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Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Quantum Complexity
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Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why? More tools to work with.

Usually, Upper Bounds in this setting =⇒ Upper Bounds in the boolean setting.

Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

Why? Polynomials are central to many algoritms.

Matrix Multiplication Exponent (ω): Smallest number k such that the product of two n × n

matrices can be found using nk multiplications.
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Other Problems that I have worked on

Algebraic Independence Testing: Given polynomials f1, . . . , fm ∈ F[x1, . . . , xn], check if there

exists 0 ̸≡ A ∈ F[x1, . . . , xn] such that A(f1, . . . , fn) ≡ 0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Polynomial Identity Testing: Given a blackbox computing a polynomial f , along with some

added guarantees, check if f ≡ 0.

Results in restricted setting with Saptharishi: [CS 23].

Meta Questions on Computing Polynomials: How easy is it to capture efficiently

computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].

Parametric Shortest Paths: Variants of the shortest path problem when the edge weights are

labelled with polynomials.

Results in restricted setting with Gajjar, Radhakrishnan, Varma: [GVCR 21].
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Complexity of Computing

Polynomials



Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

4
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6
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Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7
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How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials

can be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials

can be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas 24]

Any constant depth circuit

computing IMMn,log n(x) must have

super-polynomial size.

The lower bound is nΩ(
√
d) for

depth-3 and depth-4.

8
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Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

9



Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

9



Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

9



Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d ].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.
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Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.
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Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).
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ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

homogeneous non-commutative ABPs, formulas ≡ ordered set-multilinear ABPs, formulas

x1x2 + x2x1 −→ x1,1x2,2 + x1,2x2,1

x2x3 + x1x2 ←− x1,2x2,3 + x1,1x2,2

position indices ≡ bucket indices
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Tight Separation in a Structured Setting

{X1, . . . ,Xm}: Partition of the underlying set of variables {x1, . . . , xn}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X1X2 · · ·Xm.

Abecedarian Polynomials: Every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that

• There is an abecedarian ABP of size O(nd) that computes f .

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.
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Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 23]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF
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Some Proof Ideas



Super-Polynomial Lower Bound against
∑

osmABPs

An ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n, d),

• any
∑

osmABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d),

• any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).
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The Hard Polynomial

s [1, 2]

y1,2y2,1 ·
(∑n

k=1 x1,k x2,k

)

[d − 1, 2]

[d, 3]

[1, 4]

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

[Lt , Rt ]

[Lt − 2, Rt ]

[Lt − 1, Rt + 1]

[Lt , Rt + 2]

yLt−2,Lt−1yLt−1,Lt−2

(∑n
k=1 xLt−2,k xLt−1,k

)

yLt−1,Rt+1yRt+1,Lt−1

(∑n
k=1 xLt−1,k xRt+1,k

)

yRt+1,Rt+2yRt+2,Rt+1

(∑n
k=1 xRt+1,k xRt+2,k

)

Every path corresponds to a sequence of d/2 pairs. Pd/2: Set of all such sequences of pairs.
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Lower Bound for a single osmABP
s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

f is a set-multilinear poly. w.r.t {x1, . . . , xd}.

[Nisan 91]: For every 1 ≤ k ≤ d , the number of

vertices in the k-th layer of the smallest osmABP(σ)

computing f is equal to the rank of Mf ,σ(k).

If A is the smallest osmABP (in order σ) computing

f , then

size(A) =
d∑

i=1

rank(Mf ,σ(k)).

18
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Lower Bound for a single osmABP (contd.)

s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

Gn,d =
∑

P∈Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every σ ∈ Sd , there is some P such that for

at least d/8 of the P = (i , j) ∈ P, i ∈{
σ(1), . . . σ( d2 )

}
& j ∈

{
σ(1 + d

2 )), . . . σ(d)
}
.

Therefore,

rank(MGn,d ,σ(d/2)) = Ω(nd/8).
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on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

Gn,d =
∑

P∈Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every σ ∈ Sd , there is some P such that for
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Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.

• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.
• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.
• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.
• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.
• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.
• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.

20



Improved Lower Bound against Homogeneous Non-Commutative Circuits

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Carmosino-Impagliazzo-Lovett-Mihajlin 18]

Ω(n
ω
2 +ε) lower bound for an n-variate, degree-poly(n) polynomial =⇒ arbitrarily large poly(n)

lower bound for n-variate, degree-n polynomial.
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Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1x2 · · · xd + xdxd−1 · · · x1 =⇒ f (0) = x1 + xd , f (1) = x1x2 + xdxd−1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

22



Our Measure
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[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1x2 · · · xd + xdxd−1 · · · x1 =⇒ f (0) = x1 + xd

, f (1) = x1x2 + xdxd−1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

22



Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1x2 · · · xd + xdxd−1 · · · x1 =⇒ f (0) = x1 + xd , f (1) = x1x2 + xdxd−1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

22



Our Measure
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Proof Overview

Main Observation: If f1, . . . , fk are simultaneously computable by a homogeneous

non-commutative circuit of size s,

µ(f1, . . . , fk) ≤ s + 1.

[Baur-Strassen 83]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.
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Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

Note: µ(fC) ≤ µ(C).

Need to show: µ(C) ≤ size(C) + 1. Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
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Open Questions in Algebraic

Complexity



Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• PIT for
∑

osmABP?

• Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and

number of variables?

• Separating formulas and ABPs in the non-commutative setting?

• Meaningful definition of VPH?
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Branching Out



Upper Bounding Vertices in Some Structured Polytopes

conv

mink mink

conv conv conv conv

α⃗1 α⃗2 α⃗3 α⃗4 α⃗1 α⃗2 α⃗2 α⃗4

T

Note: Known to be tight for d = 2.

Open for d ≥ 3.

[C-Gajjar-Radhakrishnan] (ongoing work):

Let d ≥ 2 and let T be a computational tree over

Rd such that depth∗(F) ≥ 1. Then, the number of

vertices in P(T ) is at most

size(T )4 depth∗(T )d−2

.

Corollary: Let G be a directed graph on n vertices

with two special vertices s and t, and edge weights

of the form

we(λ1, λ2, . . . , λd) = a1,eλ1 + a2,eλ2 + . . .+ ad,eλd .

Then the number of different shortest s–t paths in

G (as λ1, . . . , λd varies) is at most n4(log n)
d−1

.
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What Next??

Most questions that are theoretical in nature interest me!

What I like doing the most: Abstracting out concrete questions to create mathematical

models and studying them.

Boolean Circuits and Hazards

• Circuits where the firing of input

gates might be delayed.

• Include symbol u ≡ 0/1.

• Define ∧,∨,¬ : {0, 1, u}2 7→ {0, 1, u}
meaningfully.

f = (x ∧ z) ∨ (y ∧ ¬z)

• f (1, 1, 1) = 1 = f (1, 1, 0).

• For C ≡ (x ∧ z) ∨ (y ∧ ¬z), C(1, 1, u) = u.

• C has a hazard at (1, 1, u).

• Let C′ ≡ (x ∧ (y ∨ z)) ∨ (y ∧ ¬z).
• C′ is hazard-free.
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Teaching



Courses I would be happy to teach

Basic Courses

• Discrete Structures

• Automata Theory

• Data Structures and Algorithms

• Theory of Computation

• Algorithms and Complexity

• Automata Theory and Logic

• Computer Programming

• Formal Methods in CS

• Numerical Computation

Advanced Courses

• Applied Algorithms

• Topics in Complexity Theory

• Randomness in Computation

• Algebra in Computation

• Pseudorandomness

Research Level Courses

• Communication Complexity

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

28



Courses I would be happy to teach

Basic Courses

• Discrete Structures

• Automata Theory

• Data Structures and Algorithms

• Theory of Computation

• Algorithms and Complexity

• Automata Theory and Logic

• Computer Programming

• Formal Methods in CS

• Numerical Computation

Advanced Courses

• Applied Algorithms

• Topics in Complexity Theory

• Randomness in Computation

• Algebra in Computation

• Pseudorandomness

Research Level Courses

• Communication Complexity

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

28



Courses I would be happy to teach

Basic Courses

• Discrete Structures

• Automata Theory

• Data Structures and Algorithms

• Theory of Computation

• Algorithms and Complexity

• Automata Theory and Logic

• Computer Programming

• Formal Methods in CS

• Numerical Computation

Advanced Courses

• Applied Algorithms

• Topics in Complexity Theory

• Randomness in Computation

• Algebra in Computation

• Pseudorandomness

Research Level Courses

• Communication Complexity

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

28



Courses I would be happy to teach

Basic Courses

• Discrete Structures

• Automata Theory

• Data Structures and Algorithms

• Theory of Computation

• Algorithms and Complexity

• Automata Theory and Logic

• Computer Programming

• Formal Methods in CS

• Numerical Computation

Advanced Courses

• Applied Algorithms

• Topics in Complexity Theory

• Randomness in Computation

• Algebra in Computation

• Pseudorandomness

Research Level Courses

• Communication Complexity

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

28


	Complexity of Computing Polynomials
	Some Proof Ideas
	Open Questions in Algebraic Complexity
	Branching Out 
	Teaching

