Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

April 2, 2024

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Traditional Time Complexity
Given a boolean function f on n
inputs, how many steps are required

by a Turing machine to compute the
f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Traditional Time Complexity Traditional Space Complexity
Given a boolean function f on n Given a boolean function f on n

inputs, how many steps are required inputs, how much space is required by

by a Turing machine to compute the a Turing machine to compute the f

f (in terms of n)? (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Traditional Time Complexity Traditional Space Complexity
Given a boolean function f on n Given a boolean function f on n

inputs, how many steps are required inputs, how much space is required by

by a Turing machine to compute the a Turing machine to compute the f

f (in terms of n)? (in terms of n)?

’ Circuit Complexity ‘

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Traditional Time Complexity Traditional Space Complexity
Given a boolean function f on n Given a boolean function f on n

inputs, how many steps are required inputs, how much space is required by

by a Turing machine to compute the a Turing machine to compute the f

f (in terms of n)? (in terms of n)?

’ Circuit Complexity ‘ ’ Communication Complexity ‘

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

e design a computational model that captures the constraints

e study the amount of resource required by the model to complete the task.

Traditional Time Complexity Traditional Space Complexity
Given a boolean function f on n Given a boolean function f on n

inputs, how many steps are required inputs, how much space is required by

by a Turing machine to compute the a Turing machine to compute the f

f (in terms of n)? (in terms of n)?

’Circuit Complexity‘ ’Communication Complexity‘ ’Quantum Complexity‘

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards Lower Bound in the boolean setting.

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) = H,flzl(x — i) can be computed using poly(log d) additions
and multiplications, then integer factoring is easy for boolean circuits.

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) = H,flzl(x — i) can be computed using poly(log d) additions
and multiplications, then integer factoring is easy for boolean circuits.

’Why? Polynomials are central to many algoritms. ‘

Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) = H,flzl(x — i) can be computed using poly(log d) additions
and multiplications, then integer factoring is easy for boolean circuits.

’Why? Polynomials are central to many algoritms. ‘

Matrix Multiplication Exponent (w): Smallest number k such that the product of two n x n
matrices can be found using n* multiplications.

Other Problems that | have worked on

Algebraic Independence Testing: Given polynomials fi, ..., fy, € F[xy,...,x,], check if there
exists 0 # A € F[xq, ..., x,] such that A(f1,...,f,) =0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Other Problems that | have worked on

Algebraic Independence Testing: Given polynomials fi, ..., fy, € F[xy,...,x,], check if there
exists 0 # A € F[xq, ..., x,] such that A(f1,...,f,) =0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some
added guarantees, check if f = 0.

Results in restricted setting with Saptharishi: [CS 23].

Other Problems that | have worked on

Algebraic Independence Testing: Given polynomials fi, ..., fy, € F[xy,...,x,], check if there
exists 0 # A € F[xq, ..., x,] such that A(f1,...,f,) =0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some
added guarantees, check if f = 0.

Results in restricted setting with Saptharishi: [CS 23].

Meta Questions on Computing Polynomials: How easy is it to capture efficiently
computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].

Other Problems that | have worked on

Algebraic Independence Testing: Given polynomials fi, ..., fy, € F[xy,...,x,], check if there
exists 0 # A € F[xq, ..., x,] such that A(f1,...,f,) =0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some

added guarantees, check if f = 0.

Results in restricted setting with Saptharishi: [CS 23].

Meta Questions on Computing Polynomials: How easy is it to capture efficiently

computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].

Parametric Shortest Paths: Variants of the shortest path problem when the edge weights are
labelled with polynomials.

Results in restricted setting with Gajjar, Radhakrishnan, Varma: [GVCR 21].

Complexity of Computing
Polynomials

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

C a1(x1 + %) (x5 + a) + (x1 + x)(aaxe + «)

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Branching Programs

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: f4(x) =3, wt(p)

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly(n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d). @

VP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d).
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VNP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VIER
VP
VP = VNP <24 p — NP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VIER
VP
VP = VNP <24 p — NP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit
computing Y7, x? requires Q(nlog d) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/log n) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYM,, .1,(x) requires Q(n2) vertices.

ESYMya(x)= Y XX,

1 <--<ig€[n]

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for
some function func.

How does one make progress?

Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also .
] against structured models
be computed by a structured model of size func(s, n, d) for .
) computing f.

some function func.

How does one make progress?

Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also

against structured models

be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials
can be converted into depth-4 circuits of size sO(V9).

How does one make progress?

Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also

against structured models

be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials
can be converted into depth-4 circuits of size sO(V9).

[Gupta-Kamath-Kayal-Saptharishi 16]
Size s circuits computing n-variate degree d polynomials
can be converted into depth-3 circuits of size sOVd),

How does one make progress?

Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also

against structured models

be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15] S [@7 s el e nfEEe)

Size s circuits computing n-variate degree d polynomials [Limaye-Srinivasan-Tavenas 24]
can be converted into depth-4 circuits of size sO(V9). Any constant depth circuit

computing IMM,, jog »(X) must have
[Gupta-Kamath-Kayal-Saptharishi 16]

. S) i . super-polynomial size.
Size s circuits computing n-variate degree d polynomials

can be converted into depth-3 circuits of size sOVd),

How does one make progress?

Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also

against structured models

be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15] S [@7 s el e nfEEe)

Size s circuits computing n-variate degree d polynomials [Limaye-Srinivasan-Tavenas 24]
can be converted into depth-4 circuits of size sO(V9). Any constant depth circuit

computing IMM,, jog »(X) must have
[Gupta-Kamath-Kayal-Saptharishi 16]

. S) i . super-polynomial size.
Size s circuits computing n-variate degree d polynomials

The lower bound is n®(V9) for

o ~ 0 0 o O(\/E)
can be converted into depth-3 circuits of size s . el e AepiidL

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (mﬁ’i&) = super-polynomial lower bound
against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (mﬁ’i&) = super-polynomial lower bound
against ABPs.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

10

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

10

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}

10

Near Tightness of ABP Set-Multilinearisation

For o € S4, an ABP is o-ordered set-multilinear with respect to {xi,...,x4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

11

Near Tightness of ABP Set-Multilinearisation

For o € S4, an ABP is o-ordered set-multilinear with respect to {xi,...,x4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

11

Near Tightness of ABP Set-Multilinearisation

For o € S4, an ABP is o-ordered set-multilinear with respect to {xi,...,x4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of » osmABP for a

log n
log log n

polynomial of degree d = O <) = super-polynomial lower bound against ABPs.

11

Near Tightness of ABP Set-Multilinearisation

For o € S4, an ABP is o-ordered set-multilinear with respect to {xi,...,x4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of » osmABP for a

log n
log log n

polynomial of degree d = O <) = super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of > osmABP for a
polynomial of degree d = w(log n) that is computable by polynomial-sized ABPs.

11

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting?

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSym,,yd(x) = Z Xt X,

1<ih <-+<ig<n

has size Q(nd) for d < 3.

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSym,,yd(x) = Z Xt X,

1<ih <-+<ig<n

has size Q(nd) for d < 2. The lower bound is tight for homogeneous non-commutative circuits.

12

Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSym,,yd(x) = Z Xt X,

1<ih <-+<ig<n

has size Q(nd) for d < 2. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(nlog? n) that computes OSym,, , (x).
12

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

13

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

13

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

13

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

X1X2 + XoX1 —> X1,1X22 + X1,2X2,1

13

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

X1X2 + XoX1 —> X1,1X22 + X1,2X2,1

XoX3 + X1Xo <— X12X23 + X1,1X22

13

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

X1X2 + XoX1 —> X1,1X22 + X1,2X2,1

XoX3 + X1Xo <— X12X23 + X1,1X22

position indices = bucket indices

13

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.

Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uie[y {Xi} with X; = {xij} ;[

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.
[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

e Any abecedarian formula computing f has size nf(loglogn)

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

e Any abecedarian formula computing f has size nf(loglogn)

O(log log n)

e There is an abecedarian formula of size n that computes f.

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

e Any abecedarian formula computing f has size nf(loglogn)

O(log log n)

e There is an abecedarian formula of size n that computes f.

If an n-variate polynomial is abecedarian with respect to {Xi, ..., Xy} for m = logn,

14

Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uje[n) {Xi} with X; = {xij} . there exists a (log n)-degree abecedarian
polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

e Any abecedarian formula computing f has size nf(loglogn)

O(log log n)

e There is an abecedarian formula of size n that computes f.

If an n-variate polynomial is abecedarian with respect to {Xi,..., Xy} for m = log n, then any
formula computing f can be made abecedarian with only poly(n) blow-up in size. a0

Classes Beyond VNP

VBP

VNP

15

Classes Beyond VNP

VPSPACE,: Polynomials whose coefficients can be
computed in PSPACE/ poly and have
degree bounded by poly(n).

(o)

VBP

VP
VNP

VPSPACE

15

Classes Beyond VNP

VPSPACE,: Polynomials whose coefficients can be
computed in PSPACE/ poly and have
degree bounded by poly(n).

[Koiran-Perifel 09]
VNP # VPSPACE, = P/ poly # PSPACE/ poly.

(o)

VBP

VP
VNP

VPSPACE

15

Classes Beyond VNP

VPSPACE,: Polynomials whose coefficients can be
computed in PSPACE/ poly and have
degree bounded by poly(n).

[Koiran-Perifel 09]
VNP # VPSPACE, = P/ poly # PSPACE/ poly.

VNP < VPSPACE,

(o)

VBP

VP
VNP

VPSPACE

15

Classes Beyond VNP

VPSPACE,: Polynomials whose coefficients can be
computed in PSPACE/ poly and have
degree bounded by poly(n).

[Koiran-Perifel 09]

VNP # VPSPACE, = P/ poly # PSPACE/ poly.

VNP < VPSPACE,

[C-Gajjar-Tengse 23]: VNP # VPSPACE,, in the
monotone setting.

(o)

VBP

VP
VNP

VPSPACE

15

Some Proof ldeas

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

16

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

16

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

16

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),

16

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),
e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

16

Super-Polynomial Lower Bound against) osmABPs

An ABP is o-ordered set-multilinear with respect to {xy,...,xq4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),
e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

e any ordered set-multilinear branching program computing G, 4 requires width nf(d).

16

The Hard Polynomial

221 (S0 <k k)

The Hard Polynomial

The Hard Polynomial

O . @g

221 (S0 <k k)

The Hard Polynomial

221 (S0 <k k)

[d,3]

Yy —2,Lp—1Y0p—1,L;—2 =1 XLt—Z,kXLt—l,k)

YLy —1,Re+1YRe+1,Lp —1 (Zﬂ:l XLr—l,kXRtJrl.k)

[Lt — 1, Re +1]

YRt +1,Re+2YRs+2, Ry +1 +1,I<XRt+2,k)

The Hard Polynomial

Yy —2,Lp—1Y0p—1,L;—2 =1 XLt—Z,kXLt—l,k)

YLy —1,Re+1YRe+1,Lp —1 (Zﬂ:l XLr—l,kXRﬁrl.k)

[d,3]

[Lt — 1, Re +1]

221 (S0 <k k)

YRt +1,Re+2YRs+2, Ry +1 XR +l,kXRt+2,k)

Every path corresponds to a sequence of d/2 pairs.

17

The Hard Polynomial

[d,3]

221 (S0 <k k)

Yy —2,Lp—1Y0p—1,L;—2 =1 XLt—Z,kXLt—l,k)

YLy —1,Re+1YRe+1,Lp —1 (Zﬂ:l XLr—l,kXRﬁrl.k)

[Lt — 1, Re +1]

YRt +1,Re+2YRs+2, Ry +1 XR +l,kXRt+2,k)

Every path corresponds to a sequence of d/2 pairs. Pg/o: Set of all such sequences of pairs.

17

Lower Bound for a single osmABP

s.m. mons. in {Xa(k+1)7 e 7X0(d)} f is a set-multilinear poly. w.r.t {x1,...,xq4}.
—~—

S

9]

x

><b —
—

o=

) N

c

2 CO€ff . m, (1)
E

(2]

) 18

Lower Bound for a single osmABP

s.m. mons. in {X;(kr1), -, Xo(d) | f is a set-multilinear poly. w.r.t {xi,...,X4}.
=

= [Nisan 91]: For every 1 < k < d, the number of

9]

x vertices in the k-th layer of the smallest osmABP (o)

computing f is equal to the rank of My (k).
P

o=

9 T

2 CO€ff . m, (1)

E

m
M. (k) 18

Lower Bound for a single osmABP

s.m. mons. in {Xa(k+1)7 e ,xg(d)} f is a set-multilinear poly. w.r.t {x1,...,xq4}.
—~—
% [Nisan 91]: For every 1 < k < d, the number of
x vertices in the k-th layer of the smallest osmABP (o)
computing f is equal to the rank of My (k).
N M If Ais the smallest osmABP (in order o) computing
ol
< f, then
. —~ ‘
S coeff oy .m, (F) size(A) = > rank(Mg o (k).
. i=1
E
my
M o (k) 18

Lower Bound for a single osmABP (contd.)

Gna = Z H)/ij}’ji'<lek)9k>

PEPay2 (ij)EP

19

Lower Bound for a single osmABP (contd.)

n
Goa= Y. I viivii- (in,kxj,k)~
k=1

PEPd/z (I,_/)EP

Properties:

e G, g is computable by a set-multilinear ABP of
size poly(n, d).

19

Lower Bound for a single osmABP (contd.)

s.m. mons. in {xg(kﬂ), .. ,xg(d)} n
Gna = Z H YijYii - <Z XikXjk | -
H::‘ PEPy)2 (ij)EP k=1
3
><'\
: Properties:
S e G, 4 is computable by a set-multilinear ABP of
[— my .
X size poly(n, d).
£ e For every 0 € 54, there is some P such that for
@ > « ; at least d/8 of the P = (i,j) € P, i €
o o
5 coeffmm(f) 15(1),. . 0(2)} &je {o(1+2))....a(d)}.
£

=
)
<)
—

=
~—

19

Lower Bound for a single osmABP (contd.)

s.m. mons. in {xg(kﬂ), .. ,xg(d)} n
Gna = Z H YijYii - <Z XikXjk | -
H::‘ PEPy)2 (ij)EP k=1
3
><'\
: Properties:
S e G, 4 is computable by a set-multilinear ABP of
[— my .
X size poly(n, d).
S e For every o € Sy, there is some P such that for
@ > « ; at least d/8 of the P = (i,j) € P, i €
o o
5 coeffm.m () £5(1),.. . 0(2)) & je {o(1+9)),...0(d)}.
E Therefore,
rank(Mg, , »(d/2)) = Q(n?/®).

=
)
<)
—

=
~—

19

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.

20

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

20

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

20

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g!) is far from full rank

Uj—1,Uj

20

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g!) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

20

Lower Bound for a Sum of osmABPs

e {M,(f) : we S} is a set of matrices such that M,,(G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g!) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

= M, (G, q) is far from full rank unless t is large.

20

Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

21

Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

21

Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

Osymmd(x) = Z Xy * 7 Xig

1<ih <-+-<ig<n

has size Q(nd) for d <

n
5-

21

Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

Osymmd(x) = Z Xiy + o+ Xig

1<ih <-+-<ig<n

has size Q(nd) for d < 7. The lower bound is tight for homogeneous non-commutative circuits.

21

Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing
Osymmd(x) = Z Xy * 7 Xig
1<ih <-+-<ig<n

has size Q(nd) for d < 7. The lower bound is tight for homogeneous non-commutative circuits.

[Carmosino-Impagliazzo-Lovett-Mihajlin 18]

Q(n%*°) lower bound for an n-variate, degree-poly(n) polynomial == arbitrarily large poly(n)

lower bound for n-variate, degree-n polynomial.
21

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n

has size Q(nd) for d < 7.

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n
has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n

has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n
has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f = x3x0 -+ Xqg + XgXd—1 " X1

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n
has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f = x1x0 - Xg + Xgxg—1---x1 = O =x3 + x4

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n
has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f=X1Xo+ Xqg + XgXdg—1" X1 —> FO) = X1 + Xd, FA) = X1X2 + XdXd—1-

22

Our Measure

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSymn’d(x) = Z Xyt Xiy

1<ih<-<ig<n

has size Q(nd) for d < 7.
The Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f=X1Xo+ Xqg + XgXdg—1" X1 —> FO) = X1 + Xd, FA) = X1X2 + XdXd—1-

wu(f) = rank (span]F ({f(o), FO f(d)})))

22

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

M(ﬂ7...7fk)§s+1.

23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

M(ﬂ7...7fk)§s+1.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

M(ﬂ7...7fk)§s+1.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

,u(fl,...,fk)gs—i—l.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

({0 fy 0 f, ..., 0xf}) > Q(nd).

23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

,u(fl,...,fk)gs—i—l.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e Suppose a similar result was true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

({0 fy 0 f, ..., 0xf}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.
23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

,u(fl,...,fk)gs—i—l.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e Suppose there is an n-variate, degree-d polynomial f such that

({0 f, 00 f, ..., 0xF}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.
23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

,u(fl,...,fk)gs—i—l.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

({0 f,00f, ..., 0xf}) > Q(nd).

Then we would have an Q(nd) lower bound against homogeneous non-commutative circuits.
23

Proof Overview

Main Observation: If fi, ..., fx are simultaneously computable by a homogeneous

non-commutative circuit of size s,

,u(fl,...,fk)gs—i—l.

[Baur-Strassen 83]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

({0 f,00f, ..., 0xf}) > Q(nd).

Therefore we have an Q(nd) lower bound against homogeneous non-commutative circuits.
23

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

p(C) = rank [spang U{g(°)7g(1),-~~,g(d)}
gecl

24

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

u1(C) = rank (spanF (U {g(0)7g(1), . ,g(d)})> .

geC

Note: p(fe) < p(C).

24

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

u1(C) = rank (spanF (U {g(0)7g(1), . ,g(d)})> .

geC

Note: u(fe) < p(C).
Need to show: y(C) <size(C) + 1.

24

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

u1(C) = rank (spanF (U {g(0)7g(1), . ,g(d)})> .

geC

Note: u(fe) < p(C).
Need to show: y(C) <size(C) + 1. Idea: Use induction

24

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.

u1(C) = rank (spanF (U {g(0)7g(1), . ,g(d)})> .

geC

Note: u(fe) < p(C).
Need to show: y(C) <size(C) + 1. Idea: Use induction

24

Upper Bounding the Measure

C: Homogeneous non-commutative circuit.
p(C) = rank | spang | | J {g(°)7g(1), . ,g(d)}
geC

Note: u(fe) < p(C).
Need to show: y(C) <size(C) + 1. Idea: Use induction

FCRE)

s s)

24

Open Questions in Algebraic
Complexity

Some Open Directions

e Better lower bounds against homogeneous formulas?

25

Some Open Directions

e Better lower bounds against homogeneous formulas?

e Better lower bounds against set-multilinear ABPs?

25

Some Open Directions

e Better lower bounds against homogeneous formulas?
e Better lower bounds against set-multilinear ABPs?

e PIT for Y osmABP?

25

Some Open Directions

Better lower bounds against homogeneous formulas?

Better lower bounds against set-multilinear ABPs?
PIT for > osmABP?
Bootstrapping statement, similar to [C-I1-L-M 18], which is sensitive to both degree and

number of variables?

25

Some Open Directions

Better lower bounds against homogeneous formulas?

Better lower bounds against set-multilinear ABPs?
PIT for > osmABP?
Bootstrapping statement, similar to [C-I1-L-M 18], which is sensitive to both degree and

number of variables?

Separating formulas and ABPs in the non-commutative setting?

25

Some Open Directions

e Better lower bounds against homogeneous formulas?
e Better lower bounds against set-multilinear ABPs?
e PIT for Y osmABP?

e Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and
number of variables?

e Separating formulas and ABPs in the non-commutative setting?
e Meaningful definition of VPH?

25

Branching Out

Upper Bounding Vertices in Some Structured Polytopes

Upper Bounding Vertices in Some Structured Polytopes

T [C-Gajjar-Radhakrishnan] (ongoing work):
Let d > 2 and let 7 be a computational tree over
@ R? such that depth®(F) > 1. Then, the number of

vertices in P(7) is at most

@ @ size(T)4 depth*(T)diQ.

26

Upper Bounding Vertices in Some Structured Polytopes

T [C-Gajjar-Radhakrishnan] (ongoing work):
Let d > 2 and let 7 be a computational tree over
@ R? such that depth®(F) > 1. Then, the number of

vertices in P(7) is at most

@ @ size(T)* 4ot (D7,
@ @ @ @ Corollary: Let G be a directed graph on n vertices
with two special vertices s and t, and edge weights

of the form

G G2 A3 G Q1 @2 02 G4y (N Ny M) = aned + a2eda F o+ dd e
Then the number of different shortest s—t paths in
G (as A1, ..., \g varies) is at most n*(ogm* ",

26

Upper Bounding Vertices in Some Structured Polytopes

T [C-Gajjar-Radhakrishnan] (ongoing work):
Let d > 2 and let 7 be a computational tree over
@ R? such that depth®(F) > 1. Then, the number of

vertices in P(7) is at most

@ @ size(T)* 4ot (D7,
@ @ @ @ Corollary: Let G be a directed graph on n vertices
with two special vertices s and t, and edge weights

of the form

adp dap dz @ ay dy adr a
L 2 3 & L 2 2 & We()\l, Aoy,)\d) = 3176/\1 + az,e/\z + ...+ ad7e)\d.

Then the number of different shortest s—t paths in

Note: Known to be tight for d = 2. L)
G (as A1, .., \q varies) is at most n*(logm)* "

26

Upper Bounding Vertices in Some Structured Polytopes

T [C-Gajjar-Radhakrishnan] (ongoing work):
Let d > 2 and let 7 be a computational tree over
@ R? such that depth®(F) > 1. Then, the number of

vertices in P(7) is at most

@ @ size(T)* 4t (D7,
@ @ @ @ Corollary: Let G be a directed graph on n vertices
with two special vertices s and t, and edge weights

of the form

adp dap dz @ ay dy adr a
L 2 3 & L 2 2 & We()\l, Aoy,)\d) = 3176/\1 + az,e/\z + ...+ ad7e)\d.

Then the number of different shortest s—t paths in

Note: Known to be tight for d = 2. L)
G (as A1, .., \q varies) is at most n*(logm)"

Open for d > 3.
26

Most questions that are theoretical in nature interest me!

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input
gates might be delayed.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input
gates might be delayed.

e Include symbol u =0/1.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input
gates might be delayed.

e Include symbol u =0/1.
e Define A,V,—:{0,1,u}* — {0,1, u}

meaningfully.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)
gates might be delayed.

e Include symbol u =0/1.

e Define A,V,—:{0,1,u}* — {0,1, u}

meaningfully.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xNAz)V(yA-z)
gates might be delayed. e f(1,1,1)=1=f(1,1,0).

e Include symbol u =0/1.

e Define A,V,—:{0,1,u}* — {0,1, u}
meaningfully.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)
gates might be delayed. e f(1,1,1)=1=f(1,1,0).
e Include symbol u=0/1. e ForC=(xAz)V(yA—z) C(1,1,u) =u.

e Define A,V,—:{0,1,u}* — {0,1, u}
meaningfully.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)

gates might be delayed. e f(1,1,1)=1=f(1,1,0).
e Include symbol u=0/1. e ForC=(xAz)V(yA—z) C(1,1,u) =u.
e Define A,V,—:{0,1,u}* — {0,1, u} e C has a hazard at (1,1,).

meaningfully.

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)

gates might be delayed. e f(1,1,1)=1=f(1,1,0).
e Include symbol u=0/1. e ForC=(xAz)V(yA—z) C(1,1,u) =u.
e Define A,V,—:{0,1,u}* — {0,1, u} e C has a hazard at (1,1, u).
meaningfully. o LetC'=(xA(yVz)V(yA-z).

27

Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)

gates might be delayed. e f(1,1,1)=1=f(1,1,0).
e Include symbol u=0/1. e ForC=(xAz)V(yA—z) C(1,1,u) =u.
e Define A,V,—:{0,1,u}* — {0,1, u} e C has a hazard at (1,1, u).
meaningfully. o LetC'=(xA(yVz)V(yA-z).

e C’ is hazard-free.
27

Teaching

Courses | would be happy to teach

Basic Courses
e Discrete Structures
e Automata Theory
e Data Structures and Algorithms
e Theory of Computation
e Algorithms and Complexity
e Automata Theory and Logic
e Computer Programming
e Formal Methods in CS

e Numerical Computation

28

Courses | would be happy to teach

Basic Courses Advanced Courses
e Discrete Structures e Applied Algorithms
e Automata Theory e Topics in Complexity Theory
e Data Structures and Algorithms e Randomness in Computation
e Theory of Computation e Algebra in Computation
e Algorithms and Complexity e Pseudorandomness

e Automata Theory and Logic
e Computer Programming
e Formal Methods in CS

e Numerical Computation

28

Courses | would be happy to teach

Basic Courses Advanced Courses
e Discrete Structures e Applied Algorithms
e Automata Theory e Topics in Complexity Theory
e Data Structures and Algorithms e Randomness in Computation
e Theory of Computation e Algebra in Computation
e Algorithms and Complexity e Pseudorandomness
e Automata Theory and Logic Research Level Courses
o Computer Programming e Communication Complexity
e Formal Methods in CS e Circuit Complexity
e Numerical Computation e Algebraic Complexity Theory

28

Courses | would be happy to teach

Basic Courses Advanced Courses
e Discrete Structures e Applied Algorithms
e Automata Theory e Topics in Complexity Theory
e Data Structures and Algorithms e Randomness in Computation
e Theory of Computation e Algebra in Computation
e Algorithms and Complexity e Pseudorandomness
e Automata Theory and Logic Research Level Courses
o Computer Programming e Communication Complexity
e Formal Methods in CS e Circuit Complexity
e Numerical Computation e Algebraic Complexity Theory

| would be happy to teach/design other courses depending on interest and/or requirement.
28

	Complexity of Computing Polynomials
	Some Proof Ideas
	Open Questions in Algebraic Complexity
	Branching Out
	Teaching

