Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

April 10, 2024

Q: Given a computational problem and constraints on the computational power at hand,

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

1

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

1

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Circuit Complexity

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Circuit Complexity

Communication Complexity

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Circuit Complexity

Communication Complexity

Quantum Complexity

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

Usually, Upper Bounds in this setting \implies Upper Bounds in the boolean setting.

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

 $\label{eq:Why?} Why? \ \, \text{More tools to work with}.$

Usually, Upper Bounds in this setting \implies Upper Bounds in the boolean setting.

Lower Bound in this setting — is like a step towards — Lower Bound in the boolean setting.

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

Usually, Upper Bounds in this setting \implies Upper Bounds in the boolean setting.

Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x-i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

Usually, Upper Bounds in this setting \implies Upper Bounds in the boolean setting.

Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x-i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.

Why? Polynomials are central to many algoritms.

Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ of degree d, how many additions and multiplications does it take to compute f formally?

Why? More tools to work with.

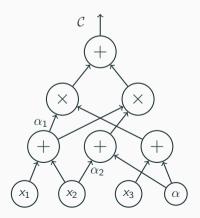
Usually, Upper Bounds in this setting \implies Upper Bounds in the boolean setting.

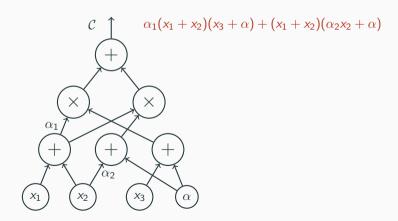
Lower Bound in this setting is like a step towards Lower Bound in the boolean setting.

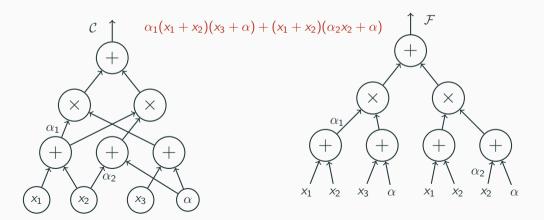
[Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x-i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.

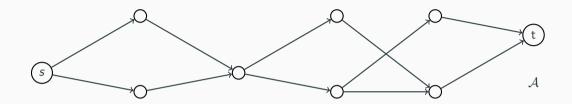
Why? Polynomials are central to many algoritms.

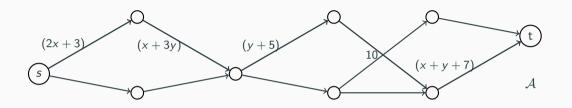
Matrix Multiplication Exponent (ω): Smallest number k such that the product of two $n \times n$ matrices can be found using n^k multiplications.



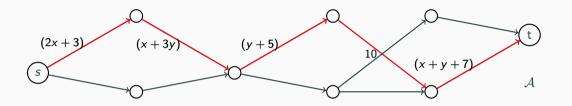




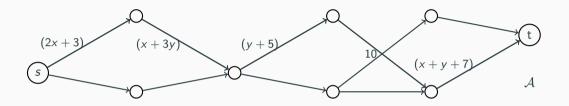




• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$



- Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_A(\mathbf{x}) = \sum_p \operatorname{wt}(p)$

Objects of Study: Polynomials over n variables of degree d.

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

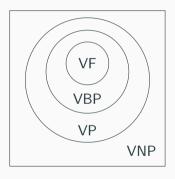
Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials



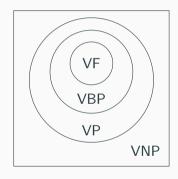
Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Objects of Study: Polynomials over n variables of degree d.

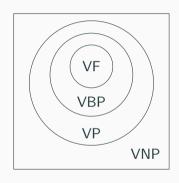
VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$\mathsf{VP} = \mathsf{VNP} \overset{\mathsf{G.R.H.}}{\Longrightarrow} \mathsf{P} = \mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Objects of Study: Polynomials over n variables of degree d.

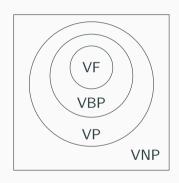
VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$\mathsf{VP} = \mathsf{VNP} \overset{\mathsf{G.R.H.}}{\Longrightarrow} \mathsf{P} = \mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $\mathrm{Det}_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $\mathrm{Det}_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $\mathrm{Det}_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[C-Kumar-She-Volk 22]: Any formula computing $ESYM_{n,0.1n}(\mathbf{x})$ requires $\Omega(n^2)$ vertices.

$$\mathrm{ESYM}_{n,d}(\boldsymbol{x}) = \sum_{i_1 < \dots < i_d \in [n]} x_{i_1} \cdots x_{i_d}.$$

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas 24]

Any constant depth circuit computing $\mathrm{IMM}_{n,\log n}(\mathbf{x})$ must have super-polynomial size.

Structural Results

Show that if a structured n-variate, degree-d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func(s, n, d) for some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas 24]

Any constant depth circuit computing $\mathrm{IMM}_{n,\log n}(\mathbf{x})$ must have super-polynomial size.

The lower bound is $n^{\Omega(\sqrt{d})}$ for depth-3 and depth-4.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = O\left(\frac{\log n}{\log\log n}\right) \implies$ super-polynomial lower bound against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = O\left(\frac{\log n}{\log\log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n),
- ullet any \sum osmABP computing $G_{n,d}$ must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots x_{i,n_i}\}$.

Set-Multilinearity

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

An ABP is set-multilinear with respect to $\{\mathbf x_1,\dots,\mathbf x_d\}$ if every path in it

computes a set-multilinear monomial with respect to $\{\textbf{x}_1,\dots,\textbf{x}_d\}.$

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = O\left(\frac{\log n}{\log\log n}\right) \implies$ super-polynomial lower bound against ABPs.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = O\left(\frac{\log n}{\log\log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d = \omega(\log n)$ that is computable by polynomial-sized ABPs.

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

 $\textbf{Non-Commutative Models}: \ The \ \text{multiplication gates, additionally, respect the order}.$

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting?

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$OSym_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$.

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$OSym_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

$$f(x,y) = (x + y) \times (x + y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$OSym_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size $O(n \log^2 n)$ that computes $\operatorname{OSym}_{n,n/2}(\mathbf{x})$.

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log\log d)}$.

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log\log d)}$.

 $homogeneous \ non-commutative \ ABPs, \ formulas \equiv ordered \ set-multilinear \ ABPs, \ formulas$

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log\log d)}$.

 $homogeneous \ non-commutative \ ABPs, \ formulas \equiv ordered \ set-multilinear \ ABPs, \ formulas$

$$x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$$

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log\log d)}$.

 $homogeneous \ non-commutative \ ABPs, \ formulas \equiv ordered \ set-multilinear \ ABPs, \ formulas$

$$x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$$

$$x_2x_3 + x_1x_2 \longleftarrow x_{1,2}x_{2,3} + x_{1,1}x_{2,2}$$

[Nisan 91]: Any ABP computing $\operatorname{Pal}_n(x_0, x_1) = \sum_{w \in \{0,1\}^{n/2}} \mathbf{x}_w \cdot \mathbf{x}_{w^R}$ has size $2^{\Omega(n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log\log d)}$.

 $homogeneous \ non-commutative \ ABPs, \ formulas \equiv ordered \ set-multilinear \ ABPs, \ formulas$

$$x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$$

$$x_2x_3 + x_1x_2 \longleftarrow x_{1,2}x_{2,3} + x_{1,1}x_{2,2}$$

 $position\ indices \equiv bucket\ indices$

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For
$$\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$$
 with $X_i = \{x_{i,j}\}_{j \in [n]}$,

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a $(\log n)$ -degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a $(\log n)$ -degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

• There is an abecedarian ABP of size O(nd) that computes f.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a $(\log n)$ -degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a $(\log n)$ -degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a $(\log n)$ -degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \dots, X_m\}$ for $m = \log n$,

 $\{X_1,\ldots,X_m\}$: Partition of the underlying set of variables $\{x_1,\ldots,x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2\cdots X_m$.

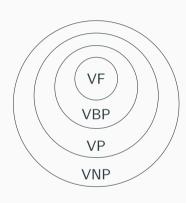
Abecedarian Polynomials: Every monomial has the form $X_1^*X_2^*\cdots X_m^*$.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

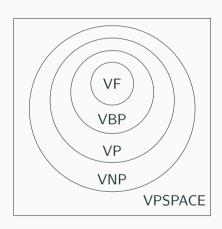
[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log n)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \ldots, X_m\}$ for $m = \log n$, then any formula computing f can be made abecedarian with only $\operatorname{poly}(n)$ blow-up in size.



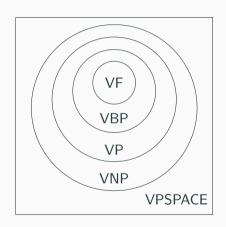
VPSPACE_b: Polynomials whose coefficients can be computed in PSPACE/ poly and have degree bounded by poly(n).



VPSPACE_b: Polynomials whose coefficients can be computed in PSPACE/ poly and have degree bounded by poly(n).

[Koiran-Perifel 09]

 $\mathsf{VNP} \neq \mathsf{VPSPACE}_b \implies \mathsf{P}/\operatorname{\mathsf{poly}} \neq \mathsf{PSPACE}/\operatorname{\mathsf{poly}}.$

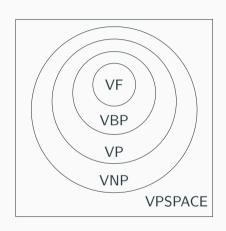


VPSPACE_b: Polynomials whose coefficients can be computed in PSPACE/ poly and have degree bounded by poly(n).

[Koiran-Perifel 09]

 $\mathsf{VNP} \neq \mathsf{VPSPACE}_b \implies \mathsf{P}/\operatorname{\mathsf{poly}} \neq \mathsf{PSPACE}/\operatorname{\mathsf{poly}}.$

 $VNP \stackrel{?}{=} VPSPACE_b$



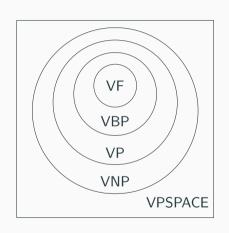
VPSPACE_b: Polynomials whose coefficients can be computed in PSPACE/ poly and have degree bounded by poly(n).

[Koiran-Perifel 09]

 $\mathsf{VNP} \neq \mathsf{VPSPACE}_b \implies \mathsf{P}/\operatorname{\mathsf{poly}} \neq \mathsf{PSPACE}/\operatorname{\mathsf{poly}}.$

$$VNP \stackrel{?}{=} VPSPACE_b$$

[C-Gajjar-Tengse 23]: VNP \neq VPSPACE_b in the monotone setting.



An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

• $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d),

An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d),
- any \sum osmABP of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,

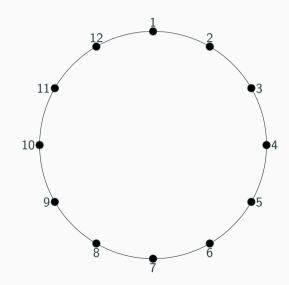
An ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1,\ldots,\mathbf{x}_d\}$ if

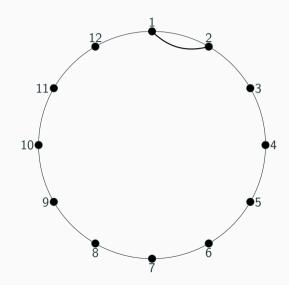
- there are d layers in the ABP
- ullet every edge in layer i is labelled by a homogeneous linear form in ${f x}_{\sigma(i)}$

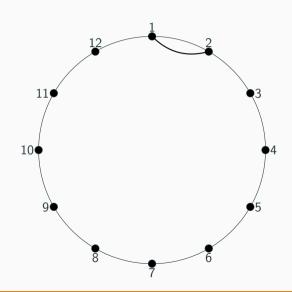
 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

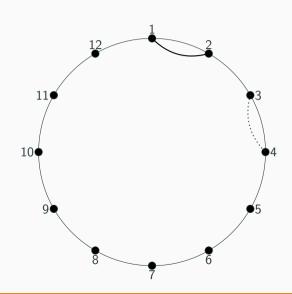
- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d),
- any \sum osmABP of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.



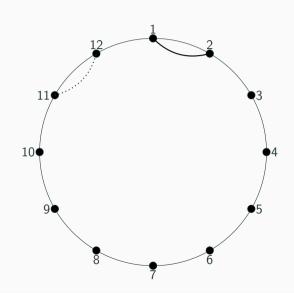




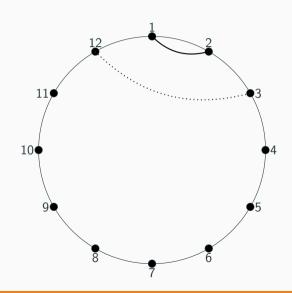
$$\mathcal{P}_1 = \{(1,2)\}$$



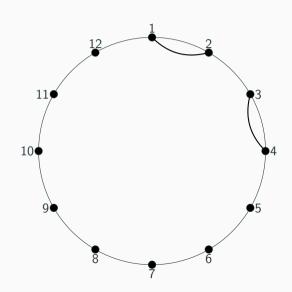
$$\mathcal{P}_1 = \{(1,2)\}$$



$$\mathcal{P}_1 = \{(1,2)\}$$

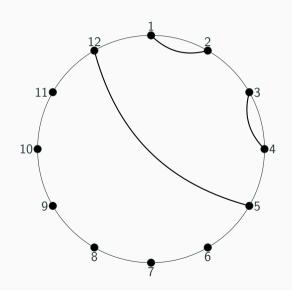


$$\mathcal{P}_1 = \{(1,2)\}$$



$$\mathcal{P}_1 = \{(1,2)\}$$

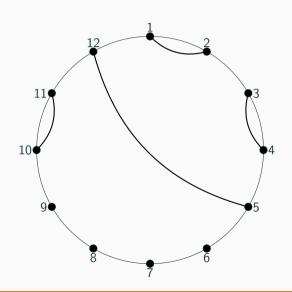
$$\mathcal{P}_2 = \{(1,2), (3,4)\}$$



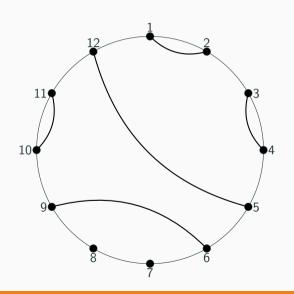
$$\mathcal{P}_1 = \{(1,2)\}$$

$$\mathcal{P}_2 = \{(1,2),(3,4)\}$$

$$\mathcal{P}_3 = \{(1,2),(3,4),(12,5)\}$$



$$\begin{split} \mathcal{P}_1 &= \{(1,2)\} \\ \mathcal{P}_2 &= \{(1,2),(3,4)\} \\ \mathcal{P}_3 &= \{(1,2),(3,4),(12,5)\} \\ \mathcal{P}_4 &= \{(1,2),(3,4),(12,5),(10,11)\} \end{split}$$



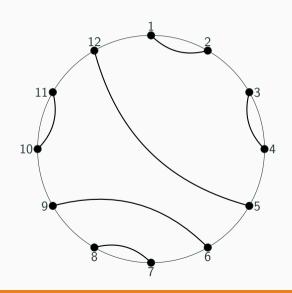
$$\mathcal{P}_1 = \{(1,2)\}$$

$$\mathcal{P}_2 = \{(1,2), (3,4)\}$$

$$\mathcal{P}_3 = \{(1,2), (3,4), (12,5)\}$$

$$\mathcal{P}_4 = \{(1,2), (3,4), (12,5), (10,11)\}$$

$$\mathcal{P}_5 = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$$



$$\mathcal{P}_1 = \{(1,2)\}$$

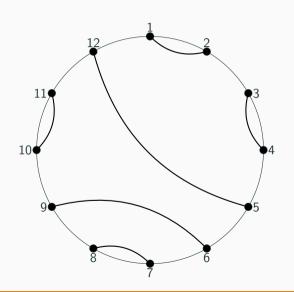
$$\mathcal{P}_2 = \{(1,2), (3,4)\}$$

$$\mathcal{P}_3 = \{(1,2), (3,4), (12,5)\}$$

$$\mathcal{P}_4 = \{(1,2), (3,4), (12,5), (10,11)\}$$

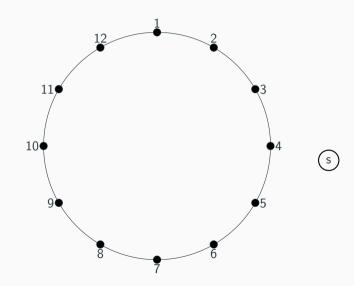
$$\mathcal{P}_5 = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$$

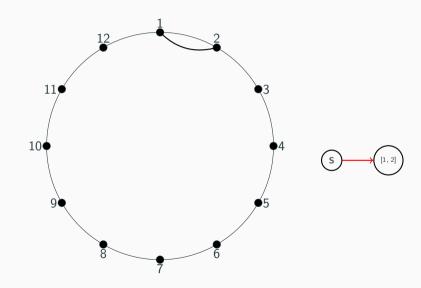
$$\mathcal{P}_6 = \{(1,2), (3,4), (12,5), (10,11), (9,6), (8,7)\}$$

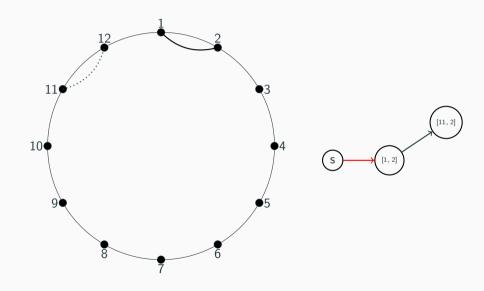


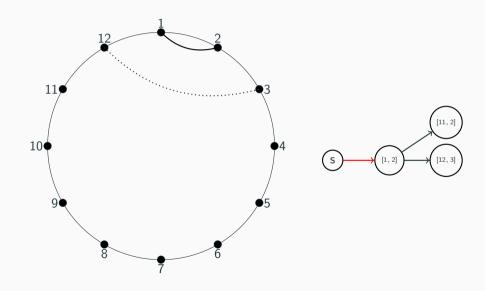
$$\begin{split} \mathcal{P}_1 &= \{(1,2)\} \\ \mathcal{P}_2 &= \{(1,2),(3,4)\} \\ \mathcal{P}_3 &= \{(1,2),(3,4),(12,5)\} \\ \mathcal{P}_4 &= \{(1,2),(3,4),(12,5),(10,11)\} \\ \mathcal{P}_5 &= \{(1,2),(3,4),(12,5),(10,11),(9,6)\} \\ \mathcal{P}_6 &= \{(1,2),(3,4),(12,5),(10,11),(9,6),(8,7)\} \end{split}$$

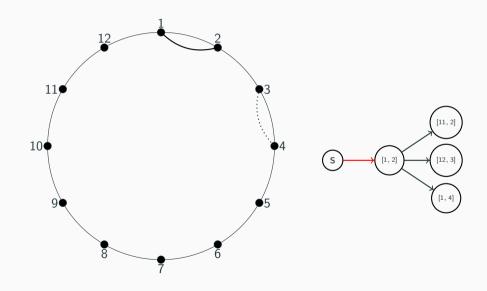
 ${f P}_6={\sf All}$ possibles sequences of such pairs.

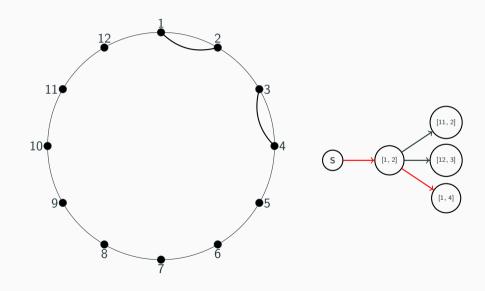


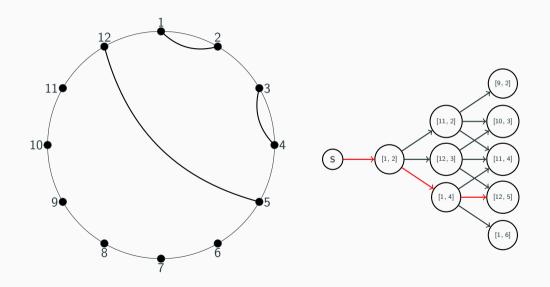


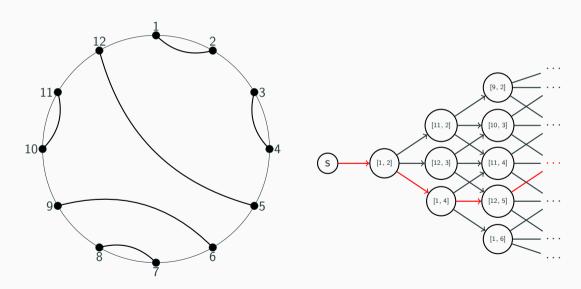




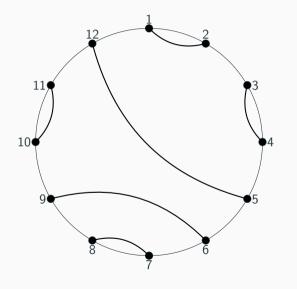




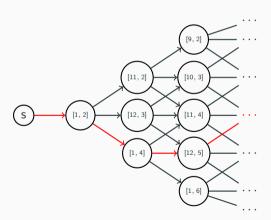




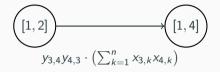
The ABP Upper Bound



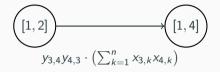
Every path corresponds to an element in $\mathbf{P}_{d/2}$.



The new pair: (3,4).



The new pair: (3,4).



The new pair: (3,4).

 $(y_{3,4}y_{4,3})$: To select.

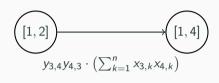
$$\underbrace{\begin{bmatrix} 1,2 \end{bmatrix}}$$

$$y_{3,4}y_{4,3} \cdot \left(\sum_{k=1}^{n} x_{3,k}x_{4,k}\right)$$

The new pair: (3,4).

 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.



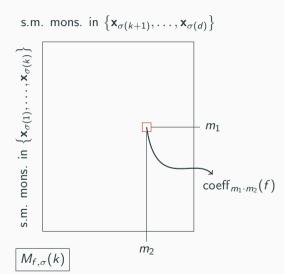
The new pair: (3, 4).

 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.

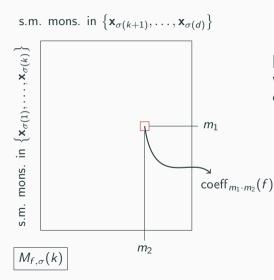
	X _{4,1}	<i>X</i> _{4,2}	 	<i>X</i> _{4,<i>n</i>}
<i>x</i> _{3,1}	1	0	 	0
<i>X</i> 3,2	0	1	 	0
÷	:	÷		:
:	:	÷		÷
<i>x</i> _{3,<i>n</i>}	0	0	 	1

Lower Bound for a single osmABP



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$.

Lower Bound for a single osmABP

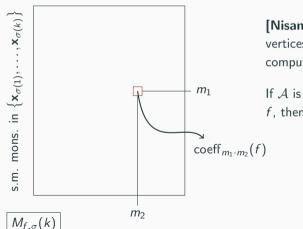


f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the k-th layer of the smallest osmABP(σ) computing f is equal to the rank of $M_{f,\sigma}(k)$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)},\ldots,\mathbf{x}_{\sigma(d)}\right\}$



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the k-th layer of the smallest osmABP(σ) computing f is equal to the rank of $M_{f,\sigma}(k)$.

If $\mathcal A$ is the smallest osmABP (in order σ) computing f, then

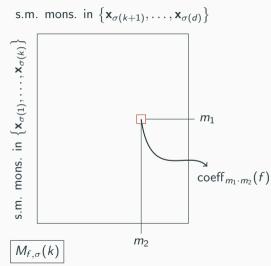
$$\operatorname{\mathsf{size}}(\mathcal{A}) = \sum_{i=1}^d \operatorname{\mathsf{rank}}(M_{f,\sigma}(k)).$$

$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^{n} x_{i,k} x_{j,k} \right).$$

$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^{n} x_{i,k} x_{j,k} \right).$$

Properties:

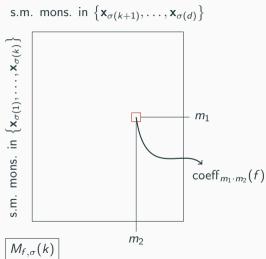
• $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d).



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^{n} x_{i,k} x_{j,k} \right).$$

Properties:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d).
- For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i,j) \in \mathcal{P}$, $i \in \{\sigma(1), \dots \sigma(\frac{d}{2})\}$ & $j \in \{\sigma(1+\frac{d}{2}), \dots \sigma(d)\}$.



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^{n} x_{i,k} x_{j,k} \right).$$

Properties:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n,d).
- For every $\sigma \in S_d$, there is some $\mathcal P$ such that for at least d/8 of the $P=(i,j)\in \mathcal P$, $i\in$

Therefore,

$$\operatorname{rank}(M_{G_{n,d},\sigma}(d/2)) = \Omega(n^{d/8}).$$

 $\{\sigma(1),\ldots\sigma(\frac{d}{2})\}\ \&\ j\in\{\sigma(1+\frac{d}{2}),\ldots\sigma(d)\}.$

• $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.

- $\{M_w(f): w \in \mathcal{S}\}\$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i$$
 where $g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}$.

- $\{M_w(f): w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}^{(i)}.$

• Define a distribution $\mathcal D$ on $\mathcal S$ such that when $w \sim \mathcal D$, if g_i s are computable by osmABPs efficiently, then

- $\{M_w(f): w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}^{(i)}.$

• Define a distribution $\mathcal D$ on $\mathcal S$ such that when $w \sim \mathcal D$, if g_i s are computable by osmABPs efficiently, then

for every i, w.h.p. there are many js, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank

- $\{M_w(f): w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}^{(i)}.$

• Define a distribution $\mathcal D$ on $\mathcal S$ such that when $w \sim \mathcal D$, if g_i s are computable by osmABPs efficiently, then

for every i, w.h.p. there are many js, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank \implies for every i, w.h.p. $M_w(g_i)$ is far from full rank

- $\{M_w(f): w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^q g_{u_{j-1},u_j}^{(i)}.$

- Define a distribution $\mathcal D$ on $\mathcal S$ such that when $w \sim \mathcal D$, if g_i s are computable by osmABPs efficiently, then
 - for every i, w.h.p. there are many js, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank
 - \implies for every i, w.h.p. $M_w(g_i)$ is far from full rank
 - $\implies M_w(G_{n,d})$ is far from full rank unless t is large.

• Better lower bounds against homogeneous formulas?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for $\sum osmABP$?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for ∑osmABP?
- Bootstrapping statement, similar to [Carmossino-Impagiazzo-Lovett-Mihajlin 18], which is sensitive to both degree and number of variables?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [Carmossino-Impagiazzo-Lovett-Mihajlin 18], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [Carmossino-Impagiazzo-Lovett-Mihajlin 18], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?
- Meaningful definition of VPH?

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- PIT for \sum osmABP?
- Bootstrapping statement, similar to [Carmossino-Impagiazzo-Lovett-Mihajlin 18], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?
- Meaningful definition of VPH?

Questions?