Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

May 6, 2024

Algebraic Circuit Complexity

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many
,$+ \times,-$ gates are needed to compute f ?

Algebraic Circuit Complexity

$$
\begin{gathered}
\text { Q: Given } f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \text { of degree } d \text {, how many } \\
\quad+, x,- \text { gates are needed to compute } f ?
\end{gathered}
$$

Algebraic Circuit Complexity

Algebraic Circuit Complexity

Algebraic Circuit Complexity

$$
\begin{array}{r}
\alpha_{1}\left(x_{1}+x_{2}\right)\left(x_{3}+\alpha\right)+\left(x_{1}+x_{2}\right)\left(\alpha_{2} x_{2}+\alpha\right) \\
\mathbf{Q} \text { : Given } f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \text { of degree } d \text {, how many } \\
+, \times,- \text { gates are needed to compute } f ?
\end{array}
$$

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

$$
\mathrm{VP}=\mathrm{VNP} \stackrel{\text { G.R.H. }}{\Longrightarrow} \mathrm{P}=\mathrm{NP}
$$

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p
- Polynomial computed by the $\mathrm{ABP}: \quad f_{\mathcal{A}}(\mathbf{x})=\sum_{p} w t(p)$

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n),
- any \sum osmABP computing $G_{n, d}$ must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

An ABP is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if every path in it computes a set-multilinear monomial with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,

Super-Polynomial Lower Bound against \sum osmABPs

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:
- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d),
- any \sum osmABP of max-width poly (n) computing $G_{n, d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n, d}$ requires width $n^{\Omega(d)}$.

Proof Ideas

Arc Partition

Arc Partition

Arc Partition

$$
\mathcal{P}_{1}=\{(1,2)\}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\}
\end{gathered}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\} \\
\mathcal{P}_{3}=\{(1,2),(3,4),(12,5)\}
\end{gathered}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\} \\
\mathcal{P}_{3}=\{(1,2),(3,4),(12,5)\} \\
\mathcal{P}_{4}=\{(1,2),(3,4),(12,5),(10,11)\}
\end{gathered}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\} \\
\mathcal{P}_{3}=\{(1,2),(3,4),(12,5)\} \\
\mathcal{P}_{4}=\{(1,2),(3,4),(12,5),(10,11)\} \\
\mathcal{P}_{5}=\{(1,2),(3,4),(12,5),(10,11),(9,6)\}
\end{gathered}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\} \\
\mathcal{P}_{3}=\{(1,2),(3,4),(12,5)\} \\
\mathcal{P}_{4}=\{(1,2),(3,4),(12,5),(10,11)\} \\
\mathcal{P}_{5}=\{(1,2),(3,4),(12,5),(10,11),(9,6)\} \\
\mathcal{P}_{6}=\{(1,2),(3,4),(12,5),(10,11),(9,6),(8,7)\}
\end{gathered}
$$

Arc Partition

$$
\begin{gathered}
\mathcal{P}_{1}=\{(1,2)\} \\
\mathcal{P}_{2}=\{(1,2),(3,4)\} \\
\mathcal{P}_{3}=\{(1,2),(3,4),(12,5)\} \\
\mathcal{P}_{4}=\{(1,2),(3,4),(12,5),(10,11)\} \\
\mathcal{P}_{5}=\{(1,2),(3,4),(12,5),(10,11),(9,6)\} \\
\mathcal{P}_{6}=\{(1,2),(3,4),(12,5),(10,11),(9,6),(8,7)\}
\end{gathered}
$$

$\mathbf{P}_{6}=$ All possibles sequences of such pairs.

The ABP Upper Bound

(5)

The ABP Upper Bound

Every path corresponds to an element in $\mathbf{P}_{d / 2}$.

The Hard Polynomial

The Hard Polynomial

The new pair: $(3,4)$.

The Hard Polynomial

The new pair: $(3,4)$.

The Hard Polynomial

The new pair: $(3,4)$.
$\left(y_{3,4} y_{4,3}\right)$: To select.

The Hard Polynomial

The new pair: $(3,4)$.
$\left(y_{3,4} y_{4,3}\right)$: To select.
($\sum_{k=1}^{n} x_{3, k} x_{4, k}$): To achieve full-rank.

The Hard Polynomial

$y_{3,4} y_{4,3} \cdot\left(\sum_{k=1}^{n} x_{3, k} x_{4, k}\right)$

The new pair: $(3,4)$.
$\left(y_{3,4} y_{4,3}\right)$: To select.
$\left(\sum_{k=1}^{n} x_{3, k} x_{4, k}\right)$: To achieve full-rank.

	$x_{4,1}$	$x_{4,2}$	$x_{4, n}$
$x_{3,1}$	1	0	\cdots	\ldots	0
$x_{3,2}$	0	1	\ldots	\ldots	0
\vdots	:	\vdots			\vdots
\vdots	:	\vdots			\vdots
$x_{3, n}$	0	0	\cdots	\ldots	1

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.
[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest $\operatorname{osmABP}(\sigma)$ computing f is equal to the rank of $M_{f, \sigma}(k)$.

Lower Bound for a single osmABP

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

f is a set-multilinear poly. w.r.t $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.
[Nisan 91]: For every $1 \leq k \leq d$, the number of vertices in the k-th layer of the smallest $\operatorname{osmABP}(\sigma)$ computing f is equal to the rank of $M_{f, \sigma}(k)$.

If \mathcal{A} is the smallest osmABP (in order σ) computing f, then

$$
\operatorname{size}(\mathcal{A})=\sum_{i=1}^{d} \operatorname{rank}\left(M_{f, \sigma}(k)\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathbf{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Lower Bound for a single osmABP (contd.)

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathbf{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size $\operatorname{poly}(n, d)$.

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathbf{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right)
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Lower Bound for a single osmABP (contd.)

s.m. mons. in $\left\{\mathbf{x}_{\sigma(k+1)}, \ldots, \mathbf{x}_{\sigma(d)}\right\}$

$$
G_{n, d}=\sum_{\mathcal{P} \in \mathbb{P}_{d / 2}} \prod_{(i, j) \in \mathcal{P}} y_{i, j} y_{j, i} \cdot\left(\sum_{k=1}^{n} x_{i, k} x_{j, k}\right) .
$$

Properties:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n, d).
- For every $\sigma \in S_{d}$, there is some \mathcal{P} such that for at least $d / 8$ of the $P=(i, j) \in \mathcal{P}, i \in$ $\left.\left\{\sigma(1), \ldots \sigma\left(\frac{d}{2}\right)\right\} \& j \in\left\{\sigma\left(1+\frac{d}{2}\right)\right), \ldots \sigma(d)\right\}$.

Therefore,

$$
\operatorname{rank}\left(M_{G_{n, d}, \sigma}(d / 2)\right)=\Omega\left(n^{d / 8}\right)
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)}
$$

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j}-1, u_{j}}^{(i)} .
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)}
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank

Lower Bound for a Sum of osmABPs

- $\left\{M_{w}(f): w \in \mathcal{S}\right\}$ is a set of matrices such that $M_{w}\left(G_{n, d}\right)$ has full rank for every $w \in \mathcal{S}$.
- If $G_{n, d}$ is computed by a sum of t osmABPs, then

$$
G_{n, d}=\sum_{i=1}^{t} g_{i} \quad \text { where } \quad g_{i}=\sum_{u_{1}, \ldots, u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1}, u_{j}}^{(i)}
$$

- Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_{i} s are computable by osmABPs efficiently, then
for every i, w.h.p. there are many j s, for which $M_{w}\left(g_{u_{j-1}, u_{j}}^{(i)}\right)$ is far from full rank
\Longrightarrow for every i, w.h.p. $M_{w}\left(g_{i}\right)$ is far from full rank
$\Longrightarrow M_{w}\left(G_{n, d}\right)$ is far from full rank unless t is large.

Thank You!

