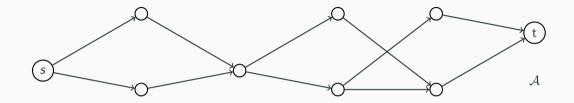
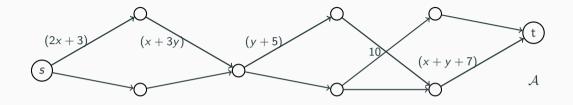
Lower Bounds against Ordered Set-Multilinear ABPs

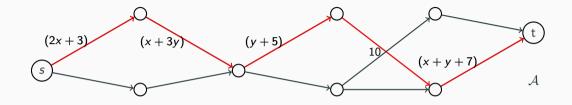
Prerona Chatterjee [with Deepanshu Kush, Shubhangi Saraf and Amir Shpilka]

September 17, 2024

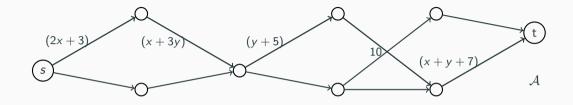




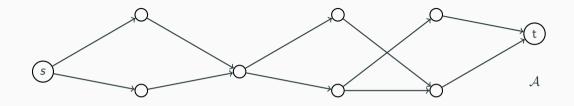
• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$



- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$



- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \operatorname{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n),
- any $\sum \text{osmABP}$ computing $G_{n,d}$ must have super-polynomial total-width.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

An ABP is set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if every path in it

computes a set-multilinear monomial with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = \omega(\log n)$ that is computable by polynomial-sized ABPs.

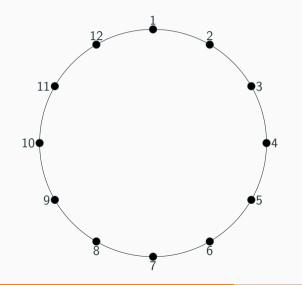
• $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),

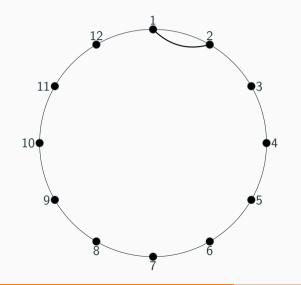
- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),
- $G_{n,d}$ can not be computed by a $\sum \text{osmABP}$ of total-width poly(n),

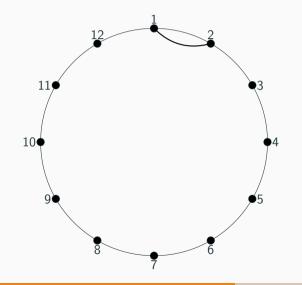
- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d),
- $G_{n,d}$ can not be computed by a $\sum \text{osmABP}$ of total-width poly(n),
- any $\sum \text{osmABP}$ of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),
- $G_{n,d}$ can not be computed by a $\sum \text{osmABP}$ of total-width poly(n),
- any $\sum \text{osmABP}$ of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.

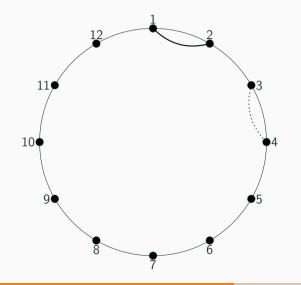
Proof Ideas



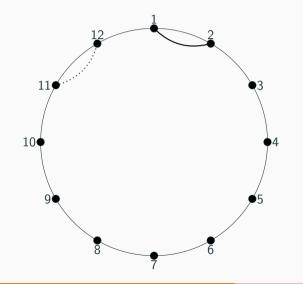




$$\mathcal{P}_1 = \{(1,2)\}$$



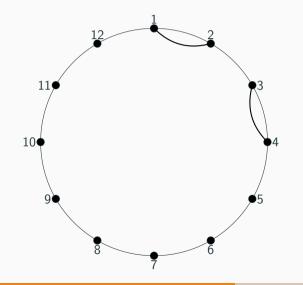
$$\mathcal{P}_1 = \{(1,2)\}$$



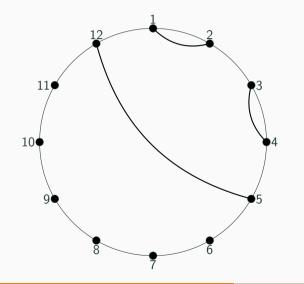
$$\mathcal{P}_1 = \{(1,2)\}$$

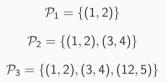


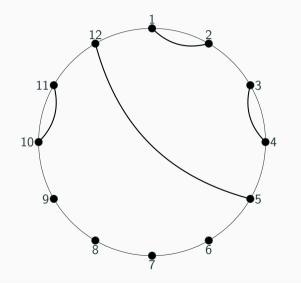
$$\mathcal{P}_1 = \{(1,2)\}$$



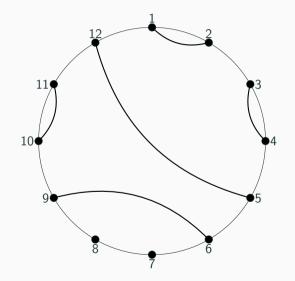
$$\mathcal{P}_1 = \{(1,2)\}$$
 $\mathcal{P}_2 = \{(1,2),(3,4)\}$







$$\begin{aligned} \mathcal{P}_1 &= \{(1,2)\} \\ \mathcal{P}_2 &= \{(1,2),(3,4)\} \\ \mathcal{P}_3 &= \{(1,2),(3,4),(12,5)\} \\ \mathcal{P}_4 &= \{(1,2),(3,4),(12,5),(10,11)\} \end{aligned}$$



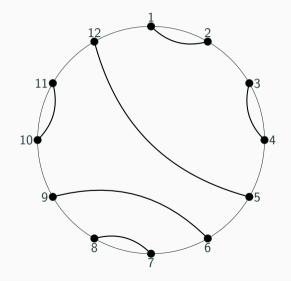
$$\mathcal{P}_{1} = \{(1,2)\}$$

$$\mathcal{P}_{2} = \{(1,2), (3,4)\}$$

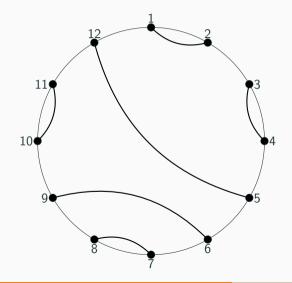
$$\mathcal{P}_{3} = \{(1,2), (3,4), (12,5)\}$$

$$\mathcal{P}_{4} = \{(1,2), (3,4), (12,5), (10,11)\}$$

$$\mathcal{P}_{5} = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$$



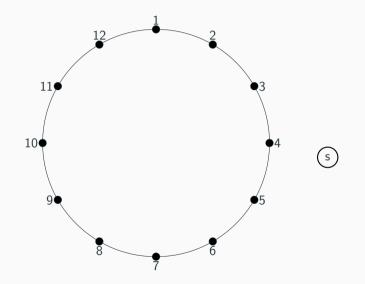
 $\mathcal{P}_{1} = \{(1,2)\}$ $\mathcal{P}_{2} = \{(1,2), (3,4)\}$ $\mathcal{P}_{3} = \{(1,2), (3,4), (12,5)\}$ $\mathcal{P}_{4} = \{(1,2), (3,4), (12,5), (10,11)\}$ $\mathcal{P}_{5} = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$ $\mathcal{P}_{6} = \{(1,2), (3,4), (12,5), (10,11), (9,6), (8,7)\}$



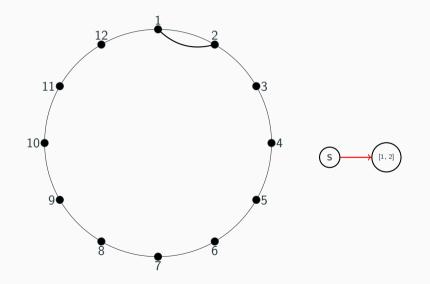
$\mathcal{P}_1 = \{(1,2)\}$ $\mathcal{P}_2 = \{(1,2), (3,4)\}$ $\mathcal{P}_3 = \{(1,2), (3,4), (12,5)\}$ $\mathcal{P}_4 = \{(1,2), (3,4), (12,5), (10,11)\}$ $\mathcal{P}_5 = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$ $\mathcal{P}_6 = \{(1,2), (3,4), (12,5), (10,11), (9,6), (8,7)\}$

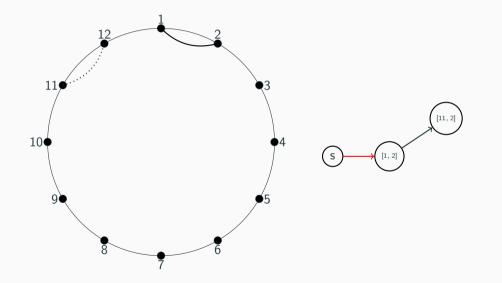
 $\mathbf{P}_6 = AII$ possibles sequences of such pairs.

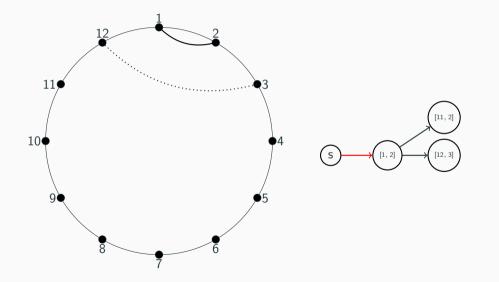
The ABP Upper Bound

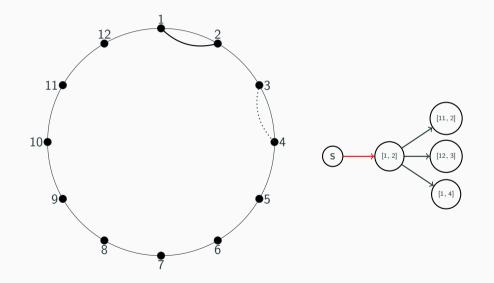


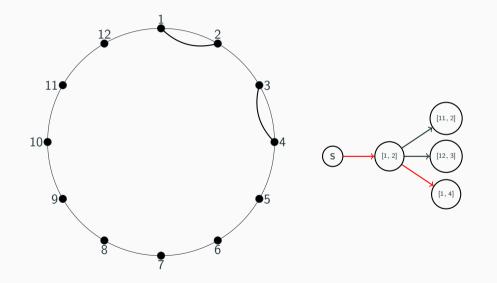
The ABP Upper Bound



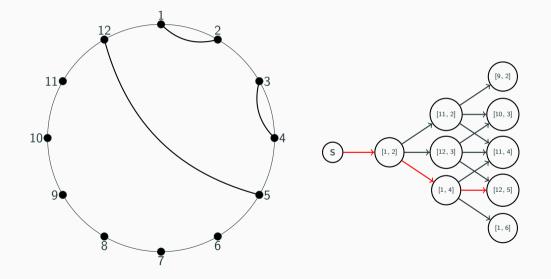


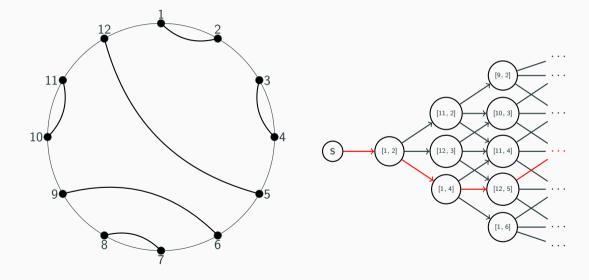


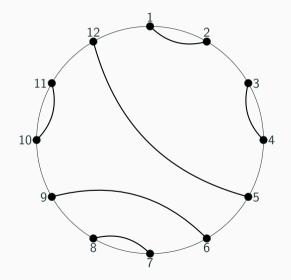




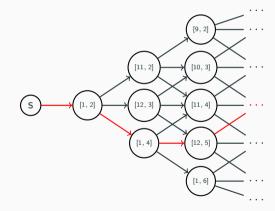
7



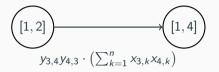


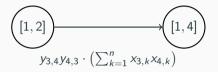


Every path corresponds to an element in $P_{d/2}$.

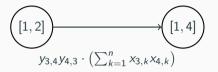


The Hard Polynomial



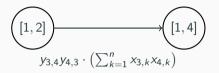


 $(y_{3,4}y_{4,3})$: To select.



 $(y_{3,4}y_{4,3})$: To select.

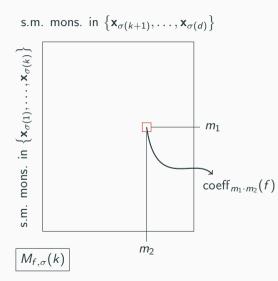
 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.



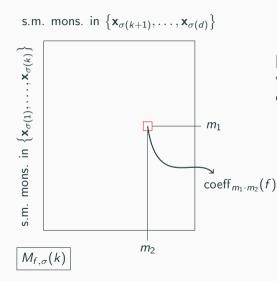
 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.

	<i>x</i> _{4,1}	<i>x</i> _{4,2}	 	<i>x</i> _{4,<i>n</i>}
<i>x</i> _{3,1}	1	0	 	0
<i>x</i> _{3,2}	0	1	 	0
:	:	÷		÷
÷	÷	÷		÷
<i>x</i> _{3,<i>n</i>}	0	0	 	1

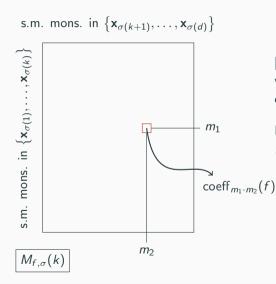


f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.

If \mathcal{A} is the smallest osmABP (in order σ) computing f, then

$$\mathsf{size}(\mathcal{A}) = \sum_{i=1}^{d} \mathsf{rank}(M_{f,\sigma}(k)).$$

Lower Bound for a single osmABP (contd.)

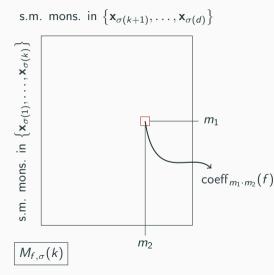
$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Lower Bound for a single osmABP (contd.)

$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

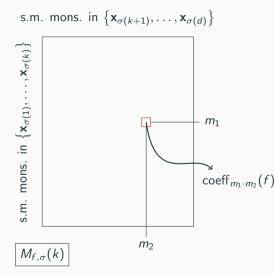
• *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i, j) \in \mathcal{P}$, $i \in$ $\{\sigma(1), \ldots \sigma(\frac{d}{2})\} \& j \in \{\sigma(1 + \frac{d}{2})), \ldots \sigma(d)\}.$



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i,j) \in \mathcal{P}$, $i \in$ $\{\sigma(1), \ldots \sigma(\frac{d}{2})\}$ & $j \in \{\sigma(1 + \frac{d}{2})), \ldots \sigma(d)\}.$

Therefore,

$$\operatorname{rank}(M_{G_{n,d},\sigma}(d/2)) = \Omega(n^{d/8}).$$

• $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}$

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{i-1},u_i}^{(i)})$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank \implies for every *i*, w.h.p. $M_w(g_i)$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank

 \implies for every *i*, w.h.p. $M_w(g_i)$ is far from full rank

 $\implies M_w(G_{n,d})$ is far from full rank unless *t* is large.

• What happens when $\omega\left(\frac{\log n}{\log \log n}\right) \leq d \leq O(\log n)$?

- What happens when $\omega\left(\frac{\log n}{\log \log n}\right) \leq d \leq O(\log n)$?
- Super-quadratic lower bound against set-multilinear ABPs.

- What happens when $\omega\left(\frac{\log n}{\log \log n}\right) \leq d \leq O(\log n)$?
- Super-quadratic lower bound against set-multilinear ABPs.

Thank you!!!

Discussion

• This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size s = poly(n), then it is also computable by a set-multilinear formula of size poly(n).

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size s = poly(n), then it is also computable by a set-multilinear formula of size poly(n).

• $n^{\Omega(\log n)}$ set-multilinear formula LB for $\text{IMM}_{n,n}$ implies formula LB due to self-reducibility.

Wait! Why doesn't that lead to formula lower bounds?

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?

- Optimal separation between smABP and osmABP.
- Exponential separation between smABP and $\sum \text{osmABP}$ when $d = \Theta(n)$.
- Super-polynomial separation between smABP and $\sum \text{osmABP}$ when $d = \omega(n)$.

Thank you again!!!