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Q: Given f(x) € F[xq,...,x,] of degree d, how many additions and multiplications does it take
to compute f formally?

e Can one succinctly represent polynomials of interest?

e All explicit polynomials are efficiently computable RE b _ NP,

e [Shamir 79, Lipton 94]: If h(x) = H7:1(X — i) can be computed using poly(log d)
additions and multiplications, then integer factoring is easy for boolean circuits.
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Algebraic Branching Programs

e Label on each edge: An affine linear form in {x1,x2,...,x,}

e Polynomial computed by the path p = wt(p): Product of the edge labels on p
e Polynomial computed by the ABP:  f4(x) =3, wt(p)
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Determinant and Permanent Polynomials

_X11 le Xln_
Symbolic Matrix : X o Xj o Xin
Xo1  Xgp ot Xen)
Symbolic Determinant Symbolic Permanent

Det, = Z sign(o H Xio (i) Perm, = Z H Xio (i)

oES, i€[n] o€S, i€[n]

Computable efficiently by ABPs. Complete for the class of all explicit polynomials.
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Elementary Symmetric Polynomials

ESYM,q= Y []x = coeff. (H (1+ tx,-))
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Elementary Symmetric Polynomials

ESYM, 4 = Z HX,' = coeffq (H (1+ tx,-)) is efficiently computable by > Y formulas.
SC[n]ieS i€[n]
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- (1 1 1)1 - (d d d) 47
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Canonical example of a polynomial that is computable by an ABP of width n and length d.
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d). @
VP: Polynomials computable by circuits of size poly(n, d).
VNP: Explicit Polynomials VEBP
VP
VP £ VNP VNP

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
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Lower Bounds for General Models

General Circuits General ABPs
[Baur-Strassen 83]: Any algebraic circuit [C-Kumar-She-Volk 22]: Any ABP
computing Y7, x? requires Q(nlog d) wires. computing >, x¥ requires Q(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n-variate Det,(x) requires Q(n®) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an n-variate multilinear
polynomial such that any formula computing it requires Q(n?/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYM,, ¢ 1,(x) requires Q(n?) vertices.
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How does one make progress?

Step 1: Structural Results

. . it is also computed by a structured
Structured n-variate, degree-d polynomial P y

that is
computable by a general model of size s.

implies model of size func(s, n, d) for some
function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

11



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

11



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

11



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.
Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s ) blow-up.

11



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s ) blow-up.

ESYM,, 4 is computable by an O(nd)-sized non-homogeneous formula,

Q(log d)

but is expected to require n -sized homogeneous formulas to compute.

11



A polynomial is said to be homogeneous of degree d if every monomial in it has degree d.

Examples: Det,, Perm,, ESYM, 4,IMM,, 4.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Q(log d

Formulas: Expected to require s ) blow-up.

ESYM,, 4 is computable by an O(nd)-sized non-homogeneous formula,

Q(log d)

but is expected to require n -sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]
Any homogeneous non-commutative formula computing ESYM,, , /> requires size nfilloglogn)

11
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Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a
formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log’ﬁ)gn) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

Self-Reducibility of IMM,, ,
If IMM, p is computable by a set-multilinear formula of size s, then IMM,, 4 is computable by
a set-multilinear formula of size SO(L‘%).
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Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

e Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of
degree O(log n/ loglog n).

Q(log d)

e Prove n lower bound against set-multilinear formulas for IMM,, 4 for any d.

[Tavenas-Limaye-Srinivasan 22]

nogloen) Jower bound against set-multilinear formulas for IMM,, .

[Kush-Saraf 23]

n¥e ") Jower bound against set-multilinear formulas for DMPY , .
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So close, yet so far...

So Close...

e DMPY,, , is computable by an ABP of width O(n?) and length O(n).
e Any polynomial computable by an ABP of width w and length / is a projection of IMM,, ,.

Why doesn’t this imply a tight lower bound against IMM, 7

DMPY, » is not a set-multilinear projection of IMM, ,. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPY, , were to be a set-multilinear projection of IMM,, ,, then w = nfn),

15
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Towards Proving General ABP Lower Bounds

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of > osmABP for a polynomial of degree

d=0 (lolgoign> — super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]

For w(log n) = d < n, DMPY,, 4 is a set-multilinear ABP of size poly(n),
but any > osmABP computing G, 4 must have super-polynomial total-width.
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Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits
of size sO(V4),

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(Vd),

In General (using the same techniques)

Size s circuits computing n-variate degree d polynomials can be converted into depth-A
circuits of size sO(@"%).
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Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that d < kl)gon' For any A > 0, any product-depth A > 1 circuit computing

1
| -  a(esn)
IMM,, 4 over any field of characteristic zero or > d, requires size n .

In particular, it shows that any depth-3 circuit computing IMM e, over any field of

100
characteristic zero or > d, requires size nQ(‘/E).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.
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Proof Overview

Step 1: Convert any arbitrary product-depth A circuit into a homogeneous product-depth 2A
circuit computing the same polynomial. Blow-up in size is 20(Vd) poly(s).

Step 2: Convert any homogeneous product-depth 2A circuit computing a set-multilinear
polynomial into a set-multilinear product-depth 2A circuit computing the same polynomial.
Blow-up in size is d°(¢) poly(s).

dl/ZA—l)
Step 3: Prove a n ( . lower bound against set-multilinear constant depth circuits.
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s.m. mons. in X\ Y variables
1. Build a function I : F[x] — N.

2. Show that if a polynomial is computable

(%]
= efficiently by the model of choice, then
g I'(f) must be small.
>>_ m 3. Find an explicit polynomial f such that
= ' [(f) is large.
%
c
g T~ Note: I is almost always the dimension of
= coeffm,.m, (f) some algebraic object and most of the time is
v simply the rank of a matrix associated with f.

The property "a matrix has low-rank” can be

my captured by a polynomial equation.

My
20



Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

21



Natural Proofs

Natural Proofs in the Algebraic Setting
0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of @ when the model of interest is VP?

21



Natural Proofs

Natural Proofs in the Algebraic Setting
0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

21



Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

21



Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

21



Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
the model of interest.

Question: What is the complexity of @ when the model of interest is VP? Is Q € VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!
[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

[K-R-S-T 22]: Perm, is optimally hard = no if the model of interest is VNP.

21



Natural Proofs

Natural Proofs in the Algebraic Setting

0 # Q € Fly] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by
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[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!
[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPpd_coefr-

[K-R-S-T 22]: Perm, is optimally hard = no if the model of interest is VNP.

’The answer is not as clear as the boolean world.
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e Some of the important models of computation.
e Some of the polynomials of interest.
e Attacking the main question = Proving structural Results 4+ Attacking structured models.

Some of the well-studied structural restrictions.

High Level Proof Overview of most of the lower bounds in the area.

Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.
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Thank you!!!
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