Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee
May 2, 2024

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

- study the amount of resource required by the model to complete the task.

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the
 f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Circuit Complexity

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Communication Complexity

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n inputs, how much space is required by a Turing machine to compute the f (in terms of n)?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p
- Polynomial computed by the $\mathrm{ABP}: \quad f_{\mathcal{A}}(\mathbf{x})=\sum_{p} w t(p)$

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d). VBP: Polynomials computable by ABPs of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d). VBP: Polynomials computable by ABPs of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d). VBP: Polynomials computable by ABPs of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d). VBP: Polynomials computable by ABPs of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

$$
\mathrm{VP}=\mathrm{VNP} \stackrel{\text { G.R.H. }}{\Longrightarrow} \mathrm{P}=\mathrm{NP}
$$

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n),
- any \sum osmABP computing $G_{n, d}$ must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

An ABP is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if every path in it computes a set-multilinear monomial with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n, d}$ requires width $n^{\Omega(d)}$.

Open Threads

1. PIT for \sum osmABP?

Open Threads

1. PIT for \sum osmABP?
2. Super-quadratic lower bounds against smABPs?

Open Threads

1. PIT for \sum osmABP?
2. Super-quadratic lower bounds against smABPs?

Question?

