Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee
April 2, 2024

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

- study the amount of resource required by the model to complete the task.

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the
 f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Circuit Complexity

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Communication Complexity

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.
Usually, Upper Bounds in this setting \Longrightarrow Upper Bounds in the boolean setting.

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.
Usually, Upper Bounds in this setting \Longrightarrow Upper Bounds in the boolean setting.
Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.
Usually, Upper Bounds in this setting \Longrightarrow Upper Bounds in the boolean setting.
Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.
[Shamir 79, Lipton 94]: If $h(x)=\prod_{i=1}^{d}(x-i)$ can be computed using poly $(\log d)$ additions and multiplications, then integer factoring is easy for boolean circuits.

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.
Usually, Upper Bounds in this setting \Longrightarrow Upper Bounds in the boolean setting.
Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.
[Shamir 79, Lipton 94]: If $h(x)=\prod_{i=1}^{d}(x-i)$ can be computed using poly $(\log d)$ additions and multiplications, then integer factoring is easy for boolean circuits.

Why? Polynomials are central to many algoritms.

Complexity of Computing Polynomials

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.
Usually, Upper Bounds in this setting \Longrightarrow Upper Bounds in the boolean setting.
Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.
[Shamir 79, Lipton 94]: If $h(x)=\prod_{i=1}^{d}(x-i)$ can be computed using poly $(\log d)$ additions and multiplications, then integer factoring is easy for boolean circuits.

> Why? Polynomials are central to many algoritms.

Matrix Multiplication Exponent (ω) : Smallest number k such that the product of two $n \times n$ matrices can be found using n^{k} multiplications.

Other Problems that I have worked on

Algebraic Independence Testing: Given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if there exists $0 \not \equiv A \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $A\left(f_{1}, \ldots, f_{n}\right) \equiv 0$.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Other Problems that I have worked on

Algebraic Independence Testing: Given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if there exists $0 \not \equiv A \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $A\left(f_{1}, \ldots, f_{n}\right) \equiv 0$.

Partial results in restricted setting with Garg, Saptharishi, Saxena.
Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some added guarantees, check if $f \equiv 0$.

Results in restricted setting with Saptharishi: [CS 23].

Other Problems that I have worked on

Algebraic Independence Testing: Given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if there exists $0 \not \equiv A \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $A\left(f_{1}, \ldots, f_{n}\right) \equiv 0$.

Partial results in restricted setting with Garg, Saptharishi, Saxena.
Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some added guarantees, check if $f \equiv 0$.

Results in restricted setting with Saptharishi: [CS 23].
Meta Questions on Computing Polynomials: How easy is it to capture efficiently computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].

Other Problems that I have worked on

Algebraic Independence Testing: Given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if there exists $0 \not \equiv A \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $A\left(f_{1}, \ldots, f_{n}\right) \equiv 0$.

Partial results in restricted setting with Garg, Saptharishi, Saxena.
Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some added guarantees, check if $f \equiv 0$.
Results in restricted setting with Saptharishi: [CS 23].
Meta Questions on Computing Polynomials: How easy is it to capture efficiently computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].
Parametric Shortest Paths: Variants of the shortest path problem when the edge weights are labelled with polynomials.

Results in restricted setting with Gajjar, Radhakrishnan, Varma: [GVCR 21].

Complexity of Computing Polynomials

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p
- Polynomial computed by the $\mathrm{ABP}: \quad f_{\mathcal{A}}(\mathbf{x})=\sum_{p} w t(p)$

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

$$
\mathrm{VP}=\mathrm{VNP} \xrightarrow{\text { G.R.H. }} \mathrm{P}=\mathrm{NP}
$$

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
Other Motivating Questions: Are the other inclusions tight?

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(\mathbf{x})$ requires $\Omega\left(n^{3}\right)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP
computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(\mathbf{x})$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(x)$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.
[C-Kumar-She-Volk 22]: Any formula computing $\operatorname{ESYM}_{n, 0.1 n}(\mathbf{x})$ requires $\Omega\left(n^{2}\right)$ vertices.

$$
\mathrm{ESYM}_{n, d}(\mathbf{x})=\sum_{i_{1}<\cdots<i_{d} \in[n]} x_{i_{1}} \cdots x_{i_{d}} .
$$

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.
[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.
[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.
[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

A lot of work that culminated in
[Limaye-Srinivasan-Tavenas 24]
Any constant depth circuit computing $\mathrm{IMM}_{n, \log n}(\mathbf{x})$ must have super-polynomial size.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.
[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

A lot of work that culminated in
[Limaye-Srinivasan-Tavenas 24]
Any constant depth circuit computing $\mathrm{IMM}_{n, \log n}(\mathbf{x})$ must have super-polynomial size.
The lower bound is $n^{\Omega(\sqrt{d})}$ for depth-3 and depth-4.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n),
- any \sum osmABP computing $G_{n, d}$ must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

An ABP is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if every path in it computes a set-multilinear monomial with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-K-S-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=\omega(\log n)$ that is computable by polynomial-sized ABPs.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting?

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.
Further, there is a non-commutative circuit of size $O\left(n \log ^{2} n\right)$ that computes $\operatorname{OSym}_{n, n / 2}(\mathbf{x})$.

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.
homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.
homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

$$
x_{1} x_{2}+x_{2} x_{1} \longrightarrow x_{1,1} x_{2,2}+x_{1,2} x_{2,1}
$$

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.
homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

$$
\begin{aligned}
& x_{1} x_{2}+x_{2} x_{1} \longrightarrow x_{1,1} x_{2,2}+x_{1,2} x_{2,1} \\
& x_{2} x_{3}+x_{1} x_{2} \longleftarrow x_{1,2} x_{2,3}+x_{1,1} x_{2,2}
\end{aligned}
$$

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.
homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

$$
\begin{aligned}
& x_{1} x_{2}+x_{2} x_{1} \longrightarrow x_{1,1} x_{2,2}+x_{1,2} x_{2,1} \\
& x_{2} x_{3}+x_{1} x_{2} \longleftarrow x_{1,2} x_{2,3}+x_{1,1} x_{2,2} \\
& \text { position indices } \equiv \text { bucket indices }
\end{aligned}
$$

Tight Separation in a Structured Setting

$$
\left\{X_{1}, \ldots, X_{m}\right\} \text { : Partition of the underlying set of variables }\left\{x_{1}, \ldots, x_{n}\right\} .
$$

Tight Separation in a Structured Setting

$$
\left\{X_{1}, \ldots, X_{m}\right\} \text { : Partition of the underlying set of variables }\left\{x_{1}, \ldots, x_{n}\right\} .
$$

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$,

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

- There is an abecedarian ABP of size $O(n d)$ that computes f.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

- There is an abecedarian ABP of size $O(n d)$ that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

- There is an abecedarian ABP of size $O(n d)$ that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \cdots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a $(\log n)$-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

- There is an abecedarian ABP of size $O(n d)$ that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

If an n-variate polynomial is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ for $m=\log n$,

Tight Separation in a Structured Setting

$\left\{X_{1}, \ldots, X_{m}\right\}$: Partition of the underlying set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$.
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_{1} X_{2} \ldots X_{m}$.
Abecedarian Polynomials: Every monomial has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a $(\log n)$-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that

- There is an abecedarian ABP of size $O(n d)$ that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

If an n-variate polynomial is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ for $m=\log n$, then any formula computing f can be made abecedarian with only poly (n) blow-up in size.

Classes Beyond VNP

Classes Beyond VNP

VPSPACE $_{b}$: Polynomials whose coefficients can be computed in PSPACE/poly and have degree bounded by poly (n).

Classes Beyond VNP

VPSPACE $_{b}$: Polynomials whose coefficients can be computed in PSPACE/poly and have degree bounded by poly (n).
[Koiran-Perifel 09]
$\mathrm{VNP} \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{P} /$ poly \neq PSPACE/ poly.

Classes Beyond VNP

VPSPACE $_{b}$: Polynomials whose coefficients can be computed in PSPACE/poly and have degree bounded by poly (n).

[Koiran-Perifel 09]

$\mathrm{VNP} \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{P} /$ poly \neq PSPACE/ poly.

$$
\mathrm{VNP} \stackrel{?}{=} \mathrm{VPSPACE}_{b}
$$

Classes Beyond VNP

VPSPACE $_{b}$: Polynomials whose coefficients can be computed in PSPACE/poly and have degree bounded by poly (n).

[Koiran-Perifel 09]

$\mathrm{VNP} \neq \mathrm{VPSPACE}_{b} \Longrightarrow \mathrm{P} /$ poly \neq PSPACE/ poly.

$$
\mathrm{VNP} \stackrel{?}{=} \mathrm{VPSPACE}_{b}
$$

[C-Gajjar-Tengse 23]: VNP \neq VPSPACE $_{b}$ in the monotone setting.

Some Proof Ideas

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,

Super-Polynomial Lower Bound against \sum osmABPs

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n, d}$ requires width $n^{\Omega(d)}$.

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

Every path corresponds to a sequence of $d / 2$ pairs.

The Hard Polynomial

Every path corresponds to a sequence of $d / 2$ pairs. $\mathcal{P}_{d / 2}$: Set of all such sequences of pairs.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.
[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest osmABP (σ) computing f is equal to the rank of $M_{f, \sigma}(k)$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.
[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest $\operatorname{osmABP}(\sigma)$ computing f is equal to the rank of $M_{f, \sigma}(k)$.

If \mathcal{A} is the smallest osmABP (in order σ) computing f, then

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f, \sigma}(k)\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Therefore,

$$
\operatorname{rank}\left(M_{G_{n, d}, \sigma}(d / 2)\right)=\Omega\left(n^{d / 8}\right)
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)}
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)}
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank
$\Longrightarrow M_{w}\left(G_{n, d}\right)$ is far from full rank unless t is large.

Improved Lower Bound against Homogeneous Non-Commutative Circuits

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Improved Lower Bound against Homogeneous Non-Commutative Circuits

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Improved Lower Bound against Homogeneous Non-Commutative Circuits

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

Improved Lower Bound against Homogeneous Non-Commutative Circuits

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Improved Lower Bound against Homogeneous Non-Commutative Circuits

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.
[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathrm{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.
[Carmosino-Impagliazzo-Lovett-Mihajlin 18]
$\Omega\left(n^{\frac{\omega}{2}+\varepsilon}\right)$ lower bound for an n-variate, degree-poly (n) polynomial \Longrightarrow arbitrarily large poly (n) lower bound for n-variate, degree- n polynomial.

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .
Example: $f=x_{1} x_{2} \cdots x_{d}+x_{d} x_{d-1} \cdots x_{1}$

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .
Example: $f=x_{1} x_{2} \cdots x_{d}+x_{d} x_{d-1} \cdots x_{1} \Longrightarrow f^{(0)}=x_{1}+x_{d}$

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .
Example: $f=x_{1} x_{2} \cdots x_{d}+x_{d} x_{d-1} \cdots x_{1} \Longrightarrow f^{(0)}=x_{1}+x_{d}, \quad f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1}$.

Our Measure

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

The Measure

f : Hom. non-commutative polynomial of degree d.
$f^{(i)}$: Polynomial got from f by setting variables in positions other than $i, i+1$ to 1 .
Example: $f=x_{1} x_{2} \cdots x_{d}+x_{d} x_{d-1} \cdots x_{1} \Longrightarrow f^{(0)}=x_{1}+x_{d}, \quad f^{(1)}=x_{1} x_{2}+x_{d} x_{d-1}$.

$$
\mu(f)=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\left\{f^{(0)}, f^{(1)}, \ldots, f^{(d)}\right\}\right)\right) .
$$

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- Suppose a similar result was true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- Suppose there is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Then we would have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Proof Overview

Main Observation: If f_{1}, \ldots, f_{k} are simultaneously computable by a homogeneous non-commutative circuit of size s,

$$
\mu\left(f_{1}, \ldots, f_{k}\right) \leq s+1
$$

[Baur-Strassen 83]: If there is a circuit of size s computing $f \in \mathbb{F}[\mathbf{x}]$, then there is a circuit of size at most $5 s$ that simultaneously compute $\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}$.

- A similar result is true in the homogeneous non-commutative setting.
- There is an n-variate, degree- d polynomial f such that

$$
\mu\left(\left\{\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right\}\right) \geq \Omega(n d) .
$$

Therefore we have an $\Omega(n d)$ lower bound against homogeneous non-commutative circuits.

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right)
$$

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Note: $\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})$.

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right)
$$

Note: $\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})$.
Need to show: $\mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1$.

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right)
$$

Note: $\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})$.
Need to show: $\mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1$.
Idea: Use induction

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Note: $\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})$.
Need to show: $\mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1$.
Idea: Use induction

Upper Bounding the Measure

\mathcal{C} : Homogeneous non-commutative circuit.

$$
\mu(\mathcal{C})=\operatorname{rank}\left(\operatorname{span}_{\mathbb{F}}\left(\bigcup_{g \in \mathcal{C}}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(d)}\right\}\right)\right) .
$$

Note: $\mu\left(f_{\mathcal{C}}\right) \leq \mu(\mathcal{C})$.
Need to show: $\mu(\mathcal{C}) \leq \operatorname{size}(\mathcal{C})+1$.
Idea: Use induction
$\left\{g^{(0)}, \ldots, g^{\left(d_{1}-1\right)}, g^{\left(d_{1}\right)}, g^{\left(d_{1}+1\right)}, \ldots, g^{\left(d_{1}+d_{2}\right)}\right\}$

$$
\left\{g_{1}^{(0)}, \ldots, g_{1}^{\left(d_{1}\right)}\right\} \quad\left\{g_{2}^{(0)}, \ldots, g_{2}^{\left(d_{2}\right)}\right\}
$$

Open Questions in Algebraic

Complexity

- Better lower bounds against homogeneous formulas?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and number of variables?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?
- Meaningful definition of VPH?

Branching Out

Upper Bounding Vertices in Some Structured Polytopes

Upper Bounding Vertices in Some Structured Polytopes

[C-Gajjar-Radhakrishnan] (ongoing work):
Let $d \geq 2$ and let \mathcal{T} be a computational tree over \mathbb{R}^{d} such that $\operatorname{depth}^{*}(\mathcal{F}) \geq 1$. Then, the number of vertices in $\mathrm{P}(\mathcal{T})$ is at most

$$
\operatorname{size}(\mathcal{T})^{4 \operatorname{depth}^{*}(\mathcal{T})^{d-2}}
$$

Upper Bounding Vertices in Some Structured Polytopes

[C-Gajjar-Radhakrishnan] (ongoing work):
Let $d \geq 2$ and let \mathcal{T} be a computational tree over \mathbb{R}^{d} such that depth* $(\mathcal{F}) \geq 1$. Then, the number of vertices in $\mathrm{P}(\mathcal{T})$ is at most

$$
\operatorname{size}(\mathcal{T})^{4} \operatorname{depth}^{*}(\mathcal{T})^{d-2} .
$$

Corollary: Let G be a directed graph on n vertices with two special vertices s and t, and edge weights of the form
$w_{e}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)=a_{1, e} \lambda_{1}+a_{2, e} \lambda_{2}+\ldots+a_{d, e} \lambda_{d}$.
Then the number of different shortest $s-t$ paths in G (as $\lambda_{1}, \ldots, \lambda_{d}$ varies) is at most $n^{4(\log n)^{d-1}}$.

Upper Bounding Vertices in Some Structured Polytopes

Note: Known to be tight for $d=2$.
[C-Gajjar-Radhakrishnan] (ongoing work):
Let $d \geq 2$ and let \mathcal{T} be a computational tree over \mathbb{R}^{d} such that $\operatorname{depth}^{*}(\mathcal{F}) \geq 1$. Then, the number of vertices in $\mathrm{P}(\mathcal{T})$ is at most

$$
\operatorname{size}(\mathcal{T})^{4} \operatorname{depth}^{*}(\mathcal{T})^{d-2} .
$$

Corollary: Let G be a directed graph on n vertices with two special vertices s and t, and edge weights of the form
$w_{e}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)=a_{1, e} \lambda_{1}+a_{2, e} \lambda_{2}+\ldots+a_{d, e} \lambda_{d}$.
Then the number of different shortest $s-t$ paths in G (as $\lambda_{1}, \ldots, \lambda_{d}$ varies) is at most $n^{4(\log n)^{d-1}}$.

Upper Bounding Vertices in Some Structured Polytopes

Note: Known to be tight for $d=2$. Open for $d \geq 3$.
[C-Gajjar-Radhakrishnan] (ongoing work):
Let $d \geq 2$ and let \mathcal{T} be a computational tree over \mathbb{R}^{d} such that depth* $(\mathcal{F}) \geq 1$. Then, the number of vertices in $\mathrm{P}(\mathcal{T})$ is at most

$$
\operatorname{size}(\mathcal{T})^{4} \operatorname{depth}^{*}(\mathcal{T})^{d-2}
$$

Corollary: Let G be a directed graph on n vertices with two special vertices s and t, and edge weights of the form
$w_{e}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)=a_{1, e} \lambda_{1}+a_{2, e} \lambda_{2}+\ldots+a_{d, e} \lambda_{d}$.
Then the number of different shortest $s-t$ paths in G (as $\lambda_{1}, \ldots, \lambda_{d}$ varies) is at most $n^{4(\log n)^{d-1}}$.

What Next??

Most questions that are theoretical in nature interest me!

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

What Next??

Most questions that are theoretical in nature interest me!

What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input

$$
f=(x \wedge z) \vee(y \wedge \neg z)
$$ gates might be delayed.

- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

$$
f=(x \wedge z) \vee(y \wedge \neg z)
$$

- $f(1,1,1)=1=f(1,1,0)$.
- For $\mathcal{C} \equiv(x \wedge z) \vee(y \wedge \neg z), \mathcal{C}(1,1, u)=u$.
- \mathcal{C} has a hazard at $(1,1, u)$.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

$$
f=(x \wedge z) \vee(y \wedge \neg z)
$$

- $f(1,1,1)=1=f(1,1,0)$.
- For $\mathcal{C} \equiv(x \wedge z) \vee(y \wedge \neg z), \mathcal{C}(1,1, u)=u$.
- \mathcal{C} has a hazard at $(1,1, u)$.
- Let $\mathcal{C}^{\prime} \equiv(x \wedge(y \vee z)) \vee(y \wedge \neg z)$.

What Next??

Most questions that are theoretical in nature interest me!
What I like doing the most: Abstracting out concrete questions to create mathematical models and studying them.

Boolean Circuits and Hazards

- Circuits where the firing of input gates might be delayed.
- Include symbol $u \equiv 0 / 1$.
- Define $\wedge, \vee, \neg:\{0,1, u\}^{2} \mapsto\{0,1, u\}$ meaningfully.

$$
f=(x \wedge z) \vee(y \wedge \neg z)
$$

- $f(1,1,1)=1=f(1,1,0)$.
- For $\mathcal{C} \equiv(x \wedge z) \vee(y \wedge \neg z), \mathcal{C}(1,1, u)=u$.
- \mathcal{C} has a hazard at $(1,1, u)$.
- Let $\mathcal{C}^{\prime} \equiv(x \wedge(y \vee z)) \vee(y \wedge \neg z)$.
- \mathcal{C}^{\prime} is hazard-free.

Teaching

Courses I would be happy to teach

Basic Courses

- Discrete Structures
- Automata Theory
- Data Structures and Algorithms
- Theory of Computation
- Algorithms and Complexity
- Automata Theory and Logic
- Computer Programming
- Formal Methods in CS
- Numerical Computation

Courses I would be happy to teach

Basic Courses

- Discrete Structures
- Automata Theory
- Data Structures and Algorithms
- Theory of Computation
- Algorithms and Complexity
- Automata Theory and Logic
- Computer Programming
- Formal Methods in CS
- Numerical Computation

Advanced Courses

- Applied Algorithms
- Topics in Complexity Theory
- Randomness in Computation
- Algebra in Computation
- Pseudorandomness

Courses I would be happy to teach

Basic Courses

- Discrete Structures
- Automata Theory
- Data Structures and Algorithms
- Theory of Computation
- Algorithms and Complexity
- Automata Theory and Logic
- Computer Programming
- Formal Methods in CS
- Numerical Computation

Advanced Courses

- Applied Algorithms
- Topics in Complexity Theory
- Randomness in Computation
- Algebra in Computation
- Pseudorandomness

Research Level Courses

- Communication Complexity
- Circuit Complexity
- Algebraic Complexity Theory

Courses I would be happy to teach

Basic Courses

- Discrete Structures
- Automata Theory
- Data Structures and Algorithms
- Theory of Computation
- Algorithms and Complexity
- Automata Theory and Logic
- Computer Programming
- Formal Methods in CS
- Numerical Computation

Advanced Courses

- Applied Algorithms
- Topics in Complexity Theory
- Randomness in Computation
- Algebra in Computation
- Pseudorandomness

Research Level Courses

- Communication Complexity
- Circuit Complexity
- Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

