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Complexity of Computing Polynomials

Question: Given f(x) € F[x] of degree d, how many additions and multiplications does it take
to compute 7

Answer: Using Horner's rule, O(d) in general. But for f(x) = x4, O(log d).

Fact: There exist polynomials f(x) € F[x], for which the answer is Q(v/d). In general the
answer must be Q(log d).

Open Question: Describe f(x) € F[x] of degree d for which the answer is w(log d).

Theorem [Shamir 79, Lipton 94]: If h(x) = H,‘-jzl(x — i) can be computed using poly(log d)

additions and multiplications, then integer factoring is in P/ poly.
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@ a1(x1 + x2) (x5 + ) + (x1 + x2)(a2x2 + @)

Objects of Study
Polynomials over n variables of degree d.

Easy: Most polynomials require exp(n, d) sized circuits.

Central Question

VP £ VNP | Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).
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Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}
e Weight of path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: > wt(p)

In this talk: Is there an explicit n-variate, degree d polynomial that can not be represented by
an ABP of size poly(n, d)?



For general ABPs, the best lower bound is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing >"7_; x¢ requires Q(nd) vertices.



For general ABPs, the best lower bound is just quadratic.

[C-Kumar-She-Volk]: Any ABP computing >"7_; x¢ requires Q(nd) vertices.

Recently Bhargav, Dwivedi and Saxena showed that there is a different line of attack.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of >~ osmABP

log n
log log n

for a polynomial of degree O ( ) implies super-polynomial lower bound against ABPs.
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[C-Kumar-She-Volk]: Any ABP computing >"7_; x¢ requires Q(nd) vertices.

Recently Bhargav, Dwivedi and Saxena showed that there is a different line of attack.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of >~ osmABP

log n
log log n

for a polynomial of degree O ( ) implies super-polynomial lower bound against ABPs.

The Question: Can we prove lower bounds against a general >~ osmABP?
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Near Tightness of ABP Set-Multilinearisation

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of >~ osmABP

for a polynomial of degree d = O <|Og’ﬁ)gn> = super-polynomial lower bound against ABPs.

Our Main Result: For w(logn) = d < n, there is a polynomial G, 4(x) which is set-multilinear
w.rt x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.
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Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xi,...,xq4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}
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Ordered Set-Multilinear ABPs (osmABPs)

An ABP is ordered set-multilinear with respect to {x1,...,xq} if

e there are d layers in the ABP

e there is a permutation o € S4 such that

every edge in layer / is labelled by a homogeneous linear form in x, ;)

Example: For x;, = {x,-(f-) s i€n],je [n]}

d—1
y () %)
P W | .
IMMag= > x| T[] <2 .
1<it,...,ig—1<n j=2

has an osmABP of size O(nd) for o € S being the identity permutation.
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Our Main Result Revisited

An ABP is o-ordered set-multilinear with respect to {xi,...,xq} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of >~ osmABP

log n
log log n

for a polynomial of degree d = O ( ) = super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of > osmABP for
a polynomial of degree d = w(log n) that is computable by polynomial-sized ABPs.
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Sum of Ordered Set-Multilinear ABPs:
There is a polynomial G, ,(x) which is set-multilinear with respect to x = {xy,...,x,}, where
|xi] < n for each i € [n], such that:

e it has a set-multilinear branching program of size poly(n),

e but any > osmABP computing G, (x) requires total-width exp(2(n'/10%)).

A single Ordered Set-Multilinear ABP:
There is a polynomial G, 4(x) which is set-multilinear with respect to x = {x1,...,Xq4}, where
|xi| < n for each i € [d], such that:

e it has a set-multilinear branching program of size poly(n, d),

e but any ordered set-multilinear branching program computing G, 4 requires width ey
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High Degree Regime: There is polynomial family {F, ,(x)}, in VP, which is set-multilinear
with respect to a set of ©(n) buckets, each of size ©(n), such that
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Low Degree Regime: For w(logn) = d < n, there is polynomial family {F, 4(x)}, in VP,
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Related Results

[Bhargav-Dwivedi-Saxenal

Any >~ osmABP computing IMM,, , which has max-width n°®) must have 24" summands.

[Arvind-Raja]

Any Zle osmABP computing the n x n permanent polynomial has max-width 22(7/¢).
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Related Results

[Ramya-Rao]
There exists an explicit polynomial family {g,}, € VP, g, being defined on the variable set

21/6
{x1.0,x1.1} U+ U{Xn0,%n1}, such that any > osmABP computing it has total width ZQ(E).

[Ghoshal-Rao]

There exists an explicit polynomial family {g,}, € VBP, g, being defined on the variable set
{x1,0,x1,1} U+ - U {Xn0,Xn1}, such that any > osmABP computing g,

that has max-width poly(n) must have total width 22(""*)
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[d,3]

221 (S0 <k k)

Yy —2,Lp—1Y0p—1,L;—2 =1 XLt—Z,kXLt—l,k)

YLy —1,Re+1YRe+1,Lp —1 (Zﬂ:l XLr—l,kXRﬁrl.k)

[Lt — 1, Re +1]

YRt +1,Re+2YRs+2, Ry +1 XR +l,kXRt+2,k)

Every path corresponds to a sequence of d/2 pairs. Pg/o: Set of all such sequences of pairs.
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s.m. mons. in {xa(kﬂ), . ,xa(d)}
— f is a set-multilinear poly. w.r.t {x1,...,Xxq}.
><t: [Nisan]: For every 1 < k < d, the number of
vertices in the k-th layer of the smallest osmABP (o)
S computing f is equal to the rank of My (k).
[ — My
x [Q
: If A is the smallest osmABP computing f, then
% ™~ d
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n
Goa= Y. I viivii- (in,kxj,k)~
k=1

PEPd/z (I,_/)EP

Properties:

e G, g is computable by a set-multilinear ABP of
size poly(n, d).
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i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g! ) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

= M, (G, q) is far from full rank unless t is large.
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Open Threads

1. PIT for > osmABP?

2. Super-quadratic lower bounds against smABPs?

Thank you!
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