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Complexity of Computing Polynomials

Question: Given f (x) ∈ F[x ] of degree d , how many additions and multiplications does it take

to compute f ?

Answer: Using Horner’s rule, O(d) in general. But for f (x) = xd , O(log d).

Fact: There exist polynomials f (x) ∈ F[x ], for which the answer is Ω(
√
d). In general the

answer must be Ω(log d).

Open Question: Describe f (x) ∈ F[x ] of degree d for which the answer is ω(log d).

Theorem [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is in P/ poly.
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Algebraic Circuit Complexity

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Easy: Most polynomials require exp(n, d) sized circuits.

Central Question

VP
?
= VNP : Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).
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Algebraic Branching Programs

s

t

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Weight of path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP:
∑

p wt(p)

In this talk: Is there an explicit n-variate, degree d polynomial that can not be represented by

an ABP of size poly(n, d)?
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What is known?

For general ABPs, the best lower bound is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

Recently Bhargav, Dwivedi and Saxena showed that there is a different line of attack.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree O
(

log n
log log n

)
implies super-polynomial lower bound against ABPs.

The Question: Can we prove lower bounds against a general
∑

osmABP?
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Near Tightness of ABP Set-Multilinearisation

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

Our Main Result: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is set-multilinear

w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.
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Set-Multilinearity and Ordered

Set-Multilinearity



Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d ].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.
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Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• there is a permutation σ ∈ Sd such that

every edge in layer i is labelled by a homogeneous linear form in xσ(i)

Example:

For xk =
{
x
(k)
i,j : i ∈ [n], j ∈ [n]

}
,

IMMn,d =
∑

1≤i1,...,id−1≤n

x
(1)
1,i1

·

d−1∏
j=2

x
(j)
ij−1,ij

 · x (d)id−1,id
.

has an osmABP of size O(nd) for σ ∈ Sd being the identity permutation.
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Our Main Result Revisited

An ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of
∑

osmABP for

a polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.
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Our Other Results



Exponential Lower Bound in the High Degree Regime

Sum of Ordered Set-Multilinear ABPs:

There is a polynomial Gn,n(x) which is set-multilinear with respect to x = {x1, . . . , xn}, where
|xi | ≤ n for each i ∈ [n], such that:

• it has a set-multilinear branching program of size poly(n),

• but any
∑

osmABP computing Gn,n(x) requires total-width exp(Ω(n1/1000)).

A single Ordered Set-Multilinear ABP:

There is a polynomial Gn,d(x) which is set-multilinear with respect to x = {x1, . . . , xd}, where
|xi | ≤ n for each i ∈ [d ], such that:

• it has a set-multilinear branching program of size poly(n, d),

• but any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).
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Results for polynomials in VP, VNP

High Degree Regime: There is polynomial family {Fn,n(x)}, in VP, which is set-multilinear

with respect to a set of Θ(n) buckets, each of size Θ(n), such that

any
∑

osmABP computing it requires total-width exp(Ω(n1/3)).

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Low Degree Regime: For ω(log n) = d ≤ n, there is polynomial family {Fn,d(x)}, in VP,

which is set-multilinear with respect to a set of Θ(d) buckets, each of size Θ(n), such that

Fn,d cannot be computed by a
∑

osmABP of total-width poly(n).

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.
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Related Results

[Bhargav-Dwivedi-Saxena]

Any
∑

osmABP computing IMMn,n which has max-width no(1) must have 2Ω(n) summands.

[Arvind-Raja]

Any
∑t

i=1 osmABP computing the n × n permanent polynomial has max-width 2Ω(n/t).

11



Related Results

[Bhargav-Dwivedi-Saxena]

Any
∑

osmABP computing IMMn,n which has max-width no(1) must have 2Ω(n) summands.

[Arvind-Raja]

Any
∑t

i=1 osmABP computing the n × n permanent polynomial has max-width 2Ω(n/t).

11



Related Results

[Ramya-Rao]

There exists an explicit polynomial family {gn}n ∈ VP, gn being defined on the variable set

{x1,0, x1,1}∪ · · · ∪ {xn,0, xn,1}, such that any
∑

osmABP computing it has total width 2
Ω
(

n1/6

log n

)
.

[Ghoshal-Rao]

There exists an explicit polynomial family {gn}n ∈ VBP, gn being defined on the variable set

{x1,0, x1,1} ∪ · · · ∪ {xn,0, xn,1}, such that any
∑

osmABP computing gn

that has max-width poly(n) must have total width 2Ω(n
1/500).

12



Related Results

[Ramya-Rao]

There exists an explicit polynomial family {gn}n ∈ VP, gn being defined on the variable set

{x1,0, x1,1}∪ · · · ∪ {xn,0, xn,1}, such that any
∑

osmABP computing it has total width 2
Ω
(

n1/6

log n

)
.

[Ghoshal-Rao]

There exists an explicit polynomial family {gn}n ∈ VBP, gn being defined on the variable set

{x1,0, x1,1} ∪ · · · ∪ {xn,0, xn,1}, such that any
∑

osmABP computing gn

that has max-width poly(n) must have total width 2Ω(n
1/500).

12



Proof Overviews



The Hard Polynomial

s [1, 2]

y1,2y2,1 ·
(∑n

k=1 x1,k x2,k

)

[d − 1, 2]

[d, 3]

[1, 4]

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

[Lt , Rt ]

[Lt − 2, Rt ]

[Lt − 1, Rt + 1]

[Lt , Rt + 2]

yLt−2,Lt−1yLt−1,Lt−2

(∑n
k=1 xLt−2,k xLt−1,k

)

yLt−1,Rt+1yRt+1,Lt−1

(∑n
k=1 xLt−1,k xRt+1,k

)

yRt+1,Rt+2yRt+2,Rt+1

(∑n
k=1 xRt+1,k xRt+2,k

)

Every path corresponds to a sequence of d/2 pairs. Pd/2: Set of all such sequences of pairs.
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Lower Bound for a single osmABP
s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

f is a set-multilinear poly. w.r.t {x1, . . . , xd}.

[Nisan]: For every 1 ≤ k ≤ d , the number of

vertices in the k-th layer of the smallest osmABP(σ)

computing f is equal to the rank of Mf ,σ(k).

If A is the smallest osmABP computing f , then

size(A) =
d∑

i=1

rank(Mf ,σ(k)).
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Lower Bound for a single osmABP (contd.)

s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

Gn,d =
∑

P∈Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every σ ∈ Sd , there is some P such that for

at least d/8 of the P = (i , j) ∈ P, i ∈{
σ(1), . . . σ( d2 )

}
& j ∈

{
σ(1 + d

2 )), . . . σ(d)
}
.

Therefore,

rank(MGn,d ,σ(d/2)) = Ω(nd/8).
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Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.

• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.
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Open Questions



Open Threads

1. PIT for
∑

osmABP?

2. Super-quadratic lower bounds against smABPs?

Thank you!
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