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Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards  Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) = H,flzl(x — i) can be computed using poly(log d) additions
and multiplications, then integer factoring is easy for boolean circuits.

’Why? Polynomials are central to many algoritms. ‘

Matrix Multiplication Exponent (w): Smallest number k such that the product of two n x n
matrices can be found using n* multiplications.
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exists 0 # A € F[xq, ..., x,] such that A(f1,...,f,) =0.

Partial results in restricted setting with Garg, Saptharishi, Saxena.

Polynomial Identity Testing: Given a blackbox computing a polynomial f, along with some

added guarantees, check if f = 0.

Results in restricted setting with Saptharishi: [CS 23].

Meta Questions on Computing Polynomials: How easy is it to capture efficiently

computable polynomials using efficiently computable polynomials?

Results in restricted setting with Kumar, Ramya, Saptharishi, Tengse: [CKRST 20], [CT 23].

Parametric Shortest Paths: Variants of the shortest path problem when the edge weights are
labelled with polynomials.

Results in restricted setting with Gajjar, Radhakrishnan, Varma: [GVCR 21].
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e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VIER
VP
VP = VNP <24 p — NP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
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General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYM,, .1,(x) requires Q(n2) vertices.

ESYMya(x)= Y XX,

1 <--<ig€[n]
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Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also
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be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.
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Size s circuits computing n-variate degree d polynomials [Limaye-Srinivasan-Tavenas 24]
can be converted into depth-4 circuits of size sO(V9). Any constant depth circuit

computing IMM,, jog »(X) must have
[Gupta-Kamath-Kayal-Saptharishi 16]

. S ) i . super-polynomial size.
Size s circuits computing n-variate degree d polynomials

The lower bound is n®(V9) for

o ~ 0 0 o O(\/E)
can be converted into depth-3 circuits of size s . el e AepiidL
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[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (mﬁ’i&) = super-polynomial lower bound
against ABPs.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.
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The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}

10
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e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of » osmABP for a

log n
log log n

polynomial of degree d = O < ) = super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of > osmABP for a
polynomial of degree d = w(log n) that is computable by polynomial-sized ABPs.
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Non-Commutativity

Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSym,,yd(x) = Z Xt X,

1<ih <-+<ig<n

has size Q(nd) for d < 2. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(nlog? n) that computes OSym,, , (x).
12
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[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

X1X2 + XoX1 —> X1,1X22 + X1,2X2,1

XoX3 + X1Xo <— X12X23 + X1,1X22

position indices = bucket indices

13



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

14



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.

14



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.

Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

14



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

14



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X; X5 - - X,,,.
Abecedarian Polynomials: Every monomial has the form Xj*XJ --- X,

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = Uie[y {Xi} with X; = {xij} ;[

14



Tight Separation in a Structured Setting

{X1,...,Xm}: Partition of the underlying set of variables {x1,...,x,}.
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polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.

e Any abecedarian formula computing f has size nf(loglogn)

O(log log n)

e There is an abecedarian formula of size n that computes f.

If an n-variate polynomial is abecedarian with respect to {Xi,..., Xy} for m = log n, then any
formula computing f can be made abecedarian with only poly(n) blow-up in size. a0
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VPSPACE,: Polynomials whose coefficients can be
computed in PSPACE/ poly and have
degree bounded by poly(n).

[Koiran-Perifel 09]

VNP # VPSPACE, = P/ poly # PSPACE/ poly.

VNP < VPSPACE,

[C-Gajjar-Tengse 23]: VNP # VPSPACE,, in the
monotone setting.
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e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),
e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

e any ordered set-multilinear branching program computing G, 4 requires width nf(d).
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s.m. mons. in {Xa(k+1)7 e ,xg(d)} f is a set-multilinear poly. w.r.t {x1,...,xq4}.
—~—
% [Nisan 91]: For every 1 < k < d, the number of
x vertices in the k-th layer of the smallest osmABP (o)
computing f is equal to the rank of My (k).
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Properties:

e G, g is computable by a set-multilinear ABP of
size poly(n, d).
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e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g! ) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

= M, (G, q) is far from full rank unless t is large.

20



Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

21



Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

21



Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

Osymmd(x) = Z Xy * 7 Xig

1<ih <-+-<ig<n

has size Q(nd) for d <

n
5-

21



Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

Osymmd(x) = Z Xiy + o+ Xig

1<ih <-+-<ig<n

has size Q(nd) for d < 7. The lower bound is tight for homogeneous non-commutative circuits.

21



Improved Lower Bound against Homogeneous Non-Commutative Circuits

FGy)=(x+y)x (x+y)=x"+xy+yx+y> #x* + 2xy + y°

Non-Commutative Models: The multiplication gates, additionally, respect the order.

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing
Osymmd(x) = Z Xy * 7 Xig
1<ih <-+-<ig<n

has size Q(nd) for d < 7. The lower bound is tight for homogeneous non-commutative circuits.

[Carmosino-Impagliazzo-Lovett-Mihajlin 18]

Q(n%*°) lower bound for an n-variate, degree-poly(n) polynomial == arbitrarily large poly(n)

lower bound for n-variate, degree-n polynomial.
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has size Q(nd) for d < 7.
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f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f=X1Xo+ Xqg + XgXdg—1" X1 —> FO) = X1 + Xd, FA) = X1X2 + XdXd—1-

wu(f) = rank (span]F ({f(o), FO f(d)})) )
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Upper Bounding the Measure

C: Homogeneous non-commutative circuit.
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geC
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Some Open Directions

e Better lower bounds against homogeneous formulas?
e Better lower bounds against set-multilinear ABPs?
e PIT for Y osmABP?

e Bootstrapping statement, similar to [C-I-L-M 18], which is sensitive to both degree and
number of variables?

e Separating formulas and ABPs in the non-commutative setting?
e Meaningful definition of VPH?
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Upper Bounding Vertices in Some Structured Polytopes

T [C-Gajjar-Radhakrishnan] (ongoing work):
Let d > 2 and let 7 be a computational tree over
@ R? such that depth®(F) > 1. Then, the number of

vertices in P(7) is at most

@ @ size(T)* 4t (D7,
@ @ @ @ Corollary: Let G be a directed graph on n vertices
with two special vertices s and t, and edge weights

of the form

adp dap dz @ ay dy adr a
L 2 3 & L 2 2 & We()\l, Aoy, )\d) = 3176/\1 + az,e/\z + ...+ ad7e)\d.

Then the number of different shortest s—t paths in

Note: Known to be tight for d = 2. L)
G (as A1, .., \q varies) is at most n*(logm)"

Open for d > 3.
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Most questions that are theoretical in nature interest me!

What | like doing the most: Abstracting out concrete questions to create mathematical
models and studying them.

Boolean Circuits and Hazards

e Circuits where the firing of input f=(xAz)V(yA-z)

gates might be delayed. e f(1,1,1)=1=f(1,1,0).
e Include symbol u=0/1. e ForC=(xAz)V(yA—z) C(1,1,u) =u.
e Define A,V,—:{0,1,u}* — {0,1, u} e C has a hazard at (1,1, u).
meaningfully. o LetC'=(xA(yVz)V(yA-z).

e C’ is hazard-free.
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Teaching




Courses | would be happy to teach

Basic Courses
e Discrete Structures
e Automata Theory
e Data Structures and Algorithms
e Theory of Computation
e Algorithms and Complexity
e Automata Theory and Logic
e Computer Programming
e Formal Methods in CS

e Numerical Computation
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| would be happy to teach/design other courses depending on interest and/or requirement.
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