Lower Bounds Against Sums of Ordered Set-Multilinear ABPs

Prerona Chatterjee [with Deepanshu Kush (UoT), Shubhangi Saraf (UoT), Amir Shpilka (TAU)] Tel Aviv University

January 30, 2024

Algebraic Models of Computation

Algebraic Models of Computation

Algebraic Models of Computation

1

• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Are the inclusions tight?

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Are the inclusions tight?

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Our Results

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

An algebraic formula is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if every node in it

computes a set-multilinear polynomial with respect to *S* for some $S \subseteq \{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

An algebraic formula is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if every node in it

computes a set-multilinear polynomial with respect to S for some $S \subseteq \{x_1, \ldots, x_d\}$.

An ABP is set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if every path in it

computes a set-multilinear monomial with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if

• there are *d* layers in the ABP

An ABP is ordered set-multilinear with respect to $\{x_1, \ldots, x_d\}$ if

- there are *d* layers in the ABP
- there is a permutation $\sigma \in S_d$ such that

every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

An ABP is ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- there is a permutation $\sigma \in S_d$ such that

every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

$$\text{IMM}_{n,d} = \sum_{1 \le i_1, \dots, i_{d-1} \le n} x_{1,i_1}^{(1)} \cdot \left(\prod_{j=2}^{d-1} x_{i_{j-1},i_j}^{(j)}\right) \cdot x_{i_{d-1},i_d}^{(d)}$$

An ABP is ordered set-multilinear with respect to $\{\textbf{x}_1,\ldots,\textbf{x}_d\}$ if

- there are *d* layers in the ABP
- there is a permutation $\sigma \in S_d$ such that

every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

$$\text{IMM}_{n,d} = \sum_{1 \le i_1, \dots, i_{d-1} \le n} x_{1,i_1}^{(1)} \cdot \left(\prod_{j=2}^{d-1} x_{i_{j-1},i_j}^{(j)}\right) \cdot x_{i_{d-1},i_d}^{(d)}$$

Note: $IMM_{n,d}$ is complete for the set of polynomials of degree *d* that are computable by osmABPs (also smABPs and ABPs) which had width at most *n* in every layer.

• This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size s = poly(n), then it is also computable by a set-multilinear formula of size poly(n).

- This shows a super-polynomial separation between osmABPs and set-multilinear formulas.
- Separation is not tight: $IMM_{n,n}$ is computable by a set-multilinear formula of size $n^{O(\log n)}$.

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For $d = O(\frac{\log n}{\log \log n})$, if f is computable by a formula of size s = poly(n), then it is also computable by a set-multilinear formula of size poly(n).

• $n^{\Omega(\log n)}$ set-multilinear formula LB for $\text{IMM}_{n,n}$ implies formula LB due to self-reducibility.

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

Wait! Why doesn't that lead to formula lower bounds?

- f is a projection of $IMM_{s,n}$
- $IMM_{s,n}$ is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?

Our First Result: There is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x} = {\mathbf{x}_1, \dots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for each $i \in [d]$, such that:

- it has a set-multilinear branching program of size poly(n, d),
- but any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.

Our First Result: There is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x} = {\mathbf{x}_1, \dots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for each $i \in [d]$, such that:

- it has a set-multilinear branching program of size poly(n, d),
- but any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
Our First Result: There is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x} = {\mathbf{x}_1, \dots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for each $i \in [d]$, such that:

- it has a set-multilinear branching program of size poly(n, d),
- but any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Our Second Result: There is polynomial $G_{n,n}(\mathbf{x})$ which is set-multilinear with respect to a set of $\Theta(n)$ buckets, each of size $\Theta(n)$, such that

- it has a set-multilinear branching program of size poly(n),
- but any $\sum \text{osmABP}$ computing $G_{n,n}(\mathbf{x})$ requires total-width $\exp(\Omega(n^{1/1000}))$.

The Result: Let $P_{n,d}(\mathbf{x})$ be a polynomial of degree d that is set-multilinear w.r.t the partition $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, If $P_{n,d}$ can be computed by an ABP of size s, then it can also be computed by a $\sum \text{osmABP}$ of max-width s and total-width $2^{O(d \log d)}s$.

The Result: Let $P_{n,d}(\mathbf{x})$ be a polynomial of degree d that is set-multilinear w.r.t the partition $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, If $P_{n,d}$ can be computed by an ABP of size s, then it can also be computed by a $\sum \text{osmABP}$ of max-width s and total-width $2^{O(d \log d)}s$.

What this implies: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $O\left(\frac{\log n}{\log \log n}\right)$ implies super-polynomial lower bound against ABPs.

The Result: Let $P_{n,d}(\mathbf{x})$ be a polynomial of degree d that is set-multilinear w.r.t the partition $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, If $P_{n,d}$ can be computed by an ABP of size s, then it can also be computed by a $\sum \text{osmABP}$ of max-width s and total-width $2^{O(d \log d)}s$.

What this implies: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $O\left(\frac{\log n}{\log \log n}\right)$ implies super-polynomial lower bound against ABPs.

Our Third Result: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n),
- any $\sum \text{osmABP}$ of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$.

any $\sum \text{osmABP}$ computing it requires total-width $\exp(\Omega(n^{1/3}))$.

any $\sum \text{osmABP}$ computing it requires total-width $\exp(\Omega(n^{1/3}))$.

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

any $\sum \text{osmABP}$ computing it requires total-width $\exp(\Omega(n^{1/3}))$.

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Our Fifth Result: For $\omega(\log n) = d \le n$, there is polynomial family $\{F_{n,d}(\mathbf{x})\}$, in VP, which is set-multilinear with respect to a set of $\Theta(d)$ buckets, each of size $\Theta(n)$, such that

 $F_{n,d}$ cannot be computed by a $\sum \text{osmABP}$ of total-width poly(n).

any $\sum \text{osmABP}$ computing it requires total-width $\exp(\Omega(n^{1/3}))$.

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Our Fifth Result: For $\omega(\log n) = d \le n$, there is polynomial family $\{F_{n,d}(\mathbf{x})\}$, in VP, which is set-multilinear with respect to a set of $\Theta(d)$ buckets, each of size $\Theta(n)$, such that

 $F_{n,d}$ cannot be computed by a $\sum \text{osmABP}$ of total-width poly(n).

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

[Bhargav-Dwivedi-Saxena]

Any $\sum \text{osmABP}$ computing $\text{IMM}_{n,n}$ which has max-width $n^{o(1)}$ must have $2^{\Omega(n)}$ summands.

[Bhargav-Dwivedi-Saxena]

Any $\sum \text{osmABP}$ computing $\text{IMM}_{n,n}$ which has max-width $n^{o(1)}$ must have $2^{\Omega(n)}$ summands.

[Arvind-Raja]

Any $\sum_{i=1}^{t}$ osmABP computing the $n \times n$ permanent polynomial has max-width $2^{\Omega(n/t)}$.

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, \ldots x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, ..., x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, ..., x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

Proof Sketch:

• $f \in \mathbb{F}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ is a set-multilinear polynomial for which $\sum \text{osmABP LB}$ is known.

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, \ldots x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

- $f \in \mathbb{F}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ is a set-multilinear polynomial for which $\sum \text{osmABP LB}$ is known.
- Define $g_f(x_1, \ldots, x_d) = \sum_{\mathbf{e} \in [n]^d} \prod_{i=1}^{e_i} x_i^{e_i} \cdot \operatorname{coeff}_{x_{i,e_i}}(f)$.

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, \ldots x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

- $f \in \mathbb{F}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ is a set-multilinear polynomial for which $\sum \text{osmABP LB}$ is known.
- Define $g_f(x_1, \ldots, x_d) = \sum_{\mathbf{e} \in [n]^d} \prod_{i=1}^{e_i} x_i^{e_i} \cdot \operatorname{coeff}_{x_{i,e_i}}(f)$.
- Suppose g_f is computable by a $\sum \text{ROABP}, \sum A_j$, with A_j ordered σ_j .

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, \dots, x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

- $f \in \mathbb{F}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ is a set-multilinear polynomial for which $\sum \text{osmABP LB}$ is known.
- Define $g_f(x_1, \ldots, x_d) = \sum_{\mathbf{e} \in [n]^d} \prod_{i=1}^{e_i} x_i^{e_i} \cdot \operatorname{coeff}_{x_{i,e_i}}(f)$.
- Suppose g_f is computable by a $\sum \text{ROABP}$, $\sum A_j$, with A_j ordered σ_j .
- Construct a $\sum \text{osmABP}$, $\sum A'_j$, with A'_j ordered σ_j , by replacing $x_i^{e_i}$ by x_{i,e_i} for $e_i \in [n_i]$ and erasing other components on each edge.

ROABPs: An ABP computing $f \in \mathbb{F}[x_1, \dots, x_n]$ is an ROABP, in order $\sigma \in S_n$, if there are *n* layers in the ABP and, for each $i \in [n]$, every edge in layer *i* is labelled a polynomial in $x_{\sigma(i)}$.

Note: $\sum \text{osmABP LBs imply } \sum \text{ROABP LBs.}$

- $f \in \mathbb{F}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ is a set-multilinear polynomial for which $\sum \text{osmABP LB}$ is known.
- Define $g_f(x_1, \ldots, x_d) = \sum_{\mathbf{e} \in [n]^d} \prod_{i=1}^{e_i} x_i^{e_i} \cdot \operatorname{coeff}_{x_{i,e_i}}(f)$.
- Suppose g_f is computable by a $\sum \text{ROABP}$, $\sum A_j$, with A_j ordered σ_j .
- Construct a $\sum \text{osmABP}$, $\sum A'_j$, with A'_j ordered σ_j , by replacing $x_i^{e_i}$ by x_{i,e_i} for $e_i \in [n_i]$ and erasing other components on each edge.
- Check that this $\sum \text{osmABP}$ computes f and use known LB.

[Ramya-Rao]

There exists an explicit multilinear polynomial family $\{g_n(x_1, \ldots, x_n)\}$, in VP, such that any $\sum \text{ROABP}$ computing g_n has total width $2^{\Omega\left(\frac{n^{1/6}}{\log n}\right)}$.

[Ramya-Rao]

There exists an explicit multilinear polynomial family $\{g_n(x_1, \ldots, x_n)\}$, in VP, such that any $\sum \text{ROABP}$ computing g_n has total width $2^{\Omega\left(\frac{n^{1/6}}{\log n}\right)}$.

[Ghoshal-Rao]

There exists an explicit multilinear polynomial family $\{g_n(x_1, \ldots, x_n)\}$, in VBP, such that any $\sum \text{ROABP}$ computing g_n that has max-width poly(n) must have total width $2^{\Omega(n^{1/500})}$.

Proof Overviews

Lower Bound for osmABPs

f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

Lower Bound for osmABPs

f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.

f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.

If \mathcal{A} is the smallest osmABP computing f, then

$$\operatorname{size}(\mathcal{A}) = \sum_{i=1}^{d} \operatorname{rank}(M_{f,\sigma}(k)).$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1, R_1] = [1,2].$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

•
$$P_t = (R_{t-1} + 1, R_{t-1} + 2), P_t = P_{t-1} \cup \{P_t\}, [L_t, R_t] = [L_{t-1}, R_{t-1} + 2]$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

•
$$P_t = (R_{t-1} + 1, R_{t-1} + 2), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1}, R_{t-1} + 2]$$

•
$$P_t = (L_{t-1} - 2, L_{t-1} - 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 2, R_{t-1} + 1]$$

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

For t = 2, ..., d/2, each of the following happens with probability 1/3:

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

•
$$P_t = (R_{t-1} + 1, R_{t-1} + 2), P_t = P_{t-1} \cup \{P_t\}, [L_t, R_t] = [L_{t-1}, R_{t-1} + 2]$$

•
$$P_t = (L_{t-1} - 2, L_{t-1} - 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 2, R_{t-1} + 1]$$

For t = 1, ..., d/2, if $P_t = (i_t, j_t)$, then each of the following happens with probability 1/2:

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \mathcal{P}_1 = \{P_1\}, [L_1, R_1] = [1,2].$$

For t = 2, ..., d/2, each of the following happens with probability 1/3:

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

•
$$P_t = (R_{t-1} + 1, R_{t-1} + 2), P_t = P_{t-1} \cup \{P_t\}, [L_t, R_t] = [L_{t-1}, R_{t-1} + 2]$$

•
$$P_t = (L_{t-1} - 2, L_{t-1} - 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 2, R_{t-1} + 1]$$

For t = 1, ..., d/2, if $P_t = (i_t, j_t)$, then each of the following happens with probability 1/2:

• i_t -th position is assigned -k and j_t -th position is assigned +k

Fix an even $d \in \mathbb{N}$ arbitrarily. We will define a distribution \mathcal{D} over the set $\{-k, +k\}^d$.

$$P_1 = (1,2), \ \mathcal{P}_1 = \{P_1\}, \ [L_1,R_1] = [1,2].$$

For t = 2, ..., d/2, each of the following happens with probability 1/3:

•
$$P_t = (L_{t-1} - 1, R_{t-1} + 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 1, R_{t-1} + 1]$$

•
$$P_t = (R_{t-1} + 1, R_{t-1} + 2), P_t = P_{t-1} \cup \{P_t\}, [L_t, R_t] = [L_{t-1}, R_{t-1} + 2]$$

•
$$P_t = (L_{t-1} - 2, L_{t-1} - 1), \ \mathcal{P}_t = \mathcal{P}_{t-1} \cup \{P_t\}, \ [L_t, R_t] = [L_{t-1} - 2, R_{t-1} + 1]$$

For t = 1, ..., d/2, if $P_t = (i_t, j_t)$, then each of the following happens with probability 1/2:

- i_t -th position is assigned -k and j_t -th position is assigned +k
- i_t -th position is assigned +k and j_t -th position is assigned -k

The Hard Polynomial

$$G_{n,d} = \sum_{\mathcal{P}_{d/2}} \prod_{(i,j)\in\mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k}\right).$$

$$G_{n,d} = \sum_{\mathcal{P}_{d/2}} \prod_{(i,j)\in\mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k}\right).$$

Properties:

• *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).

The Hard Polynomial

$$G_{n,d} = \sum_{\mathcal{P}_{d/2}} \prod_{(i,j)\in\mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k}\right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every w ∈ {+k, −k}^d, that has non-zero mass in D,

$$\operatorname{rank}(M_w(G_{n,d})) = \Omega(n^d).$$

The Hard Polynomial

$$G_{n,d} = \sum_{\mathcal{P}_{d/2}} \prod_{(i,j)\in\mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k}\right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every w ∈ {+k, -k}^d, that has non-zero mass in D,

 $\operatorname{rank}(M_w(G_{n,d})) = \Omega(n^d).$

• For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i, j) \in \mathcal{P}$, $i \in$ $\{\sigma(1), \ldots \sigma(\frac{d}{2})\} \& j \in \{\sigma(1 + \frac{d}{2})), \ldots \sigma(d)\}$
Steps:

1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width s and length \overline{d} .

Steps:

1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.

- 1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.
- 2. <u>Set-Multilinearisation</u>:

- 1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.
- 2. <u>Set-Multilinearisation</u>:

$$P_{n,d} = \prod_{i=1}^d M_i$$

- 1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.
- 2. <u>Set-Multilinearisation</u>:

$$P_{n,d} = \prod_{i=1}^d M_i = \prod_{i=1}^d \sum_{j=1}^n M_{ij}$$

- 1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.
- 2. <u>Set-Multilinearisation</u>:

$$P_{n,d} = \prod_{i=1}^{d} M_i = \prod_{i=1}^{d} \sum_{j=1}^{n} M_{ij} = \sum_{\sigma \in S_d} \prod_{i=1}^{d} M_{i,\sigma(i)}.$$

- 1. <u>Homogenisation</u>: Let $P_{n,d}$ can be computed by a homogeneous ABP of width *s* and length \overline{d} . Furthermore, all the edge labels are linear forms.
- 2. <u>Set-Multilinearisation</u>: $P_{n,d}$ can be computed by a \sum osmABP of total width d!s.

$$P_{n,d} = \prod_{i=1}^{d} M_i = \prod_{i=1}^{d} \sum_{j=1}^{n} M_{ij} = \sum_{\sigma \in S_d} \prod_{i=1}^{d} M_{i,\sigma(i)}.$$

$$f = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}$

$$f = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}$.

• Measure used: $\mu_w(f) = \operatorname{relrank}(M_w(f))$ for $w \in \{-k, +k\}^d$.

$$f = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}.$

- Measure used: $\mu_w(f) = \operatorname{relrank}(M_w(f))$ for $w \in \{-k, +k\}^d$.
- Using subadditivity of μ_w ,

$$\mu_w(f) \leq t \cdot \mu_w(g_i).$$

$$f = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}.$

- Measure used: $\mu_w(f) = \operatorname{relrank}(M_w(f))$ for $w \in \{-k, +k\}^d$.
- Using subadditivity of μ_w ,

$$\mu_w(f) \leq t \cdot \mu_w(g_i).$$

• Using union bound we will get the lower bound if we can show that:

When
$$w\sim \mathcal{D}, ext{ for } g=\sum_{u_1,...,u_{q-1}}\prod_{j=1}^q g_{u_{j-1},u_j}, ext{ with high probability } \mu_w(g) ext{ is far from full.}$$

To show: For $g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$ is far from full with high probability if $w \sim \mathcal{D}$.

To show: For
$$g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$$
 is far from full with high probability if $w \sim \mathcal{D}$.

Let S_j be the bucket indices of the variables on which g_{u_{j-1},u_j} depends.

To show: For
$$g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$$
 is far from full with high probability if $w \sim \mathcal{D}$.

Let S_j be the bucket indices of the variables on which g_{u_{j-1},u_j} depends.

 $\mu_{w_{S_i}}(g_{u_{j-1},u_j})$ is small when the diff. between the no. of +ve and -ve indices in S_j is high.

To show: For
$$g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$$
 is far from full with high probability if $w \sim \mathcal{D}$.

Let S_j be the bucket indices of the variables on which g_{u_{i-1},u_i} depends.

 $\mu_{w_{S_i}}(g_{u_{j-1},u_j})$ is small when the diff. between the no. of +ve and -ve indices in S_j is high.

Want to show: For a lot of *j*s, this happens with high probability when $w \sim D$.

To show: For $g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$ is far from full with high probability if $w \sim \mathcal{D}$.

Let S_j be the bucket indices of the variables on which g_{u_{i-1},u_i} depends.

 $\mu_{w_{S_i}}(g_{u_{j-1},u_j})$ is small when the diff. between the no. of +ve and -ve indices in S_j is high.

Want to show: For a lot of *j*s, this happens with high probability when $w \sim D$.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

To show: For $g = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}, \mu_w(g)$ is far from full with high probability if $w \sim \mathcal{D}$.

Let S_j be the bucket indices of the variables on which g_{u_{j-1},u_j} depends.

 $\mu_{w_{S_i}}(g_{u_{j-1},u_j})$ is small when the diff. between the no. of +ve and -ve indices in S_j is high.

Want to show: For a lot of *j*s, this happens with high probability when $w \sim D$.

- For hard polynomial in VP, choose q wisely and then use Chernoff bound.
- For hard polynomial in VBP, choose q wisely and then use many violations lemma.

Open Questions

1. PIT for $\sum ROABP$?

- 1. PIT for $\sum ROABP$?
- 2. Super-quadratic lower bounds against smABPs?

- 1. PIT for $\sum ROABP$?
- 2. Super-quadratic lower bounds against smABPs?

Thank you!