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e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VBR
VP
VP = NP SEH p _ p| VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.
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[C-Kumar-She-Volk 22]: Any ABP computing >_7_; x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (m[:ign) = super-polynomial lower bound
against ABPs.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.
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The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}
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For o € S4, an ABP is g-ordered set-multilinear with respect to {xy,...,xq} if
e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),

e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

e any ordered set-multilinear branching program computing G, 4 requires width nf(d).
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Question?



