*-variate degree *d* polynomial in VP such that any product-depth Δ circuit computing it must have size $n^{d^{\exp(-O(\Delta))}}$. In particular, the lower bound is $n^{\Omega(\sqrt{d})}$ for $\Sigma\Pi\Sigma$.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) $\Sigma\Pi\Sigma\Pi$ of size $s^{O(\sqrt{d})}$. [Gupta-Kamath-Kayal-Saptharishi]: Size s circuits can be converted to $\Sigma\Pi\Sigma$ of size $s^{O(\sqrt{d})}$.

The General Setting

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ has size at least $\Omega(n \log d)$.

Other Important Models of Algebraic Computations

Are the inclusions tight?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Limaye-Srinivasan-Tavenas]

• For any constant $\Gamma, \, \mathsf{VF}_{\Gamma-1} \subsetneq \mathsf{VF}_{\Gamma}.$

What is Known?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Limaye-Srinivasan-Tavenas]

- For any constant $\Gamma, \, \mathsf{VF}_{\Gamma-1} \subsetneq \mathsf{VF}_{\Gamma}.$
- For any $\Gamma = o(\log \log d)$, $VF_{\Gamma} \subsetneq VBP$.

 $[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF = VF_{\log d}$

[Limaye-Srinivasan-Tavenas]

- For any constant $\Gamma, \, \mathsf{VF}_{\Gamma-1} \subsetneq \mathsf{VF}_{\Gamma}.$
- For any $\Gamma = o(\log \log d)$, $VF_{\Gamma} \subsetneq VBP$.

[C-Kumar-She-Volk]

There is a polynomial over n variables of degree n s.t.

- it can be computed by a circuit of size $O(n \log^2 n)$
- any formula/layered ABP computing it must have size at least $\Omega(n^2)$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Tavenas-Limaye-Srinivasan]

• For any
$$\Gamma = O(\sqrt{\log d})$$
, $VF_{\Gamma} \subsetneq VBP$.

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Tavenas-Limaye-Srinivasan]

- For any $\Gamma = O(\sqrt{\log d})$, $VF_{\Gamma} \subsetneq VBP$.
- $VF_{hom} \subsetneq VBP_{hom}$.

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Tavenas-Limaye-Srinivasan]

- For any $\Gamma = O(\sqrt{\log d})$, $VF_{\Gamma} \subsetneq VBP$.
- $VF_{hom} \subsetneq VBP_{hom}$.

[Nisan]: VBP \subsetneq VP.

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Tavenas-Limaye-Srinivasan]

- For any $\Gamma = O(\sqrt{\log d})$, $VF_{\Gamma} \subsetneq VBP$.
- $VF_{hom} \subsetneq VBP_{hom}$.

[Nisan]: VBP \subsetneq VP.

 $\label{eq:carmossino-Impagliazzo-Lovett-Mihajlin]} \end{tabular}$ Super-linear lower bounds against non-commutative circuits for constant degree polynomials $\implies \mathsf{VP} \neq \mathsf{VNP}.$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: $VF = VF_{\log d}$

[Tavenas-Limaye-Srinivasan]

- For any $\Gamma = O(\sqrt{\log d})$, $VF_{\Gamma} \subsetneq VBP$.
- $VF_{hom} \subsetneq VBP_{hom}$.

 $[\mathsf{Nisan}]: \mathsf{VBP} \subsetneq \mathsf{VP}.$

 $\label{eq:carmossino-Impagliazzo-Lovett-Mihajlin]} \end{tabular}$ Super-linear lower bounds against non-commutative circuits for constant degree polynomials $\implies \mathsf{VP} \neq \mathsf{VNP}.$

$VP \stackrel{?}{=} VNP$ in the Non-Commutative Setting

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Can we do better at least in the homogeneous case?

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Can we do better at least in the homogeneous case?

Theorem [C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$.

The best lower bound against NC circuits continues to be $\Omega(n \log d)$.

Can we do better at least in the homogeneous case?

Theorem [C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. Further, there is a non-commutative circuit of size $O(n \log^2 n)$ that computes $OSym_{n,n/2}(\mathbf{x})$. Usual Template for Proving Algebraic Circuit Lower Bounds

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure $\boldsymbol{\mu}$ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n, d, s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

f: Hom. non-commutative polynomial of degree d.

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

f: Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

f: Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

$$\mu(f) = \mathsf{rank}\left(\mathsf{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \dots, f^{(d)}\right\}\right)\right).$$

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

f: Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

$$\mu(f) = \operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \dots, f^{(d)}\right\}\right)\right).$$

Example:

 $f = x_1 \cdots x_d + x_d \cdots x_1$

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

f: Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

$$\mu(f) = \operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \dots, f^{(d)}\right\}\right)\right).$$

Example: $f = x_1 \cdots x_d + x_d \cdots x_1 \implies f^{(1)} = x_1 x_2 + x_d x_{d-1}.$

Usual Template for Proving Algebraic Circuit Lower Bounds

Define a measure μ such that

• for any polynomial *F* computed by an *s*-sized instance of the model,

 $\mu(F) \leq f(n,d,s);$

• for the *hard* polynomial, F_0 ,

 $\mu(F_0) \geq f_0(n,d);$

leading to a lower bound on s.

The Measure we Use

f: Hom. non-commutative polynomial of degree d. $f^{(i)}$: Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

$$\mu(f) = \operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \dots, f^{(d)}\right\}\right)\right).$$

Example: $f = x_1 \cdots x_d + x_d \cdots x_1 \implies f^{(1)} = x_1 x_2 + x_d x_{d-1}.$

Main Lemma: For any F that is computable by a homogeneous non-commutative circuit of size s,

 $\mu(F) \leq s.$

 [Hom. version of [Baur-Strassen]] If F(x₁,...,x_n) is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in {∂_{1,x1}F,...,∂_{1,xn}F} are simultaneously computable by a homogeneous (non-commutative) circuit of size 5s.

- [Hom. version of [Baur-Strassen]] If F(x₁,..., x_n) is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in {∂_{1,x1}F,...,∂_{1,xn}F} are simultaneously computable by a homogeneous (non-commutative) circuit of size 5s.
- Since the polynomials in {∂_{1,×1}F,...,∂_{1,×n}F} are simultaneously computable by a homogeneous non-commutative circuit of size s,

 $\mu(\partial_{1,x_1}F,\ldots,\partial_{1,x_n}F) \leq s$

- [Hom. version of [Baur-Strassen]] If F(x₁,..., x_n) is computable by a homogeneous (non-commutative) circuit of size s, then the polynomials in {∂_{1,x1}F,...,∂_{1,xn}F} are simultaneously computable by a homogeneous (non-commutative) circuit of size 5s.
- Since the polynomials in {∂_{1,×1}F,...,∂_{1,×n}F} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$\mu(\partial_{1,x_1}F,\ldots,\partial_{1,x_n}F)\leq s$$

3. For $F_0 = \operatorname{OSym}_{n,d}(\mathbf{x})$, $\mu(\partial_{1,x_1}F_0, \dots, \partial_{1,x_n}F_0) \ge nd.$

 $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bound for $P_{N,D(N)}(\mathbf{x}) \implies$ improved lower bound for $Q_{n,d(n)}(\mathbf{x})$

where the improvement degrades as D(N) gets larger and approaches N.

 $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bound for $P_{N,D(N)}(\mathbf{x}) \implies$ improved lower bound for $Q_{n,d(n)}(\mathbf{x})$

where the improvement degrades as D(N) gets larger and approaches N.

In particular, for $D(N) = N^{\varepsilon}$, the improved lower bound is worse than $\Omega(nd)$.

 $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bound for $P_{N,D(N)}(\mathbf{x}) \implies$ improved lower bound for $Q_{n,d(n)}(\mathbf{x})$

where the improvement degrades as D(N) gets larger and approaches N.

In particular, for $D(N) = N^{\varepsilon}$, the improved lower bound is worse than $\Omega(nd)$.

Related Questions:

• Can we show $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bounds for $D(N) = \operatorname{sub poly}(N)$?

 $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bound for $P_{N,D(N)}(\mathbf{x}) \implies$ improved lower bound for $Q_{n,d(n)}(\mathbf{x})$

where the improvement degrades as D(N) gets larger and approaches N.

In particular, for $D(N) = N^{\varepsilon}$, the improved lower bound is worse than $\Omega(nd)$.

Related Questions:

- Can we show $\Omega(N^{\frac{\omega}{2}+\varepsilon})$ lower bounds for $D(N) = \operatorname{sub poly}(N)$?
- Hardness Amplification statements when $D(N) = \operatorname{super poly}(N)$?

$VF \stackrel{?}{=} VBP$ in the Non-Commutative Setting

Nisan (1991): For every $1 \le i \le d$, the number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

Nisan (1991): For every $1 \le i \le d$, the number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$size(\mathcal{A}) = \sum_{i=1}^{d} rank(M_f(i)).$$

Nisan (1991): For every $1 \le i \le d$, the number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$size(\mathcal{A}) = \sum_{i=1}^{d} rank(M_f(i)).$$

The Lower Bound: There is a bivariate polynomial of degree 2*d* such that any formula/ABP computing it has size $\Omega(2^d)$.

Nisan (1991): For every $1 \le i \le d$, the number of vertices in the *i*-th layer of the smallest ABP computing *f* is equal to the rank of $M_f(i)$.

If \mathcal{A} is the smallest ABP computing f,

$$size(\mathcal{A}) = \sum_{i=1}^{d} rank(M_f(i)).$$

The Lower Bound: There is a bivariate polynomial of degree 2*d* such that any formula/ABP computing it has size $\Omega(2^d)$. That is, VBP_{nc} \subsetneq VP_{nc}.

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

• The lower bound is *n*^{Ω(log log n)} for a degree *n* polynomial.

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

- The lower bound is *n*^{Ω(log log n)} for a degree *n* polynomial.
- Proof works in a slightly more general "unordered" setting.

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

- The lower bound is *n*^{Ω(log log n)} for a degree *n* polynomial.
- Proof works in a slightly more general "unordered" setting.

[Cha]: $VF_{abcd} \subsetneq VBP$.

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

- The lower bound is *n*^{Ω(log log n)} for a degree *n* polynomial.
- Proof works in a slightly more general "unordered" setting.

[Cha]: $VF_{abcd} \subsetneq VBP$.

The lower bound is n^{Ω(log log n)} for a degree log n polynomial.

Nisan's Question:
$$VF_{nc} \stackrel{?}{=} VBP_{nc}$$

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

 $VF_{nc} = VF_{nc}[\log d]$

[Tavenas-Limaye-Srinivasan]

 $VF_{nc}[\sqrt{\log d}] \subsetneq VBP.$

Question: Can this gap be closed?

 $[\mathsf{Tavenas-Limaye-Srinivasan}]: \ \mathsf{VF}_{\mathsf{nc},\mathsf{hom}} \subsetneq \mathsf{VBP}$

- The lower bound is *n*^{Ω(log log n)} for a degree *n* polynomial.
- Proof works in a slightly more general "unordered" setting.

[Cha]: $VF_{abcd} \subsetneq VBP$.

- The lower bound is n^{Ω(log log n)} for a degree log n polynomial.
- Number of buckets is *n*.

1. Are there VP natural proofs for VP_{nc} ?

- 1. Are there VP natural proofs for VP_{nc} ?
- 2. Further connections between proof complexity lower bounds and lower bounds in the algebraic non-commutative setting.

- 1. Are there VP natural proofs for VP_{nc} ?
- 2. Further connections between proof complexity lower bounds and lower bounds in the algebraic non-commutative setting.

Thank you!