Lower Bounds Against Sums of Ordered Set-Multilinear ABPs

Prerona Chatterjee [with Deepanshu Kush (UoT), Shubhangi Saraf (UoT), Amir Shpilka (TAU)]
Tel Aviv University
March 13, 2024

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Answer: Using Horner's rule, $O(d)$ in general.

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Answer: Using Horner's rule, $O(d)$ in general. But for $f(x)=x^{d}, O(\log d)$.

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Answer: Using Horner's rule, $O(d)$ in general. But for $f(x)=x^{d}, O(\log d)$.
Fact: There exist polynomials $f(x) \in \mathbb{F}[x]$, for which the answer is $\Omega(\sqrt{d})$.

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Answer: Using Horner's rule, $O(d)$ in general. But for $f(x)=x^{d}, O(\log d)$.
Fact: There exist polynomials $f(x) \in \mathbb{F}[x]$, for which the answer is $\Omega(\sqrt{d})$. In general the answer must be $\Omega(\log d)$.

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?

Answer: Using Horner's rule, $O(d)$ in general. But for $f(x)=x^{d}, O(\log d)$.
Fact: There exist polynomials $f(x) \in \mathbb{F}[x]$, for which the answer is $\Omega(\sqrt{d})$. In general the answer must be $\Omega(\log d)$.

Open Question: Describe $f(x) \in \mathbb{F}[x]$ of degree d for which the answer is $\omega(\log d)$.

Complexity of Computing Polynomials

Question: Given $f(x) \in \mathbb{F}[x]$ of degree d, how many additions and multiplications does it take to compute f ?
Answer: Using Horner's rule, $O(d)$ in general. But for $f(x)=x^{d}, O(\log d)$.
Fact: There exist polynomials $f(x) \in \mathbb{F}[x]$, for which the answer is $\Omega(\sqrt{d})$. In general the answer must be $\Omega(\log d)$.

Open Question: Describe $f(x) \in \mathbb{F}[x]$ of degree d for which the answer is $\omega(\log d)$.
Theorem [Shamir 79, Lipton 94]: If $h(x)=\prod_{i=1}^{d}(x-i)$ can be computed using poly $(\log d)$ additions and multiplications, then integer factoring is in $\mathrm{P} /$ poly.

Algebraic Circuit Complexity

Algebraic Circuit Complexity

Algebraic Circuit Complexity

Algebraic Circuit Complexity

Easy: Most polynomials require $\exp (n, d)$ sized circuits.

Algebraic Circuit Complexity

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} w t(p)$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Weight of path $p=\operatorname{wt}(p)$: Product of the edge labels on p
- Polynomial computed by the ABP: $\sum_{p} w t(p)$

In this talk: Is there an explicit n-variate, degree d polynomial that can not be represented by an ABP of size poly (n, d) ?

What is known?

For general $A B P s$, the best lower bound is just quadratic.
[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

What is known?

For general $A B P s$, the best lower bound is just quadratic.
[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Recently Bhargav, Dwivedi and Saxena showed that there is a different line of attack.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $O\left(\frac{\log n}{\log \log n}\right)$ implies super-polynomial lower bound against ABPs.

What is known?

For general $A B P s$, the best lower bound is just quadratic.
[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Recently Bhargav, Dwivedi and Saxena showed that there is a different line of attack.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $O\left(\frac{\log n}{\log \log n}\right)$ implies super-polynomial lower bound against ABPs.

The Question: Can we prove lower bounds against a general \sum osmABP?

Near Tightness of ABP Set-Multilinearisation

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Near Tightness of ABP Set-Multilinearisation

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Our Main Result: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n),
- any \sum osmABP computing $G_{n, d}$ must have super-polynomial total-width.

Set-Multilinearity and Ordered Set-Multilinearity

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

An ABP is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if every path in it computes a set-multilinear monomial with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- there is a permutation $\sigma \in S_{d}$ such that
every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- there is a permutation $\sigma \in S_{d}$ such that
every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Example:

$$
\mathrm{IMM}_{n, d}=\sum_{1 \leq i_{1}, \ldots, i_{d-1} \leq n} x_{1, i_{1}}^{(1)} \cdot\left(\prod_{j=2}^{d-1} x_{i_{j-1}, i_{j}}^{(j)}\right) \cdot x_{i_{d-1}, i_{d}}^{(d)} .
$$

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- there is a permutation $\sigma \in S_{d}$ such that
every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Example: For $\mathbf{x}_{k}=\left\{x_{i, j}^{(k)}: i \in[n], j \in[n]\right\}$,

$$
\mathrm{IMM}_{n, d}=\sum_{1 \leq i_{1}, \ldots, i_{d-1} \leq n} x_{1, i_{1}}^{(1)} \cdot\left(\prod_{j=2}^{d-1} x_{i_{j-1}, i_{j}}^{(j)}\right) \cdot x_{i_{d-1}, i_{d}}^{(d)} .
$$

Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- there is a permutation $\sigma \in S_{d}$ such that
every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Example: For $\mathbf{x}_{k}=\left\{x_{i, j}^{(k)}: i \in[n], j \in[n]\right\}$,

$$
\mathrm{IMM}_{n, d}=\sum_{1 \leq i_{1}, \ldots, i_{d-1} \leq n} x_{1, i_{1}}^{(1)} \cdot\left(\prod_{j=2}^{d-1} x_{i_{j-1}, i_{j}}^{(j)}\right) \cdot x_{i_{d-1}, i_{d}}^{(d)} .
$$

has an osmABP of size $O(n d)$ for $\sigma \in S_{d}$ being the identity permutation.

Our Main Result Revisited

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Our Main Result Revisited

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Our Main Result Revisited

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Our Main Result Revisited

An ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=\omega(\log n)$ that is computable by polynomial-sized ABPs.

Our Other Results

Exponential Lower Bound in the High Degree Regime

Sum of Ordered Set-Multilinear ABPs:

There is a polynomial $G_{n, n}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for each $i \in[n]$, such that:

- it has a set-multilinear branching program of size poly(n),
- but any \sum osmABP computing $G_{n, n}(\mathbf{x})$ requires total-width $\exp \left(\Omega\left(n^{1 / 1000}\right)\right)$.

Exponential Lower Bound in the High Degree Regime

Sum of Ordered Set-Multilinear ABPs:

There is a polynomial $G_{n, n}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for each $i \in[n]$, such that:

- it has a set-multilinear branching program of size poly(n),
- but any \sum osmABP computing $G_{n, n}(\mathbf{x})$ requires total-width $\exp \left(\Omega\left(n^{1 / 1000}\right)\right)$.

A single Ordered Set-Multilinear ABP:

There is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear with respect to $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for each $i \in[d]$, such that:

- it has a set-multilinear branching program of size poly(n, d),
- but any ordered set-multilinear branching program computing $G_{n, d}$ requires width $n^{\Omega(d)}$.

Results for polynomials in VP, VNP

High Degree Regime: There is polynomial family $\left\{F_{n, n}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(n)$ buckets, each of size $\Theta(n)$, such that
any \sum osmABP computing it requires total-width $\exp \left(\Omega\left(n^{1 / 3}\right)\right)$.

Results for polynomials in VP, VNP

High Degree Regime: There is polynomial family $\left\{F_{n, n}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(n)$ buckets, each of size $\Theta(n)$, such that
any \sum osmABP computing it requires total-width $\exp \left(\Omega\left(n^{1 / 3}\right)\right)$.
The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Results for polynomials in VP, VNP

High Degree Regime: There is polynomial family $\left\{F_{n, n}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(n)$ buckets, each of size $\Theta(n)$, such that any \sum osmABP computing it requires total-width $\exp \left(\Omega\left(n^{1 / 3}\right)\right)$.

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Low Degree Regime: For $\omega(\log n)=d \leq n$, there is polynomial family $\left\{F_{n, d}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(d)$ buckets, each of size $\Theta(n)$, such that

$$
\left.F_{n, d} \text { cannot be computed by a } \sum \text { osmABP of total-width poly(} \mathrm{n}\right) \text {. }
$$

Results for polynomials in VP, VNP

High Degree Regime: There is polynomial family $\left\{F_{n, n}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(n)$ buckets, each of size $\Theta(n)$, such that any \sum osmABP computing it requires total-width $\exp \left(\Omega\left(n^{1 / 3}\right)\right)$.

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Low Degree Regime: For $\omega(\log n)=d \leq n$, there is polynomial family $\left\{F_{n, d}(\mathbf{x})\right\}$, in VP, which is set-multilinear with respect to a set of $\Theta(d)$ buckets, each of size $\Theta(n)$, such that

$$
\left.F_{n, d} \text { cannot be computed by a } \sum \text { osmABP of total-width poly(} \mathrm{n}\right) \text {. }
$$

The same result also holds for the Nisan-Wigderson polynomial family, which is in VNP.

Related Results

[Bhargav-Dwivedi-Saxena]

Any \sum osmABP computing $\mathrm{IMM}_{n, n}$ which has max-width $n^{\circ(1)}$ must have $2^{\Omega(n)}$ summands.

Related Results

[Bhargav-Dwivedi-Saxena]

Any \sum osmABP computing $\mathrm{IMM}_{n, n}$ which has max-width $n^{o(1)}$ must have $2^{\Omega(n)}$ summands.

[Arvind-Raja]

Any $\sum_{i=1}^{t}$ osmABP computing the $n \times n$ permanent polynomial has max-width $2^{\Omega(n / t)}$.

Related Results

[Ramya-Rao]

There exists an explicit polynomial family $\left\{g_{n}\right\}_{n} \in \mathrm{VP}, g_{n}$ being defined on the variable set $\left\{x_{1,0}, x_{1,1}\right\} \cup \cdots \cup\left\{x_{n, 0}, x_{n, 1}\right\}$, such that any \sum osmABP computing it has total width $2^{\Omega\left(\frac{n^{1 / 6}}{\log n}\right)}$.

Related Results

[Ramya-Rao]

There exists an explicit polynomial family $\left\{g_{n}\right\}_{n} \in \mathrm{VP}, g_{n}$ being defined on the variable set $\left\{x_{1,0}, x_{1,1}\right\} \cup \cdots \cup\left\{x_{n, 0}, x_{n, 1}\right\}$, such that any \sum osmABP computing it has total width $2^{\Omega\left(\frac{n^{1 / 6}}{\log n}\right)}$.

[Ghoshal-Rao]

There exists an explicit polynomial family $\left\{g_{n}\right\}_{n} \in \mathrm{VBP}, g_{n}$ being defined on the variable set $\left\{x_{1,0}, x_{1,1}\right\} \cup \cdots \cup\left\{x_{n, 0}, x_{n, 1}\right\}$, such that any \sum osmABP computing g_{n} that has max-width poly (n) must have total width $2^{\Omega\left(n^{1 / 500}\right)}$.

Proof Overviews

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

The Hard Polynomial

Every path corresponds to a sequence of $d / 2$ pairs.

The Hard Polynomial

Every path corresponds to a sequence of $d / 2$ pairs. $\mathcal{P}_{d / 2}$: Set of all such sequences of pairs.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
f \text { is a set-multilinear poly. w.r.t }\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\} .
$$

[Nisan]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest osmABP (σ) computing f is equal to the rank of $M_{f, \sigma}(k)$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
f \text { is a set-multilinear poly. w.r.t }\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\} .
$$

[Nisan]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest osmABP (σ) computing f is equal to the rank of $M_{f, \sigma}(k)$.

If \mathcal{A} is the smallest osmABP computing f, then

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f, \sigma}(k)\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathcal{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Therefore,

$$
\operatorname{rank}\left(M_{G_{n, d}, \sigma}(d / 2)\right)=\Omega\left(n^{d / 8}\right)
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)}
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)}
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)}
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank
$\Longrightarrow M_{w}\left(G_{n, d}\right)$ is far from full rank unless t is large.

Open Questions

Open Threads

1. PIT for \sum osmABP?

Open Threads

1. PIT for \sum osmABP?
2. Super-quadratic lower bounds against smABPs?

Open Threads

1. PIT for \sum osmABP?
2. Super-quadratic lower bounds against smABPs?

Thank you!

