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Algebraic Branching Programs

s
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• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

3



Our Results



Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d ].

An algebraic formula is set-multilinear with respect to {x1, . . . , xd} if every node in it

computes a set-multilinear polynomial with respect to S for some S ⊆ {x1, . . . , xd}.

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.
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Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• there is a permutation σ ∈ Sd such that

every edge in layer i is labelled by a homogeneous linear form in xσ(i)

IMMn,d =
∑

1≤i1,...,id−1≤n

x
(1)
1,i1

·

d−1∏
j=2

x
(j)
ij−1,ij

 · x (d)id−1,id
.

Note: IMMn,d is complete for the set of polynomials of degree d that are computable by

osmABPs (also smABPs and ABPs) which had width at most n in every layer.
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[Tavenas-Limaye-Srinivasan]

The Result: Any set-multilinear formula computing IMMn,n has size nΩ(log log n).

• This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

• Separation is not tight: IMMn,n is computable by a set-multilinear formula of size nO(log n).

Remarks

• Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For d = O( log n
log log n ), if f is computable by a formula of size s = poly(n), then it is

also computable by a set-multilinear formula of size poly(n).

• nΩ(log n) set-multilinear formula LB for IMMn,n implies formula LB due to self-reducibility.
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[Kush-Saraf]

The Result: There is an n-variate polynomial, Gn,n, of degree n computable by a

set-multilinear ABP of size s = poly(n) such that any set-multilinear formula computing it has

size nΩ(log n).

Wait! Why doesn’t that lead to formula lower bounds?

• f is a projection of IMMs,n

• IMMs,n is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?
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Our Results

Our First Result: There is a polynomial Gn,d(x) which is set-multilinear with respect to

x = {x1, . . . , xd}, where |xi | ≤ n for each i ∈ [d ], such that:

• it has a set-multilinear branching program of size poly(n, d),

• but any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Our Second Result: There is polynomial Gn,n(x) which is set-multilinear with respect to a set

of Θ(n) buckets, each of size Θ(n), such that

• it has a set-multilinear branching program of size poly(n),

• but any
∑

osmABP computing Gn,n(x) requires total-width exp(Ω(n1/1000)).
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The [Bhargav-Dwivedi-Saxena] Perspective

The Result: Let Pn,d(x) be a polynomial of degree d that is set-multilinear w.r.t the partition

x = {x1, . . . , xd} where |xi | ≤ n for every i ∈ [d ], If Pn,d can be computed by an ABP of size s,

then it can also be computed by a
∑

osmABP of max-width s and total-width 2O(d log d)s.

What this implies: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree O
(

log n
log log n

)
implies super-polynomial lower bound against ABPs.

Our Third Result: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d).
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Results for polynomials in VP, VNP

Our Fourth Result: There is polynomial family {Fn,n(x)}, in VP, which is set-multilinear with

respect to a set of Θ(n) buckets, each of size Θ(n), such that

any
∑

osmABP computing it requires total-width exp(Ω(n1/3)).

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Our Fifth Result: For ω(log n) = d ≤ n, there is polynomial family {Fn,d(x)}, in VP, which is

set-multilinear with respect to a set of Θ(d) buckets, each of size Θ(n), such that

Fn,d cannot be computed by a
∑

osmABP of total-width poly(n).

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.
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The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.
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Related Results

[Bhargav-Dwivedi-Saxena]

Any
∑

osmABP computing IMMn,n which has max-width no(1) must have 2Ω(n) summands.

[Arvind-Raja]

Any
∑t

i=1 osmABP computing the n × n permanent polynomial has max-width 2Ω(n/t).

11



Related Results

[Bhargav-Dwivedi-Saxena]

Any
∑

osmABP computing IMMn,n which has max-width no(1) must have 2Ω(n) summands.

[Arvind-Raja]

Any
∑t

i=1 osmABP computing the n × n permanent polynomial has max-width 2Ω(n/t).

11



Sum of ROABPs

ROABPs: An ABP computing f ∈ F[x1, . . . xn] is an ROABP, in order σ ∈ Sn, if there are n

layers in the ABP and, for each i ∈ [n], every edge in layer i is labelled a polynomial in xσ(i).

Note:
∑

osmABP LBs imply
∑

ROABP LBs.

Proof Sketch:

• f ∈ F[x1, . . . , xd ] is a set-multilinear polynomial for which
∑

osmABP LB is known.

• Define gf (x1, . . . , xd) =
∑

e∈[n]d
∏ei

i=1 x
ei
i · coeffxi,ei

(f ).

• Suppose gf is computable by a
∑

ROABP,
∑

Aj , with Aj ordered σj .

• Construct a
∑

osmABP,
∑

A′
j , with A′

j ordered σj , by replacing xeii by xi,ei for ei ∈ [ni ]

and erasing other components on each edge.

• Check that this
∑

osmABP computes f and use known LB.
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Related Results

[Ramya-Rao]

There exists an explicit multilinear polynomial family {gn(x1, . . . , xn)}, in VP, such that any∑
ROABP computing gn has total width 2

Ω
(

n1/6

log n

)
.

[Ghoshal-Rao]

There exists an explicit multilinear polynomial family {gn(x1, . . . , xn)}, in VBP, such that any∑
ROABP computing gn that has max-width poly(n) must have total width 2Ω(n

1/500).
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Lower Bound for osmABPs
s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

f is a set-multilinear poly. w.r.t {x1, . . . , xd}.

[Nisan]: For every 1 ≤ k ≤ d , the number of

vertices in the k-th layer of the smallest osmABP(σ)

computing f is equal to the rank of Mf ,σ(k).

If A is the smallest osmABP computing f , then

size(A) =
d∑

i=1

rank(Mf ,σ(k)).
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Arc Partition

Fix an even d ∈ N arbitrarily. We will define a distribution D over the set {−k,+k}d .

P1 = (1, 2), P1 = {P1}, [L1,R1] = [1, 2].

For t = 2, . . . , d/2, each of the following happens with probability 1/3:

• Pt = (Lt−1 − 1,Rt−1 + 1), Pt = Pt−1 ∪ {Pt}, [Lt ,Rt ] = [Lt−1 − 1,Rt−1 + 1]

• Pt = (Rt−1 + 1,Rt−1 + 2), Pt = Pt−1 ∪ {Pt}, [Lt ,Rt ] = [Lt−1,Rt−1 + 2]

• Pt = (Lt−1 − 2, Lt−1 − 1), Pt = Pt−1 ∪ {Pt}, [Lt ,Rt ] = [Lt−1 − 2,Rt−1 + 1]

For t = 1, . . . , d/2, if Pt = (it , jt), then each of the following happens with probability 1/2:

• it-th position is assigned −k and jt-th position is assigned +k

• it-th position is assigned +k and jt-th position is assigned −k

15
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The Hard Polynomial

s.
m
.
m
on

s.
in

+
ve

va
ri
ab
le
s

s.m. mons. in −ve variables

m2

m1

coeffm1·m2(f )

Mw (f )

Gn,d =
∑
Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every w ∈ {+k ,−k}d , that has non-zero
mass in D,

rank(Mw (Gn,d)) = Ω(nd).

• For every σ ∈ Sd , there is some P such that for

at least d/8 of the P = (i , j) ∈ P, i ∈{
σ(1), . . . σ( d2 )

}
& j ∈

{
σ(1 + d

2 )), . . . σ(d)
}
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[Bhargav-Dwivedi-Saxena]

The Result: Let Pn,d(x) be a polynomial of degree d that is set-multilinear w.r.t. the partition

x = {x1, . . . , xd} where |xi | ≤ n for every i ∈ [d ], If Pn,d can be computed by an ABP of size s,

then it can also be computed by a
∑

osmABP of max-width s and total-width 2O(d log d)s.

Steps:

1. Homogenisation: Let Pn,d can be computed by a homogeneous ABP of width s and length

d . Furthermore, all the edge labels are linear forms.

2. Set-Multilinearisation:

Pn,d can be computed by a
∑
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Our Proof Strategy

f =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Measure used: µw (f ) = relrank(Mw (f )) for w ∈ {−k,+k}d .
• Using subadditivity of µw ,

µw (f ) ≤ t · µw (gi ).

• Using union bound we will get the lower bound if we can show that:

When w ∼ D, for g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , with high probability µw (g) is far from full.
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Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Our Proof Strategy (contd.)

To show: For g =
∑

u1,...,uq−1

q∏
j=1

guj−1,uj , µw (g) is far from full with high probability if w ∼ D.

Let Sj be the bucket indices of the variables on which guj−1,uj depends.

µwSj
(guj−1,uj ) is small when the diff. between the no. of +ve and −ve indices in Sj is high.

Want to show: For a lot of js, this happens with high probability when w ∼ D.

• For hard polynomial in VP, choose q wisely and then use Chernoff bound.

• For hard polynomial in VBP, choose q wisely and then use many violations lemma.

19



Open Questions



Open Threads

1. PIT for
∑

ROABP?

2. Super-quadratic lower bounds against smABPs?

Thank you!
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