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Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.
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Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2
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Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.
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Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
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Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7
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Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

8
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Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.
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[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9



Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).
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ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.
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Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF
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Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f )

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f ) must be small.

3. Find an explicit polynomial f such that

Γ(f ) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.
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Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f ) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].
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Ongoing and Future Projects



Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.
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Teaching etc.



Courses I would be happy to teach

Existing Courses

• MA5310: Linear Algebra

• MA5320: Algebra I

• MA5330: Real Analysis

• MA5400: Probability Theory

• MA5380: Topology

• MA5741: Object Oriented Programming

• MA5910: Data Structures and Algorithms

• MA6200: Theory of Computation

Additional Courses

• Randomness in Computation

• Pseudorandomness

• Algebra and Computation

• Computational Complexity Theory

• Communication Complexity

• Secure Computation

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.
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Outreach Activities

Greatly passionate about outreach: I would love to help organise outreach programmes.

• Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer

School for Women in Mathematics and Statistics (2024).

• Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD

(2021). Was part of the mentoring session in the 2022, 2024 editions.

• Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).

• Tutor at the Summer School for Women in Mathematics and Statistics (2019).

• Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students

to the recent trends of research. Restart student seminar?
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Thank you!!!
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