Lower Bounds Against Sums of Ordered Set-Multilinear
ABPs

Prerona Chatterjee [with Deepanshu Kush (UoT), Shubhangi Saraf (UoT), Amir Shpilka (TAU)]

Tel Aviv University

January 30, 2024



Algebraic Models of Computation




Algebraic Models of Computation

€ a1(x1 + x2) (x5 + @) + (x1 + x2)(a2x2 + @)




Algebraic Models of Computation

€ a1(x1 + x2) (x5 + @) + (x1 + x2)(a2x2 + @)




Algebraic Branching Programs



Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}



Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p



Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly(n, d).



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d). @

VP



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VP



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VP

Are the inclusions tight?



Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VP

Are the inclusions tight?

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VNP: Explicit Polynomials
VP
Are the inclusions tight? VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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f is set-multilinear with respect to {xi,...,x4} if
every monomial in f has exactly one variable from x; for each i € [d].
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Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to {xy,..., x4} if

e there are d layers in the ABP

e there is a permutation o € Sy such that

every edge in layer i is labelled by a homogeneous linear form in x,;

d—1
_ (1) () (d)
IMM,, 4 = Z X Hx,};hij 50 e
1§i1,...,id_1§n j:2

Note: IMM, 4 is complete for the set of polynomials of degree d that are computable by
osmABPs (also smABPs and ABPs) which had width at most n in every layer.
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e This shows a super-polynomial separation between osmABPs and set-multilinear formulas.

e Separation is not tight: IMM,, , is computable by a set-multilinear formula of size nOllogn)

Remarks

e Set-multilinear formula LBs imply formula LBs in low degree.

[Raz]: For d = O(|o:g0|gogn)’ if f is computable by a formula of size s = poly(n), then it is

also computable by a set-multilinear formula of size poly(n).

o nU°e") set-multilinear formula LB for IMM,, , implies formula LB due to self-reducibility.
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The Result: There is an n-variate polynomial, G, ,, of degree n computable by a

set-multilinear ABP of size s = poly(n) such that any set-multilinear formula computing it has

size nf(logn)

Wait! Why doesn’t that lead to formula lower bounds?

e f is a projection of IMM; ,
o IMM; , is self-reducible

But f need not be self-reducible unless f is computable by an osmABP.

How different are the powers of smABPs and osmABPs?
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Our Second Result: There is polynomial G, ,(x) which is set-multilinear with respect to a set
of ©(n) buckets, each of size ©(n), such that

e it has a set-multilinear branching program of size poly(n),

e but any > osmABP computing G, (x) requires total-width exp(Q2(n'/10%)).
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Our Third Result: For w(logn) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),
e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2.
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Related Results

[Bhargav-Dwivedi-Saxenal

Any >~ osmABP computing IMM,, , which has max-width n°®) must have 24" summands.

[Arvind-Raja]

Any Zle osmABP computing the n x n permanent polynomial has max-width 22(7/¢).
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ROABPs: An ABP computing f € F[xy,...x,] is an ROABP, in order o € S,,, if there are n
layers in the ABP and, for each i € [n], every edge in layer i is labelled a polynomial in x,;).

Note: > osmABP LBs imply >~ ROABP LBs.

Proof Sketch:

o f €F[xy,...,Xq] is a set-multilinear polynomial for which " osmABP LB is known.
Define gr(x1, ..., Xq) = Decpae [y X7 - coeff, , (f).
e Suppose gr is computable by a Y~ ROABP, > A;, with A; ordered 0.

Construct a ) osmABP, ) A’, with A ordered g;, by replacing x/7 by x; ., for e € [nj]
and erasing other components on each edge.

Check that this > osmABP computes f and use known LB.
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Related Results

[Ramya-Rao]

There exists an explicit multilinear polynomial family {g,(x,...,x,)}, in VP, such that any

21/6
>~ ROABP computing g, has total width 2Q(m),

[Ghoshal-Rao]

There exists an explicit multilinear polynomial family {g,(x1,...,x,)}, in VBP, such that any
1/500
5" ROABP computing g, that has max-width poly(n) must have total width 2% )
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s.m. mons. in —ve variables
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n
o= 3 T s+ (S ).

Pay2 (i,j)EP k=1
Properties:

e G, g is computable by a set-multilinear ABP of
size poly(n, d).

e For every w € {+k, —k}d, that has non-zero
mass in D,

rank(My (Gp,q)) = Q(nd).

e For every o € Sy, there is some P such that for
at least d/8 of the P = (i,j) € P, i €

{o(1),..o(2)} &je{o(l+9),...od)}
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The Result: Let P, 4(x) be a polynomial of degree d that is set-multilinear w.r.t. the partition
x = {X1,...,Xq4} where |x;| < n for every i € [d], If P, 4 can be computed by an ABP of size s,
then it can also be computed by a Y osmABP of max-width s and total-width e CLeEL Y

Steps:

1. Homogenisation: Let P, 4 can be computed by a homogeneous ABP of width s and length
d. Furthermore, all the edge labels are linear forms.

2. Set-Multilinearisation: P, 4 can be computed by a Y osmABP of total width d!s.

d d n d
Poag=[[Mi=T]D_Mi=> T[] M-
i=1

i=1 j=1 €Sy i=1
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t
f:Zg,- where gi = Z ngjlu,

i=1 Upy...ylg—1 j=1

e Measure used: i, (f) = relrank(M,,(f)) for w € {—k, +k}°.

e Using subadditivity of 1,
pw(f) <t pw(8i)-

e Using union bound we will get the lower bound if we can show that:

q
When w ~ D, for g = Z ngj_l’uj, with high probability ., (g) is far from full.

Upy... Ug—1 j=1
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Our Proof Strategy (contd.)
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To show: For g = Z ngj_huj,uw(g) is far from full with high probability if w ~ D.

ug,...,Uug—1 j=1

Let S; be the bucket indices of the variables on which g, _, ., depends.

fiws, (8u;_,u;) is small when the diff. between the no. of +ve and —ve indices in S; is high.

Want to show: For a lot of Js, this happens with high probability when w ~ D.

e For hard polynomial in VP, choose g wisely and then use Chernoff bound.

e For hard polynomial in VBP, choose g wisely and then use many violations lemma.
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Open Threads

1. PIT for > ROABP?

2. Super-quadratic lower bounds against smABPs?

Thank you!
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