
Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee (Visiting Faculty Member, NISER Bhubaneswar)

November 11, 2024

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why?

Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition?

That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

1

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity

Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity

Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation

Algebraic Computation

2

Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2

Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3

Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3

Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3

Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3

Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires
(
n+d
d

)
size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

4

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

4

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

4

Algebraic Models of Computation

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?
4

Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5

Algebraic Branching Programs

s

t
(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)

10
(x + y + 7)(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials
[∑

y∈(0,1)poly(|x|) VP(x, y)
]

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
6

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

8

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

8

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

8

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting?

For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates are assumed to be non-commutative.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).
9

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n],

there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n,

then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

10

ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ that is computable by an ABP of size O(nd) such that

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.
10

Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF

11

Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF

11

Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF

11

Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF

11

Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.

VNP
?
= VPSPACEb

[C-Gajjar-Tengse 24]: VNP ̸= VPSPACEb in the

monotone setting.

VPSPACE

VNP

VP

VBP

VF

11

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

12

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

12

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

12

Proving Lower Bounds: Finding a Measure
s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

12

Proving Lower Bounds: Finding a Measure
s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation.

12

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP?

Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].

13

Ongoing and Future Projects

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

14

Teaching etc.

Courses I would be happy to teach

Existing Courses

• MA5310: Linear Algebra

• MA5320: Algebra I

• MA5330: Real Analysis

• MA5400: Probability Theory

• MA5380: Topology

• MA5741: Object Oriented Programming

• MA5910: Data Structures and Algorithms

• MA6200: Theory of Computation

Additional Courses

• Randomness in Computation

• Pseudorandomness

• Algebra and Computation

• Computational Complexity Theory

• Communication Complexity

• Secure Computation

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

15

Courses I would be happy to teach

Existing Courses

• MA5310: Linear Algebra

• MA5320: Algebra I

• MA5330: Real Analysis

• MA5400: Probability Theory

• MA5380: Topology

• MA5741: Object Oriented Programming

• MA5910: Data Structures and Algorithms

• MA6200: Theory of Computation

Additional Courses

• Randomness in Computation

• Pseudorandomness

• Algebra and Computation

• Computational Complexity Theory

• Communication Complexity

• Secure Computation

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

15

Courses I would be happy to teach

Existing Courses

• MA5310: Linear Algebra

• MA5320: Algebra I

• MA5330: Real Analysis

• MA5400: Probability Theory

• MA5380: Topology

• MA5741: Object Oriented Programming

• MA5910: Data Structures and Algorithms

• MA6200: Theory of Computation

Additional Courses

• Randomness in Computation

• Pseudorandomness

• Algebra and Computation

• Computational Complexity Theory

• Communication Complexity

• Secure Computation

• Circuit Complexity

• Algebraic Complexity Theory

I would be happy to teach/design other courses depending on interest and/or requirement.

15

Outreach Activities

Greatly passionate about outreach: I would love to help organise outreach programmes.

• Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer

School for Women in Mathematics and Statistics (2024).

• Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD

(2021). Was part of the mentoring session in the 2022, 2024 editions.

• Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).

• Tutor at the Summer School for Women in Mathematics and Statistics (2019).

• Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students

to the recent trends of research. Restart student seminar?

16

Outreach Activities

Greatly passionate about outreach: I would love to help organise outreach programmes.

• Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer

School for Women in Mathematics and Statistics (2024).

• Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD

(2021). Was part of the mentoring session in the 2022, 2024 editions.

• Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).

• Tutor at the Summer School for Women in Mathematics and Statistics (2019).

• Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students

to the recent trends of research. Restart student seminar?

16

Outreach Activities

Greatly passionate about outreach: I would love to help organise outreach programmes.

• Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer

School for Women in Mathematics and Statistics (2024).

• Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD

(2021). Was part of the mentoring session in the 2022, 2024 editions.

• Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).

• Tutor at the Summer School for Women in Mathematics and Statistics (2019).

• Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students

to the recent trends of research.

Restart student seminar?

16

Outreach Activities

Greatly passionate about outreach: I would love to help organise outreach programmes.

• Invited to give talks at Curry Leaf Days (MTTS Alumni Initiative) and the Summer

School for Women in Mathematics and Statistics (2024).

• Helped in organizing STCS Vigyan Vidushi at TIFR Mumbai during my final year of PhD

(2021). Was part of the mentoring session in the 2022, 2024 editions.

• Invited to give a talk at the CSA Summer School, IISc Bangalore (2019).

• Tutor at the Summer School for Women in Mathematics and Statistics (2019).

• Member of the outreach team of the STCS and TIFR during PhD (2018-22).

I would also like to help organise seminars, webinars and workshops to introduce the students

to the recent trends of research. Restart student seminar?
16

Thank you!!!

17

	Ongoing and Future Projects
	Teaching etc.

