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Central Question: Find explicit polynomials that
cannot be computed by efficient circuits.

VP = VNP <2t p — NP
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e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (mﬁ’i&) = super-polynomial lower bound
against ABPs.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.
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The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}
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For o € S4, an ABP is g-ordered set-multilinear with respect to {xy,...,xq} if
e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),

e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

e any ordered set-multilinear branching program computing G, 4 requires width nf(d).
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1

Pr={(1,2)}
P2 ={(1,2),(3,4)}
Ps =1{(1,2),(3,4),(12,5)}
P =1{(1,2),(3,4),(12,5),(10,11)}
Ps = {(1,2),(3,4),(12,5),(10,11),(9,6)}
Ps ={(1,2),(3,4),(12,5),(10,11),(9,6),(8,7)}

Pg = All possibles sequences of such pairs.
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Every path corresponds to an element in Py 5.
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The new pair: (3,4).
(v3,4ya3): To select.

(22:1 X3’kX4’k)Z To achieve full-rank.



The Hard Polynomial

Xa1 X42 oo .. Xa.n
1,2 1,4 il 1 o o o .
Y3,4Y43 - (22:1 X3,k><4,k) X3,2 0 1 . 0
The new pair: (3,4).
(y3,4ya3): To select.
(>h_1x3,kxax): To achieve full-rank. XBn | 0 0 e 1
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e {M,(f) : we S} is a set of matrices such that M, (G, 4) has full rank for every w € S.
o If G, 4 is computed by a sum of t osmABPs, then

¢ q
Gn,d:Zg,- where g; = Z Hgl(,f)_l,uj'

i=1 Upy..oylg—1 j=1

e Define a distribution D on S such that when w ~ D, if g;s are computable by osmABPs
efficiently, then

for every i, w.h.p. there are many js, for which M, (g! ) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

= M, (G, q) is far from full rank unless t is large.
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Thank You!
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