Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee (Visiting Faculty Member, NISER Bhubaneswar)

November 11, 2024

Addition v.s. Multiplication v.s. Factorisation

Addition v.s. Multiplication v.s. Factorisation Class I v.s. Class II v.s. Class IV/V

Additionv.s.Multiplicationv.s.FactorisationClass Iv.s.Class IIv.s.Class IV/V

• Why?

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition?

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Proof Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Proof Complexity

Quantum Computation

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

 ${\bf Q}:$ What is the most succinct way of representing the given polynomial of interest?

 ${\bf Q}:$ What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

 \mathbf{Q} : What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

Thus representing a polynomial as a vector of coefficients requires $\binom{n+d}{d}$ size.

 \mathbf{Q} : What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

Thus representing a polynomial as a vector of coefficients requires $\binom{n+d}{d}$ size.

Is there a representation that takes poly(n, d) size?

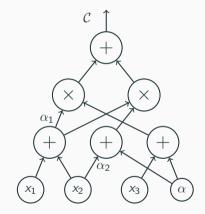
 \mathbf{Q} : What is the most succinct way of representing the given polynomial of interest?

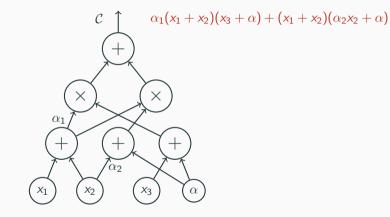
An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

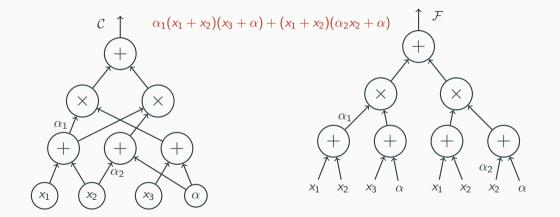
Thus representing a polynomial as a vector of coefficients requires $\binom{n+d}{d}$ size.

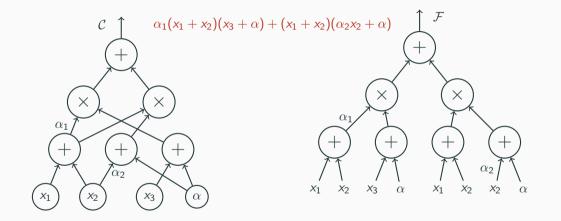
Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x - i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.

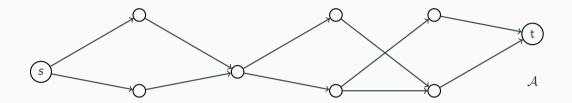


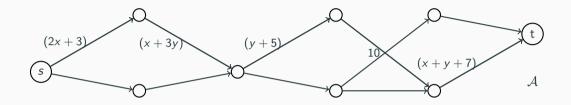




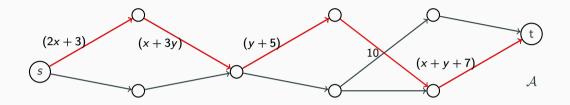


Q: Given $f(\mathbf{x}) \in \mathbb{F}[x_1, \ldots, x_n]$ of degree *d*, how many $+, \times, -$ gates are needed to compute *f*?

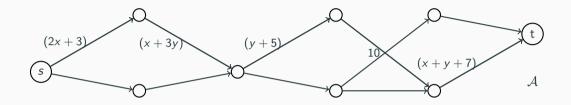




• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$



- Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

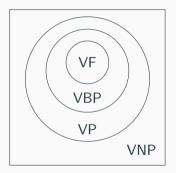
VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

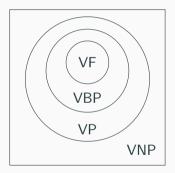
Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials $\left[\sum_{\mathbf{y}\in(0,1)^{poly(|\mathbf{x}|)}} VP(\mathbf{x}, \mathbf{y})\right]$



Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials $\left[\sum_{\mathbf{y}\in(0,1)^{poly(|\mathbf{x}|)}} VP(\mathbf{x}, \mathbf{y})\right]$

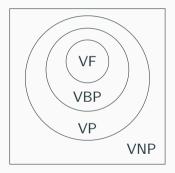


Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials $\left[\sum_{\mathbf{y}\in(0,1)^{poly(|\mathbf{x}|)}} VP(\mathbf{x},\mathbf{y})\right]$

$$\mathsf{VP}=\mathsf{VNP}\overset{\mathsf{G.R.H.}}{\Longrightarrow}\mathsf{P}=\mathsf{NP}$$

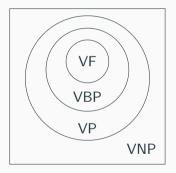


Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d). VNP: Explicit Polynomials $\left[\sum_{\mathbf{y}\in(0,1)^{poly(|\mathbf{x}|)}} VP(\mathbf{x},\mathbf{y})\right]$

$$\mathsf{VP}=\mathsf{VNP}\overset{\mathsf{G.R.H.}}{\Longrightarrow}\mathsf{P}=\mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits. **Other Motivating Questions**: Are the other inclusions tight?

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[C-Kumar-She-Volk 22]: Any formula computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$ requires $\Omega(n^2)$ vertices.

$$\mathrm{ESYM}_{n,d}(\mathbf{x}) = \sum_{i_1 < \cdots < i_d \in [n]} x_{i_1} \cdots x_{i_d}.$$

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \operatorname{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n),
- any $\sum \text{osmABP}$ computing $G_{n,d}$ must have super-polynomial total-width.

Non-Commutativity

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting?

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size $O(n \log^2 n)$ that computes $OSym_{n,n/2}(\mathbf{x})$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$,

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ that is computable by an ABP of size O(nd) such that

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ that is computable by an ABP of size O(nd) such that

- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ that is computable by an ABP of size O(nd) such that

- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

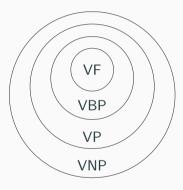
If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \ldots, X_m\}$ for $m = \log n$,

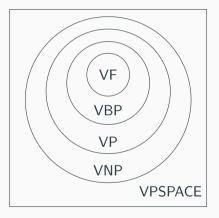
[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ that is computable by an ABP of size O(nd) such that

- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

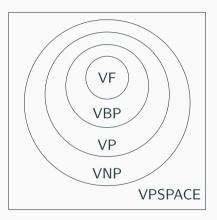
If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \ldots, X_m\}$ for $m = \log n$, then any formula computing f can be made abecedarian with only poly(n) blow-up in size.





Classes Beyond VNP

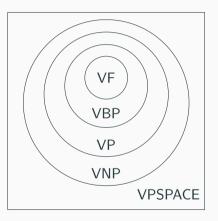
 $\label{eq:constraint} \begin{array}{l} \mbox{[Koiran-Perifel 09]} \\ \mbox{VNP} \neq \mbox{VPSPACE}_b \implies \mbox{P/poly} \neq \mbox{PSPACE/poly}. \end{array}$



Classes Beyond VNP

[Koiran-Perifel 09] $VNP \neq VPSPACE_b \implies P/poly \neq PSPACE/poly.$

 $VNP \stackrel{?}{=} VPSPACE_b$

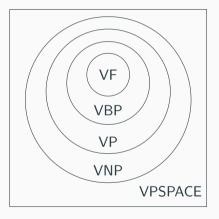


Classes Beyond VNP

 $\label{eq:constraint} \begin{array}{l} \mbox{[Koiran-Perifel 09]} \\ \mbox{VNP} \neq \mbox{VPSPACE}_b \implies \mbox{P/poly} \neq \mbox{PSPACE/poly}. \end{array}$

 $\mathsf{VNP} \stackrel{?}{=} \mathsf{VPSPACE}_b$

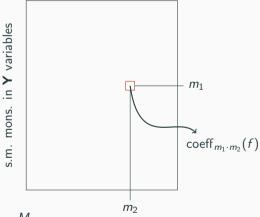
[C-Gajjar-Tengse 24]: $VNP \neq VPSPACE_b$ in the monotone setting.



1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.

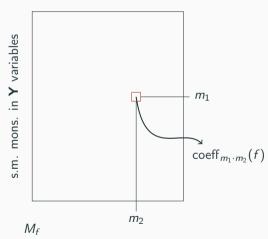
- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.



- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- 2. Show that if a polynomial is computable efficiently by the model of choice, then $\Gamma(f)$ must be small.
- 3. Find an explicit polynomial f such that $\Gamma(f)$ is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with f.



- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with *f*. The property "a matrix has low-rank" can be captured by a polynomial equation.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

[C-Tengse]: $Q \in \mathsf{VPSPACE}[\mathsf{log}^{\mathsf{log}^*}].$

Ongoing and Future Projects

• Better lower bounds against homogeneous formulas?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?
- Separating formulas and ABPs in the non-commutative setting?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?
- Separating formulas and ABPs in the non-commutative setting?
- Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

Teaching etc.

Existing Courses

- MA5310: Linear Algebra
- MA5320: Algebra I
- MA5330: Real Analysis
- MA5400: Probability Theory
- MA5380: Topology
- MA5741: Object Oriented Programming
- MA5910: Data Structures and Algorithms
- MA6200: Theory of Computation

Existing Courses

- MA5310: Linear Algebra
- MA5320: Algebra I
- MA5330: Real Analysis
- MA5400: Probability Theory
- MA5380: Topology
- MA5741: Object Oriented Programming
- MA5910: Data Structures and Algorithms
- MA6200: Theory of Computation

Additional Courses

- Randomness in Computation
- Pseudorandomness
- Algebra and Computation
- Computational Complexity Theory
- Communication Complexity
- Secure Computation
- Circuit Complexity
- Algebraic Complexity Theory

Existing Courses

- MA5310: Linear Algebra
- MA5320: Algebra I
- MA5330: Real Analysis
- MA5400: Probability Theory
- MA5380: Topology
- MA5741: Object Oriented Programming
- MA5910: Data Structures and Algorithms
- MA6200: Theory of Computation

Additional Courses

- Randomness in Computation
- Pseudorandomness
- Algebra and Computation
- Computational Complexity Theory
- Communication Complexity
- Secure Computation
- Circuit Complexity
- Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

- Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer School for Women in Mathematics and Statistics (2024).
- Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD (2021). Was part of the mentoring session in the 2022, 2024 editions.
- Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).
- Tutor at the Summer School for Women in Mathematics and Statistics (2019).
- Member of the outreach team of the STCS and TIFR during PhD (2018-22).

- Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer School for Women in Mathematics and Statistics (2024).
- Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD (2021). Was part of the mentoring session in the 2022, 2024 editions.
- Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).
- Tutor at the Summer School for Women in Mathematics and Statistics (2019).
- Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students to the recent trends of research.

- Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer School for Women in Mathematics and Statistics (2024).
- Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD (2021). Was part of the mentoring session in the 2022, 2024 editions.
- Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).
- Tutor at the Summer School for Women in Mathematics and Statistics (2019).
- Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students to the recent trends of research. Restart student seminar?

Thank you!!!