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Complexity of Computing Polynomials

Q: Given f(x) € F[xy, ..., x,] of degree d, how many additions and multiplications does it take
to compute f formally?

’Why? More tools to work with.

Usually, Upper Bounds in this setting = Upper Bounds in the boolean setting.

Lower Bound in this setting s like a step towards  Lower Bound in the boolean setting.

[Shamir 79, Lipton 94]: If h(x) = H,flzl(x — i) can be computed using poly(log d) additions
and multiplications, then integer factoring is easy for boolean circuits.

’Why? Polynomials are central to many algoritms. ‘

Matrix Multiplication Exponent (w): Smallest number k such that the product of two n x n
matrices can be found using n* multiplications.
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e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VIER
VP
VP = VNP <24 p — NP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
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General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing Y7, x? requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYM,, .1,(x) requires Q(n2) vertices.

ESYMya(x)= Y XX,

1 <--<ig€[n]
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Structural Results

Study Structured Models
Prove strong lower bounds

Show that if a structured n-variate, degree-d polynomial is
computable by a general model of size s, then they can also

against structured models

be computed by a structured model of size func(s, n, d) for .
. computing f.
some function func.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15] S [ @7 s el e nfEEe)

Size s circuits computing n-variate degree d polynomials [Limaye-Srinivasan-Tavenas 24]
can be converted into depth-4 circuits of size sO(V9). Any constant depth circuit

computing IMM,, jog »(X) must have
[Gupta-Kamath-Kayal-Saptharishi 16]

. S ) i . super-polynomial size.
Size s circuits computing n-variate degree d polynomials

The lower bound is n®(V9) for

o ~ 0 0 o O(\/E)
can be converted into depth-3 circuits of size s . el e AepiidL
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[C-Kumar-She-Volk 22]: Any ABP computing Y7, x¢ requires Q(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of

> 0osmABP for a polynomial of degree d = O (mﬁ’i&) = super-polynomial lower bound
against ABPs.

[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n),

e any > osmABP computing G, 4 must have super-polynomial total-width.
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The variable set is divided into buckets.

x=x3U---Uxqy where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,..., X4} if

every monomial in f has exactly one variable from x; for each i € [d].

An ABP is set-multilinear with respect to {xy,...,xq} if every path in it

computes a set-multilinear monomial with respect to {xi,..., x4}
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For o € S4, an ABP is o-ordered set-multilinear with respect to {xi,...,x4} if

e there are d layers in the ABP

e every edge in layer / is labelled by a homogeneous linear form in x,(;)

> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of » osmABP for a

log n
log log n

polynomial of degree d = O < ) = super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of > osmABP for a
polynomial of degree d = w(log n) that is computable by polynomial-sized ABPs.

10
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Fy)=(x+y)x (x+y)=x"+xy +yx+y* #xX* +2xy + y*

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Q(nlog d).

[C-Hrubes 23]: Any homogeneous non-commutative circuit computing

OSym,,yd(x) = Z Xt X,

1<ih <-+<ig<n

has size Q(nd) for d < 2. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(nlog? n) that computes OSym,, , (x).
11
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ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Pala(xo,x1) = _,,c0,137/2 Xw - Xwr has size 25n),

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing
IMM,, 4(x) has size n(loglogd).

’ homogeneous non-commutative ABPs, formulas = ordered set-multilinear ABPs, formulas

X1X2 + XoX1 —> X1,1X22 + X1,2X2,1

XoX3 + X1Xo <— X12X23 + X1,1X22

position indices = bucket indices

12
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polynomial f € F (x) such that

e There is an abecedarian ABP of size O(nd) that computes f.
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degree bounded by poly(n).

[Koiran-Perifel 09]

VNP # VPSPACE, = P/ poly # PSPACE/ poly.

VNP < VPSPACE,

[C-Gajjar-Tengse 24]: VNP # VPSPACE,, in the
monotone setting.
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> 0osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[C-Kush-Saraf-Shpilka 24]: For w(log n) = d < n, there is a polynomial G, 4(x) which is
set-multilinear w.r.t x = {x1,...,Xq}, where |x;| < n for every i € [d], such that:

e G, g is computable by a set-multilinear ABP of size poly(n, d),
e any > osmABP of max-width poly(n) computing G, 4 requires total-width 2%,

e any ordered set-multilinear branching program computing G, 4 requires width nf(d).
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Pg = All possibles sequences of such pairs.
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1

Every path corresponds to an element in Py 5.
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The Hard Polynomial

Xa1 X42 oo .. Xa.n
1,2 1,4 il 1 o o o .
Y3,4Y43 - (22:1 X3,k><4,k) X3,2 0 1 . 0
The new pair: (3,4).
(y3,4ya3): To select.
(>h_1x3,kxax): To achieve full-rank. XBn | 0 0 e 1
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for every i, w.h.p. there are many js, for which M, (g! ) is far from full rank

Uj—1,Uj

= for every i, w.h.p. M, (g;) is far from full rank

= M, (G, q) is far from full rank unless t is large.
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Some Open Directions in Algebraic Complexity

Better lower bounds against homogeneous formulas?

Better lower bounds against set-multilinear ABPs?

Bootstrapping statement, similar to [C-I1-L-M 18], which is sensitive to both degree and

number of variables?

Separating formulas and ABPs in the non-commutative setting?

Defining a hierarchy, similar to PH, in the algebraic setting?
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Branching Out

Most questions that are theoretical in nature interest me!
What | like doing the most: Abstracting out concrete questions to create mathematical

models and studying them.

Some areas | would like to learn more about in the near future

e Graph problems that can be viewed as abstractions of problems in the real-world.

Information Complexity, Communication and Query Complexity.

Boolean Circuit Complexity.

e Quantum Complexity.

Secure Computation.
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Teaching




Courses | would be happy to teach

Basic Courses

e Problem Solving Using Computers and Computer
Programming (CS1100, CS1111, CS2110,
CS2700, €S2810)

e Discrete Mathematics for CS (CS1200, €CS2100)
e Languages, Machines and Computation (€C52200)

e Data Structures and Algorithms (CS2800,
CS5800)

e Linear Algebra and Random Processes (CS6015)
e Logic and Combinatorics for CS (CS6030)
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| would be happy to teach/design other courses depending on interest and/or requirement.
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Thank you!!!
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