# Lower Bounds for some Algebraic Models of Computation

**Prerona Chatterjee** 

May 2, 2024

• design a computational model that captures the constraints

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?



- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

**Traditional Time Complexity** Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?



Traditional Space Complexity Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

**Traditional Time Complexity** Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?



Traditional Space Complexity Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

### **Circuit Complexity**

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

**Traditional Time Complexity** Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?



Traditional Space Complexity Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

**Circuit Complexity** 

**Communication Complexity** 

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

**Traditional Time Complexity** Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?



Traditional Space Complexity Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

**Circuit Complexity** 

Communication Complexity













• Label on each edge: An affine linear form in  $\{x_1, x_2, \dots, x_n\}$ 



- Label on each edge: An affine linear form in  $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: An affine linear form in  $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP:  $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

#### Lower Bounds in Algebraic Circuit Complexity

**Objects of Study**: Polynomials over *n* variables of degree *d*.

VP: Polynomials computable by circuits of size poly(n, d).



VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).



VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).



VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VF VBP VP VNP

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials

$$\mathsf{VP}=\mathsf{VNP}\overset{\mathsf{G.R.H.}}{\Longrightarrow}\mathsf{P}=\mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

**[C-Kumar-She-Volk 22]**: Any ABP computing  $\sum_{i=1}^{n} x_i^d$  requires  $\Omega(nd)$  vertices.

**[C-Kumar-She-Volk 22]**: Any ABP computing  $\sum_{i=1}^{n} x_i^d$  requires  $\Omega(nd)$  vertices.

**[Bhargav-Dwivedi-Saxena 24]**: Super polynomial lower bound against total-width of  $\sum \operatorname{osmABP}$  for a polynomial of degree  $d = O\left(\frac{\log n}{\log \log n}\right) \implies$  super-polynomial lower bound against ABPs.

**[C-Kumar-She-Volk 22]**: Any ABP computing  $\sum_{i=1}^{n} x_i^d$  requires  $\Omega(nd)$  vertices.

**[Bhargav-Dwivedi-Saxena 24]**: Super polynomial lower bound against total-width of  $\sum \text{osmABP}$  for a polynomial of degree  $d = O\left(\frac{\log n}{\log \log n}\right) \implies$  super-polynomial lower bound against ABPs.

**[C-Kush-Saraf-Shpilka 24]**: For  $\omega(\log n) = d \le n$ , there is a polynomial  $G_{n,d}(\mathbf{x})$  which is set-multilinear w.r.t  $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ , where  $|\mathbf{x}_i| \le n$  for every  $i \in [d]$ , such that:

- $G_{n,d}$  is computable by a set-multilinear ABP of size poly(n),
- any  $\sum \text{osmABP}$  computing  $G_{n,d}$  must have super-polynomial total-width.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where  $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$ .

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where  $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$ .

f is set-multilinear with respect to  $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$  if

every monomial in f has exactly one variable from  $\mathbf{x}_i$  for each  $i \in [d]$ .

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where  $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$ .

f is set-multilinear with respect to  $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$  if

every monomial in f has exactly one variable from  $\mathbf{x}_i$  for each  $i \in [d]$ .

An ABP is set-multilinear with respect to  $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$  if every path in it

computes a set-multilinear monomial with respect to  $\{x_1, \ldots, x_d\}$ .

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

 $\sum$  osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

 $\sum$  osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

**[C-Kush-Saraf-Shpilka 24]**: For  $\omega(\log n) = d \le n$ , there is a polynomial  $G_{n,d}(\mathbf{x})$  which is set-multilinear w.r.t  $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ , where  $|\mathbf{x}_i| \le n$  for every  $i \in [d]$ , such that:

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

 $\sum$  osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

**[C-Kush-Saraf-Shpilka 24]**: For  $\omega(\log n) = d \le n$ , there is a polynomial  $G_{n,d}(\mathbf{x})$  which is set-multilinear w.r.t  $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ , where  $|\mathbf{x}_i| \le n$  for every  $i \in [d]$ , such that:

•  $G_{n,d}$  is computable by a set-multilinear ABP of size poly(n, d),

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

 $\sum$  osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

**[C-Kush-Saraf-Shpilka 24]**: For  $\omega(\log n) = d \le n$ , there is a polynomial  $G_{n,d}(\mathbf{x})$  which is set-multilinear w.r.t  $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ , where  $|\mathbf{x}_i| \le n$  for every  $i \in [d]$ , such that:

- $G_{n,d}$  is computable by a set-multilinear ABP of size poly(n, d),
- any  $\sum \text{osmABP}$  of max-width poly(n) computing  $G_{n,d}$  requires total-width  $2^{\Omega(d)}$ ,

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in  $\mathbf{x}_{\sigma(i)}$

 $\sum$  osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

**[C-Kush-Saraf-Shpilka 24]**: For  $\omega(\log n) = d \le n$ , there is a polynomial  $G_{n,d}(\mathbf{x})$  which is set-multilinear w.r.t  $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$ , where  $|\mathbf{x}_i| \le n$  for every  $i \in [d]$ , such that:

- $G_{n,d}$  is computable by a set-multilinear ABP of size poly(n, d),
- any  $\sum \text{osmABP}$  of max-width poly(n) computing  $G_{n,d}$  requires total-width  $2^{\Omega(d)}$ ,
- any ordered set-multilinear branching program computing  $G_{n,d}$  requires width  $n^{\Omega(d)}$ .

1. PIT for  $\sum osmABP$ ?

- 1. PIT for  $\sum osmABP$ ?
- 2. Super-quadratic lower bounds against smABPs?

- 1. PIT for  $\sum osmABP$ ?
- 2. Super-quadratic lower bounds against smABPs?

## **Question?**