Recent Progress in Algebraic Circuit Complexity

Prerona Chatterjee

October 20, 2024

Complexity of Computing Polynomials

Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

Complexity of Computing Polynomials

Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

Complexity of Computing Polynomials

Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

e Can one succinctly represent polynomials of interest?

Complexity of Computing Polynomials

Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

e Can one succinctly represent polynomials of interest?

e All explicit polynomials are efficiently computable RE b _ NP,

Complexity of Computing Polynomials

Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

e Can one succinctly represent polynomials of interest?

e All explicit polynomials are efficiently computable RE b _ NP,

e [Shamir 79, Lipton 94]: If h(x) = H7:1(X — i) can be computed using poly(log d)
additions and multiplications, then integer factoring is easy for boolean circuits.

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

C a1(x1 + %) (x5 + a) + (x1 + x)(aaxe + «)

Algebraic Models of Computation

Q: Given f(x) € F[xy,...,x,] of degree d, how many +, x, — gates are needed to compute f?

Algebraic Branching Programs

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,..., Xy}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p

Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP: f4(x) =3, wt(p)

Determinant and Permanent Polynomials

Xll ... le ... X],n
Symbolic Matrix : X o Xj o Xin
an ... an DY Xnn

Determinant and Permanent Polynomials

Xll ... le ... X],n
Symbolic Matrix : X o Xj o Xin
an ... an DY Xnn

Symbolic Determinant

Det, = Z sign(o H Xio (i)

o€ES, i€[n]

Determinant and Permanent Polynomials

Xll ... le ... X],n
Symbolic Matrix : X o Xj o Xin
an ... an DY Xnn

Symbolic Determinant

Det, = Z sign(o H Xio (i)

o€ES, i€[n]

Computable efficiently by ABPs.

Determinant and Permanent Polynomials

X11 le Xln
Symbolic Matrix : X o Xj o Xin
Xo1 Xgp ot Xen)
Symbolic Determinant Symbolic Permanent

Det, = Z sign(o H Xio (i) Perm, = Z H Xio (i)

oES, i€[n] o€S, i€[n]

Computable efficiently by ABPs.

Determinant and Permanent Polynomials

X11 le Xln
Symbolic Matrix : X o Xj o Xin
Xo1 Xgp ot Xen)
Symbolic Determinant Symbolic Permanent

Det, = Z sign(o H Xio (i) Perm, = Z H Xio (i)

oES, i€[n] o€S, i€[n]

Computable efficiently by ABPs. Complete for the class of all explicit polynomials.

Elementary Symmetric Polynomials

ESYM,a= Y []x

SC[n]i€S

Elementary Symmetric Polynomials

ESYM, 4= Y _ []x = coeff. (H(l + tx,-))

SC[n]ieS i€[n]

Elementary Symmetric Polynomials

ESYM, 4= Y _ []x = coeff. (H(l + tx,-))

SC[n]ieS i€[n]

Oég o a/o R Oég coeffyo (Hie[n](]‘ + tXi)) _Hie[n](l + OéoX,')_
a? o O/I - a,?’ x| coeffy (HiG[n](]' + tX,')) = Hie[n](l + OéiXi)
. : d . '
ag . O/d °0o0 ad coefftd (Hie[n](l + l'X,')) _Hie[n](l -+ adx,-)_

Elementary Symmetric Polynomials

ESYM,q= Y []x = coeff. (H (1+ tx,-))

SCln] i€s iein]
[coeffo (L1 +)] 0 : -l ¢ -
t i€[n] i o oo e . 1+a0X,)
0 0 0 i€[n]
coeff (H,E[n](l + tx,-)> = a? .. O/I o Oé;i « Hie[n](l + aix;)
: . g - :
coeff (H,e[n](l + tx,-)) o o o ad [Tieg (1 + @axi)]

Elementary Symmetric Polynomials

ESYM, 4 = Z HX,' = coeffq (H (1+ tx,-)) is efficiently computable by > Y formulas.
SC[n]ieS i€[n]

[NY - g R T i
coeffo (Iiera@+29) | [ag - af - af [Trcgsy (1 + o)
coeff (H,E[n](l + tx,-)) = a? .. 0[{ . 041 « Hie[n](l + oix;)
coeff (Hie[n](l + tx,-)) o o o ad [Tieg (1 + @axi)]

Iterated Matrix Multiplication

- (1 1 1)1 - (d d d) 47
9 e] M A D
1 1 1 x,(l1) xlsl) xl-(nl) x,(ld) xéd) x,-(nd) 1
I N) B N I

Iterated Matrix Multiplication

- (1 1 1)1 - (d d d) 47
9 e] M A D
1 1 1 x,(l1) xlsl) xl-(nl) x,(ld) xéd) x,-(nd) 1
I N) B N I

Canonical example of a polynomial that is computable by an ABP of width n and length d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly(n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d). @

VP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VBP
VP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d).
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VNP

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).
VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VEBP
VP
VP £ VNP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VEBP
VP
VP £ VNP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit
computing Y7, x? requires Q(nlog d) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing >, x¥ requires Q(nd) vertices.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing >, x¥ requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing >, x¥ requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/ log n) wires.

Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing >, x¥ requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYM,, ¢ 1,(x) requires Q(n?) vertices.

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

10

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial
that is
computable by a general model of size s.

10

How does one make progress?

Step 1: Structural Results

. . it is also computed by a structured
Structured n-variate, degree-d polynomial P y

that is
computable by a general model of size s.

implies model of size func(s, n, d) for some
function func.

10

How does one make progress?

Step 1: Structural Results

. . it is also computed by a structured
Structured n-variate, degree-d polynomial P y

that is
computable by a general model of size s.

implies model of size func(s, n, d) for some
function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

10

How does one make progress?

Step 1: Structural Results

. . it is also computed by a structured
Structured n-variate, degree-d polynomial P y

that is
computable by a general model of size s.

implies model of size func(s, n, d) for some
function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

11

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

11

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

11

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.
Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s) blow-up.

11

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s) blow-up.

ESYM,, 4 is computable by an O(nd)-sized non-homogeneous formula,

Q(log d)

but is expected to require n -sized homogeneous formulas to compute.

11

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s) blow-up.

ESYM,, 4 is computable by an O(nd)-sized non-homogeneous formula,

Q(log d)

but is expected to require n -sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]
Any homogeneous non-commutative formula computing ESYM,, , /> requires size nfilloglogn)

11

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqg where x;={X1,...Xin}-

12

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqg where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,...,xq} if

every monomial in f has exactly one variable from x; for each i € [d].

12

Set-Multilinearity

The variable set is divided into buckets.

x=x3U---Uxqg where x;={X1,...Xin}-

f is set-multilinear with respect to {xy,...,xq} if

every monomial in f has exactly one variable from x; for each i € [d].

Circuits and ABPs: Can be set-multilinearised with 29(¢) blow-up.

12

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a
formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

13

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a
formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log’ﬁ)gn) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

13

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a
formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log’ﬁ)gn) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

Self-Reducibility of IMM,, ,
If IMM, p is computable by a set-multilinear formula of size s, then IMM,, 4 is computable by
a set-multilinear formula of size SO(L‘%).

13

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

e Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of
degree O(log n/ loglog n).

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

e Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of
degree O(log n/ loglog n).

Q(log d)

e Prove n lower bound against set-multilinear formulas for IMM,, 4 for any d.

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

e Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of
degree O(log n/ loglog n).

Q(log d)

e Prove n lower bound against set-multilinear formulas for IMM,, 4 for any d.

[Tavenas-Limaye-Srinivasan 22]

nogloen) Jower bound against set-multilinear formulas for IMM,, .

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

e Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of
degree O(log n/ loglog n).

Q(log d)

e Prove n lower bound against set-multilinear formulas for IMM,, 4 for any d.

[Tavenas-Limaye-Srinivasan 22]

nogloen) Jower bound against set-multilinear formulas for IMM,, .

[Kush-Saraf 23]

n¥e ") Jower bound against set-multilinear formulas for DMPY , .

14

So close, yet so far...

So Close...

15

So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).

15

So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).
e Any polynomial computable by an ABP of width w and length / is a projection of IMM,, ,.

15

So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).
e Any polynomial computable by an ABP of width w and length / is a projection of IMM,, ,.

Why doesn’t this imply a tight lower bound against IMM, 7

15

So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).
e Any polynomial computable by an ABP of width w and length / is a projection of IMM,, ,.

Why doesn’t this imply a tight lower bound against IMM, 7

DMPY , » is not a set-multilinear projection of IMM,p2 ,.

15

So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).
e Any polynomial computable by an ABP of width w and length / is a projection of IMM,, ,.

Why doesn’t this imply a tight lower bound against IMM, 7

DMPY, » is not a set-multilinear projection of IMM, ,. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPY, , were to be a set-multilinear projection of IMM,, ,, then w = nfn),

15

Towards Proving General ABP Lower Bounds

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of > osmABP for a polynomial of degree

d=0 (lolgoign> — super-polynomial lower bound against ABPs.

16

Towards Proving General ABP Lower Bounds

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of > osmABP for a polynomial of degree

d=0 (lolgoign> — super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]

For w(log n) = d < n, DMPY,, 4 is a set-multilinear ABP of size poly(n),
but any > osmABP computing G, 4 must have super-polynomial total-width.

16

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits
of size sO(V4),

17

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]
Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits
of size sO(V4),
[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(Vd),

17

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits
of size sO(V4),

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(Vd),

In General (using the same techniques)

Size s circuits computing n-variate degree d polynomials can be converted into depth-A
circuits of size sO(@"%).

17

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that d < kl)gon' For any A > 0, any product-depth A > 1 circui:t computing
dm)

| - o
IMM,, 4 over any field of characteristic zero or > d, requires size n

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that d < kl)gon' For any A > 0, any product-depth A > 1 circuit computing

1
| - a(esn)
IMM,, 4 over any field of characteristic zero or > d, requires size n .

In particular, it shows that any depth-3 circuit computing IMM e, over any field of
? 100
Q(\/E)'

characteristic zero or > d, requires size n

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that d < kl)gon' For any A > 0, any product-depth A > 1 circuit computing

1
| - a(esn)
IMM,, 4 over any field of characteristic zero or > d, requires size n .

In particular, it shows that any depth-3 circuit computing IMM e, over any field of

100
characteristic zero or > d, requires size nQ(‘/E).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that d < kl)gon' For any A > 0, any product-depth A > 1 circuit computing

1
| - a(esn)
IMM,, 4 over any field of characteristic zero or > d, requires size n .

In particular, it shows that any depth-3 circuit computing IMM e, over any field of

100
characteristic zero or > d, requires size nQ(‘/E).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

18

Proof Overview

Step 1: Convert any arbitrary product-depth A circuit into a homogeneous product-depth 2A
circuit computing the same polynomial. Blow-up in size is 20(Vd) poly(s).

19

Proof Overview

Step 1: Convert any arbitrary product-depth A circuit into a homogeneous product-depth 2A
circuit computing the same polynomial. Blow-up in size is 20(Vd) poly(s).

Step 2: Convert any homogeneous product-depth 2A circuit computing a set-multilinear
polynomial into a set-multilinear product-depth 2A circuit computing the same polynomial.
Blow-up in size is d°(¢) poly(s).

19

Proof Overview

Step 1: Convert any arbitrary product-depth A circuit into a homogeneous product-depth 2A
circuit computing the same polynomial. Blow-up in size is 20(Vd) poly(s).

Step 2: Convert any homogeneous product-depth 2A circuit computing a set-multilinear
polynomial into a set-multilinear product-depth 2A circuit computing the same polynomial.
Blow-up in size is d°(¢) poly(s).

dl/ZA—l)
Step 3: Prove a n (. lower bound against set-multilinear constant depth circuits.

19

Proving Lower Bounds: Finding a Measure

1. Build a function I : F[x] — N.

20

Proving Lower Bounds: Finding a Measure

1. Build a function I : F[x] — N.

2. Show that if a polynomial is computable
efficiently by the model of choice, then
I'(f) must be small.

20

Proving Lower Bounds: Finding a Measure

1. Build a function I : F[x] — N.

2. Show that if a polynomial is computable
efficiently by the model of choice, then
I'(f) must be small.

3. Find an explicit polynomial f such that
[(f) is large.

20

Proving Lower Bounds: Finding a Measure

s.m. mons. in X\ Y variables
1. Build a function I : F[x] — N.

2. Show that if a polynomial is computable

(%]

= efficiently by the model of choice, then
g I'(f) must be small.

>>_ m 3. Find an explicit polynomial f such that
= ' [(f) is large.

%

c

g T~ Note: I is almost always the dimension of

= coeffm,.m, (f) some algebraic object and most of the time is
%

simply the rank of a matrix associated with f.

My
20

Proving Lower Bounds: Finding a Measure

s.m. mons. in X\ Y variables
1. Build a function I : F[x] — N.

2. Show that if a polynomial is computable

(%]
= efficiently by the model of choice, then
g I'(f) must be small.
>>_ m 3. Find an explicit polynomial f such that
= ' [(f) is large.
%
c
g T~ Note: I is almost always the dimension of
= coeffm,.m, (f) some algebraic object and most of the time is
v simply the rank of a matrix associated with f.

The property "a matrix has low-rank” can be

my captured by a polynomial equation.

My
20

Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

21

Natural Proofs

Natural Proofs in the Algebraic Setting
0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of @ when the model of interest is VP?

21

Natural Proofs

Natural Proofs in the Algebraic Setting
0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!
[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

[K-R-S-T 22]: Perm, is optimally hard = no if the model of interest is VNP.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!
[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

[K-R-S-T 22]: Perm, is optimally hard = no if the model of interest is VNP.

’The answer is not as clear as the boolean world.

21

What we saw...

22

What we saw...

e Some of the important models of computation.

22

What we saw...

e Some of the important models of computation.

e Some of the polynomials of interest.

22

What we saw...

e Some of the important models of computation.
e Some of the polynomials of interest.

e Attacking the main question = Proving structural Results 4+ Attacking structured models.

22

What we saw...

e Some of the important models of computation.
e Some of the polynomials of interest.
e Attacking the main question = Proving structural Results 4+ Attacking structured models.

e Some of the well-studied structural restrictions.

22

What we saw...

e Some of the important models of computation.
e Some of the polynomials of interest.
e Attacking the main question = Proving structural Results 4+ Attacking structured models.

Some of the well-studied structural restrictions.

High Level Proof Overview of most of the lower bounds in the area.

22

What we saw...

e Some of the important models of computation.
e Some of the polynomials of interest.
e Attacking the main question = Proving structural Results 4+ Attacking structured models.

Some of the well-studied structural restrictions.

High Level Proof Overview of most of the lower bounds in the area.

Natural Proofs.

22

What we saw...

e Some of the important models of computation.
e Some of the polynomials of interest.
e Attacking the main question = Proving structural Results 4+ Attacking structured models.

Some of the well-studied structural restrictions.

High Level Proof Overview of most of the lower bounds in the area.

Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Thank you!!!

23

