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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

1



Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

1



Algebraic Branching Programs

s

t
(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)

10
(x + y + 7)(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

1



Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

1



Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

Question: Find explicit polynomials that can not be computed efficiently by ABPs.

1



Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.
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Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d ].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.
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Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.
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Super-Polynomial Lower Bound against
∑

osmABPs

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n, d),

• Gn,d can not be computed by a
∑

osmABP of total-width poly(n),

• any
∑

osmABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d),

• any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).
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Proof Ideas



Arc Partition

4

3

2
1
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P1 = {(1, 2)}

P2 = {(1, 2), (3, 4)}

P3 = {(1, 2), (3, 4), (12, 5)}

P4 = {(1, 2), (3, 4), (12, 5), (10, 11)}

P5 = {(1, 2), (3, 4), (12, 5), (10, 11), (9, 6)}

P6 = {(1, 2), (3, 4), (12, 5), (10, 11), (9, 6), (8, 7)}

P6 = All possibles sequences of such pairs.
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The ABP Upper Bound
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Every path corresponds to an element in Pd/2.

s
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· · ·
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The Hard Polynomial

[1, 2] [1, 4]

y3,4y4,3 ·
(∑n

k=1 x3,kx4,k
)

The new pair: (3, 4).

(y3,4y4,3): To select.(∑n
k=1 x3,kx4,k

)
: To achieve full-rank.

x3,1

x3,2

...

...

x3,n

x4,1 x4,2 . . . . . . x4,n

1 0 . . . . . . 0

0 1 . . . . . . 0

...

...

...

...

...

...

0 0 . . . . . . 1
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Lower Bound for a single osmABP
s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

f is a set-multilinear poly. w.r.t {x1, . . . , xd}.

[Nisan 91]: For every 1 ≤ k ≤ d , the number of

vertices in the k-th layer of the smallest osmABP(σ)

computing f is equal to the rank of Mf ,σ(k).

If A is the smallest osmABP (in order σ) computing

f , then

size(A) =
d∑

i=1

rank(Mf ,σ(k)).
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Lower Bound for a single osmABP (contd.)

s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

Gn,d =
∑

P∈Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every σ ∈ Sd , there is some P such that for

at least d/8 of the P = (i , j) ∈ P, i ∈{
σ(1), . . . σ( d2 )

}
& j ∈

{
σ(1 + d

2 )), . . . σ(d)
}
.

Therefore,

rank(MGn,d ,σ(d/2)) = Ω(nd/8).
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Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.

• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.
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Open Questions

• What happens when ω
(

log n
log log n

)
≤ d ≤ O(log n)?

• Super-quadratic lower bound against set-multilinear ABPs.

Thank you!!!
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Discussion



[Tavenas-Limaye-Srinivasan]

The Result: Any set-multilinear formula computing IMMn,n has size nΩ(log log n).

• This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

• Separation is not tight: IMMn,n is computable by a set-multilinear formula of size nO(log n).

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For d = O( log n
log log n ), if f is computable by a formula of size s = poly(n), then it is

also computable by a set-multilinear formula of size poly(n).

• nΩ(log n) set-multilinear formula LB for IMMn,n implies formula LB due to self-reducibility.
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[Kush-Saraf]

The Result: There is an n-variate polynomial, Gn,n, of degree n computable by a

set-multilinear ABP of width s = poly(n) such that any set-multilinear formula computing it

has size nΩ(log n).

Wait! Why doesn’t that lead to formula lower bounds?

• f is a projection of IMMs,n

• IMMs,n is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?
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What Our Results Say

• Optimal separation between smABP and osmABP.

• Exponential separation between smABP and
∑

osmABP when d = Θ(n).

• Super-polynomial separation between smABP and
∑

osmABP when d = ω(n).

Thank you again!!!
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