Lower Bounds against Ordered Set-Multilinear ABPs

Prerona Chatterjee [with Deepanshu Kush, Shubhangi Saraf and Amir Shpilka]

September 17, 2024

• Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path $p = wt(p)$: Product of the edge labels on p

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path $p = wt(p)$: Product of the edge labels on p
- \bullet Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathsf{x}) = \sum_{p} \mathsf{wt}(p)$

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path $p = wt(p)$: Product of the edge labels on p
- \bullet Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathsf{x}) = \sum_{p} \mathsf{wt}(p)$

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log\log n}\right)\implies$ super-polynomial lower bound against ABPs. **[C-Kumar-She-Volk 22]**: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log\log n}\right)\implies$ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(x)$ which is set-multilinear w.r.t ${\sf x}=\{{\sf x}_1,\ldots,{\sf x}_d\}$, where $|{\sf x}_i|\leq n$ for every $i\in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n) ,
- any \sum osmABP computing $G_{n,d}$ must have super-polynomial total-width.

The variable set is divided into buckets.

$$
\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d \quad \text{where} \quad \mathbf{x}_i = \{x_{i,1}, \ldots x_{i,n_i}\}.
$$

The variable set is divided into buckets.

$$
\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d \quad \text{where} \quad \mathbf{x}_i = \{x_{i,1}, \ldots x_{i,n_i}\}.
$$

f is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if

every monomial in f has exactly one variable from x_i for each $i \in [d]$.

The variable set is divided into buckets.

$$
\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d \quad \text{where} \quad \mathbf{x}_i = \{x_{i,1}, \ldots x_{i,n_i}\}.
$$

f is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if

every monomial in f has exactly one variable from x_i for each $i \in [d]$.

An ABP is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if every path in it

computes a set-multilinear monomial with respect to $\{x_1, \ldots, x_d\}$.

- \bullet there are d layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $x_{\sigma(i)}$

- \bullet there are d layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $x_{\sigma(i)}$

 Σ osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

- \bullet there are d layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $x_{\sigma(i)}$

 Σ osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log\log n}\right)\implies$ super-polynomial lower bound against ABPs.

- \bullet there are d layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $x_{\sigma(i)}$

 Σ osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log\log n}\right)\implies$ super-polynomial lower bound against ABPs.

 $[C-K-S-S 24]$: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = \omega(\log n)$ that is computable by polynomial-sized ABPs.

• $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) ,

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) ,
- $G_{n,d}$ can not be computed by a \sum osmABP of total-width poly (n) ,

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) ,
- $G_{n,d}$ can not be computed by a \sum osmABP of total-width poly (n) ,
- \bullet any \sum osmABP of max-width poly (n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)},$

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) ,
- $G_{n,d}$ can not be computed by a \sum osmABP of total-width poly(n),
- \bullet any \sum osmABP of max-width poly (n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)},$
- \bullet any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}.$

[Proof Ideas](#page-21-0)

$$
\mathcal{P}_1=\{(1,2)\}
$$

$$
\mathcal{P}_1=\{(1,2)\}
$$

$$
\mathcal{P}_1=\{(1,2)\}
$$

$$
\mathcal{P}_1=\{(1,2)\}
$$

$$
\mathcal{P}_1 = \{(1, 2)\}\
$$

$$
\mathcal{P}_2 = \{(1, 2), (3, 4)\}\
$$

$$
\mathcal{P}_1 = \{(1, 2)\}\
$$

$$
\mathcal{P}_2 = \{(1, 2), (3, 4)\}\
$$

$$
\mathcal{P}_3 = \{(1, 2), (3, 4), (12, 5)\}\
$$

 $P_1 = \{(1, 2)\}\$ $\mathcal{P}_2 = \{(1, 2), (3, 4)\}\;$ $\mathcal{P}_3 = \{(1, 2), (3, 4), (12, 5)\}\$ $\mathcal{P}_4 = \{(1, 2), (3, 4), (12, 5), (10, 11)\}$

$$
\mathcal{P}_1 = \{(1, 2)\}\
$$

$$
\mathcal{P}_2 = \{(1, 2), (3, 4)\}\
$$

$$
\mathcal{P}_3 = \{(1, 2), (3, 4), (12, 5)\}\
$$

$$
\mathcal{P}_4 = \{(1, 2), (3, 4), (12, 5), (10, 11)\}\
$$

$$
\mathcal{P}_5 = \{(1, 2), (3, 4), (12, 5), (10, 11), (9, 6)\}\
$$

 P_6 = All possibles sequences of such pairs.

The ABP Upper Bound

The ABP Upper Bound

Every path corresponds to an element in $P_{d/2}$.

The Hard Polynomial

 $(y_{3,4}y_{4,3})$: To select.

 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^n x_{3,k}x_{4,k}\right)$: To achieve full-rank.

 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^n x_{3,k}x_{4,k}\right)$: To achieve full-rank.

$$
x_{4,1} \quad x_{4,2} \quad \cdots \quad \cdots \quad x_{4,n}
$$
\n
$$
x_{3,1} \quad 1 \quad 0 \quad \cdots \quad \cdots \quad 0
$$
\n
$$
x_{3,2} \quad 0 \quad 1 \quad \cdots \quad \cdots \quad 0
$$
\n
$$
\vdots \quad \vdots \quad \vdots \quad \vdots
$$
\n
$$
\vdots \quad \vdots \quad \vdots \quad \vdots
$$
\n
$$
x_{3,n} \quad 0 \quad 0 \quad \cdots \quad \cdots \quad 1
$$

f is a set-multilinear poly. w.r.t $\{x_1, \ldots, x_d\}$.

f is a set-multilinear poly. w.r.t $\{x_1, \ldots, x_d\}$.

[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest osm $ABP(\sigma)$ computing f is equal to the rank of $M_{f,\sigma}(k)$.

f is a set-multilinear poly. w.r.t $\{x_1, \ldots, x_d\}$.

[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest osm $ABP(\sigma)$ computing f is equal to the rank of $M_{f,\sigma}(k)$.

If A is the smallest osmABP (in order σ) computing f , then

$$
\mathsf{size}(\mathcal{A}) = \sum_{i=1}^d \mathsf{rank}(M_{f,\sigma}(k)).
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).
$$

Properties:

• $G_{n,d}$ is computable by a set-multilinear ABP of size $poly(n, d)$.

$$
G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).
$$

Properties:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) .
- For every $\sigma \in S_d$, there is some P such that for at least $d/8$ of the $P = (i, j) \in \mathcal{P}$, $i \in$ $\{\sigma(1),\ldots \sigma(\frac{d}{2})\}\; \&\; j\in \big\{\sigma(1+\frac{d}{2})\big),\ldots \sigma(d)\big\}.$

$$
G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).
$$

Properties:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly (n, d) .
- For every $\sigma \in S_d$, there is some P such that for at least $d/8$ of the $P = (i, j) \in \mathcal{P}$, $i \in$ $\{\sigma(1),\ldots \sigma(\frac{d}{2})\}\; \&\; j\in \big\{\sigma(1+\frac{d}{2})\big),\ldots \sigma(d)\big\}.$

Therefore,

$$
rank(M_{G_{n,d},\sigma}(d/2)) = \Omega(n^{d/8}).
$$

• $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$
G_{n,d} = \sum_{i=1}^{t} g_i \quad \text{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}.
$$

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$
G_{n,d} = \sum_{i=1}^{t} g_i \quad \text{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}.
$$

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$
G_{n,d} = \sum_{i=1}^{t} g_i \quad \text{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}.
$$

for every i , w.h.p. there are many j s, for which $M_w(g^{(i)}_{u_{j-1},u_j})$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$
G_{n,d} = \sum_{i=1}^{t} g_i \quad \text{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_j}^{(i)}.
$$

for every i , w.h.p. there are many j s, for which $M_w(g^{(i)}_{u_{j-1},u_j})$ is far from full rank \implies for every *i*, w.h.p. $M_w(g_i)$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$
G_{n,d} = \sum_{i=1}^{t} g_i \quad \text{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_j}^{(i)}.
$$

for every i , w.h.p. there are many j s, for which $M_w(g^{(i)}_{u_{j-1},u_j})$ is far from full rank

 \implies for every i, w.h.p. $M_w(g_i)$ is far from full rank

 $\implies M_w(G_{n,d})$ is far from full rank unless t is large.

 $\bullet\,$ What happens when $\omega\left(\frac{\log n}{\log\log n}\right)\leq d\leq O(\log n)$?

- $\bullet\,$ What happens when $\omega\left(\frac{\log n}{\log\log n}\right)\leq d\leq O(\log n)$?
- Super-quadratic lower bound against set-multilinear ABPs.
- $\bullet\,$ What happens when $\omega\left(\frac{\log n}{\log\log n}\right)\leq d\leq O(\log n)$?
- Super-quadratic lower bound against set-multilinear ABPs.

Thank you!!!

[Discussion](#page-65-0)

• This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- \bullet Separation is not tight: $\text{IMM}_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}.$

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- \bullet Separation is not tight: $\text{IMM}_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}.$

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- \bullet Separation is not tight: $\text{IMM}_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}.$

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size $s = \text{poly}(n)$, then it is also computable by a set-multilinear formula of size poly (n) .

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- \bullet Separation is not tight: $\text{IMM}_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}.$

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size $s = \text{poly}(n)$, then it is also computable by a set-multilinear formula of size poly (n) .

 \bullet $n^{\Omega(\log n)}$ set-multilinear formula LB for $\mathrm{IMM}_{n,n}$ implies formula LB due to self-reducibility.
Wait! Why doesn't that lead to formula lower bounds?

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?

- Optimal separation between smABP and osmABP.
- Exponential separation between smABP and \sum osmABP when $d = \Theta(n)$.
- Super-polynomial separation between smABP and \sum osmABP when $d = \omega(n)$.

Thank you again!!!