
Recent Progress in Algebraic Circuit Complexity

Prerona Chatterjee

October 20, 2024

Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why?

• Can one succinctly represent polynomials of interest?

• All explicit polynomials are efficiently computable
G.R.H.
=⇒ P = NP.

• [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is easy for boolean circuits.

1

Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why?

• Can one succinctly represent polynomials of interest?

• All explicit polynomials are efficiently computable
G.R.H.
=⇒ P = NP.

• [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is easy for boolean circuits.

1

Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why?

• Can one succinctly represent polynomials of interest?

• All explicit polynomials are efficiently computable
G.R.H.
=⇒ P = NP.

• [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is easy for boolean circuits.

1

Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why?

• Can one succinctly represent polynomials of interest?

• All explicit polynomials are efficiently computable
G.R.H.
=⇒ P = NP.

• [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is easy for boolean circuits.

1

Complexity of Computing Polynomials

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

Why?

• Can one succinctly represent polynomials of interest?

• All explicit polynomials are efficiently computable
G.R.H.
=⇒ P = NP.

• [Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d)

additions and multiplications, then integer factoring is easy for boolean circuits.

1

Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)

10
(x + y + 7)(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Determinant and Permanent Polynomials

Symbolic Matrix :



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnn



Symbolic Determinant

Detn =
∑
σ∈Sn

sign(σ) ·
∏
i∈[n]

xiσ(i)

Computable efficiently by ABPs.

Symbolic Permanent

Permn =
∑
σ∈Sn

∏
i∈[n]

xiσ(i)

Complete for the class of all explicit polynomials.

4

Determinant and Permanent Polynomials

Symbolic Matrix :



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnn



Symbolic Determinant

Detn =
∑
σ∈Sn

sign(σ) ·
∏
i∈[n]

xiσ(i)

Computable efficiently by ABPs.

Symbolic Permanent

Permn =
∑
σ∈Sn

∏
i∈[n]

xiσ(i)

Complete for the class of all explicit polynomials.

4

Determinant and Permanent Polynomials

Symbolic Matrix :



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnn



Symbolic Determinant

Detn =
∑
σ∈Sn

sign(σ) ·
∏
i∈[n]

xiσ(i)

Computable efficiently by ABPs.

Symbolic Permanent

Permn =
∑
σ∈Sn

∏
i∈[n]

xiσ(i)

Complete for the class of all explicit polynomials.

4

Determinant and Permanent Polynomials

Symbolic Matrix :



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnn



Symbolic Determinant

Detn =
∑
σ∈Sn

sign(σ) ·
∏
i∈[n]

xiσ(i)

Computable efficiently by ABPs.

Symbolic Permanent

Permn =
∑
σ∈Sn

∏
i∈[n]

xiσ(i)

Complete for the class of all explicit polynomials.

4

Determinant and Permanent Polynomials

Symbolic Matrix :



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnn



Symbolic Determinant

Detn =
∑
σ∈Sn

sign(σ) ·
∏
i∈[n]

xiσ(i)

Computable efficiently by ABPs.

Symbolic Permanent

Permn =
∑
σ∈Sn

∏
i∈[n]

xiσ(i)

Complete for the class of all explicit polynomials.
4

Elementary Symmetric Polynomials

ESYMn,d =
∑
S⊆[n]

∏
i∈S

xi

= coefftd

∏
i∈[n]

(1 + txi)





α0
0 · · · αj

0 · · · αd
0

...
. . .

...
. . .

...

α0
i · · · αj

i · · · αd
i

...
. . .

...
. . .

...

α0
d · · · αj

d · · · αd
d


×



coefft0

(∏
i∈[n](1 + txi)

)
...

coefft j

(∏
i∈[n](1 + txi)

)
...

coefftd

(∏
i∈[n](1 + txi)

)


=



∏
i∈[n](1 + α0xi)

...∏
i∈[n](1 + αixi)

...∏
i∈[n](1 + αdxi)



5

Elementary Symmetric Polynomials

ESYMn,d =
∑
S⊆[n]

∏
i∈S

xi = coefftd

∏
i∈[n]

(1 + txi)





α0
0 · · · αj

0 · · · αd
0

...
. . .

...
. . .

...

α0
i · · · αj

i · · · αd
i

...
. . .

...
. . .

...

α0
d · · · αj

d · · · αd
d


×



coefft0

(∏
i∈[n](1 + txi)

)
...

coefft j

(∏
i∈[n](1 + txi)

)
...

coefftd

(∏
i∈[n](1 + txi)

)


=



∏
i∈[n](1 + α0xi)

...∏
i∈[n](1 + αixi)

...∏
i∈[n](1 + αdxi)



5

Elementary Symmetric Polynomials

ESYMn,d =
∑
S⊆[n]

∏
i∈S

xi = coefftd

∏
i∈[n]

(1 + txi)





α0
0 · · · αj

0 · · · αd
0

...
. . .

...
. . .

...

α0
i · · · αj

i · · · αd
i

...
. . .

...
. . .

...

α0
d · · · αj

d · · · αd
d


×



coefft0

(∏
i∈[n](1 + txi)

)
...

coefft j

(∏
i∈[n](1 + txi)

)
...

coefftd

(∏
i∈[n](1 + txi)

)


=



∏
i∈[n](1 + α0xi)

...∏
i∈[n](1 + αixi)

...∏
i∈[n](1 + αdxi)



5

Elementary Symmetric Polynomials

ESYMn,d =
∑
S⊆[n]

∏
i∈S

xi = coefftd

∏
i∈[n]

(1 + txi)




coefft0

(∏
i∈[n](1 + txi)

)
...

coefft j

(∏
i∈[n](1 + txi)

)
...

coefftd

(∏
i∈[n](1 + txi)

)


=



α0
0 · · · αj

0 · · · αd
0

...
. . .

...
. . .

...

α0
i · · · αj

i · · · αd
i

...
. . .

...
. . .

...

α0
d · · · αj

d · · · αd
d



−1

×



∏
i∈[n](1 + α0xi)

...∏
i∈[n](1 + αixi)

...∏
i∈[n](1 + αdxi)



6

Elementary Symmetric Polynomials

ESYMn,d =
∑
S⊆[n]

∏
i∈S

xi = coefftd

∏
i∈[n]

(1 + txi)

 is efficiently computable by ΣΠΣ formulas.



coefft0

(∏
i∈[n](1 + txi)

)
...

coefft j

(∏
i∈[n](1 + txi)

)
...

coefftd

(∏
i∈[n](1 + txi)

)


=



α0
0 · · · αj

0 · · · αd
0

...
. . .

...
. . .

...

α0
i · · · αj

i · · · αd
i

...
. . .

...
. . .

...

α0
d · · · αj

d · · · αd
d



−1

×



∏
i∈[n](1 + α0xi)

...∏
i∈[n](1 + αixi)

...∏
i∈[n](1 + αdxi)



6

Iterated Matrix Multiplication

[
1 · · · 1 · · · 1

]


x
(1)
11 · · · x

(1)
1j · · · x

(1)
1n

...
. . .

...
. . .

...

x
(1)
i1 · · · x

(1)
ij · · · x

(1)
in

...
. . .

...
. . .

...

x
(1)
n1 · · · x

(1)
nj · · · x

(1)
nn


· · ·



x
(d)
11 · · · x

(d)
1j · · · x

(d)
1n

...
. . .

...
. . .

...

x
(d)
i1 · · · x

(d)
ij · · · x

(d)
in

...
. . .

...
. . .

...

x
(d)
n1 · · · x

(d)
nj · · · x

(d)
nn





1
...

1
...

1



Canonical example of a polynomial that is computable by an ABP of width n and length d .

7

Iterated Matrix Multiplication

[
1 · · · 1 · · · 1

]


x
(1)
11 · · · x

(1)
1j · · · x

(1)
1n

...
. . .

...
. . .

...

x
(1)
i1 · · · x

(1)
ij · · · x

(1)
in

...
. . .

...
. . .

...

x
(1)
n1 · · · x

(1)
nj · · · x

(1)
nn


· · ·



x
(d)
11 · · · x

(d)
1j · · · x

(d)
1n

...
. . .

...
. . .

...

x
(d)
i1 · · · x

(d)
ij · · · x

(d)
in

...
. . .

...
. . .

...

x
(d)
n1 · · · x

(d)
nj · · · x

(d)
nn





1
...

1
...

1



Canonical example of a polynomial that is computable by an ABP of width n and length d .

7

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

8

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP
?
= VNP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?
8

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

9

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

9

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

9

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

9

Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

9

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

10

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Homogenity

A polynomial is said to be homogeneous of degree d if every monomial in it has degree d .

Examples: Detn,Permn,ESYMn,d , IMMn,d .

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require sΩ(log d) blow-up.

ESYMn,d is computable by an O(nd)-sized non-homogeneous formula,

but is expected to require nΩ(log d)-sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing ESYMn,n/2 requires size nΩ(log log n).

11

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

Circuits and ABPs: Can be set-multilinearised with 2O(d) blow-up.

12

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

Circuits and ABPs: Can be set-multilinearised with 2O(d) blow-up.

12

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

Circuits and ABPs: Can be set-multilinearised with 2O(d) blow-up.

12

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a

formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log n
log log n) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

Self-Reducibility of IMMn,n

If IMMn,D is computable by a set-multilinear formula of size s, then IMMn,d is computable by

a set-multilinear formula of size sO(
log d
log D).

13

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a

formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log n
log log n) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

Self-Reducibility of IMMn,n

If IMMn,D is computable by a set-multilinear formula of size s, then IMMn,d is computable by

a set-multilinear formula of size sO(
log d
log D).

13

Homogenisation and Set-Multilinearisation of Formulas

[Raz 10]: If a homogeneous polynomial has degree d = O(log n) and is computable by a

formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree d = O(log n
log log n) and is computable by a

formula of size poly(n), then it is also computable by a set-multilinear formula of size poly(n).

Self-Reducibility of IMMn,n

If IMMn,D is computable by a set-multilinear formula of size s, then IMMn,d is computable by

a set-multilinear formula of size sO(
log d
log D).

13

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

• Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of

degree O(log n/ log log n).

• Prove nΩ(log d) lower bound against set-multilinear formulas for IMMn,d for any d .

[Tavenas-Limaye-Srinivasan 22]

nΩ(log log n) lower bound against set-multilinear formulas for IMMn,n.

[Kush-Saraf 23]

nΩ(log n) lower bound against set-multilinear formulas for DMPYn,n.

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

• Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of

degree O(log n/ log log n).

• Prove nΩ(log d) lower bound against set-multilinear formulas for IMMn,d for any d .

[Tavenas-Limaye-Srinivasan 22]

nΩ(log log n) lower bound against set-multilinear formulas for IMMn,n.

[Kush-Saraf 23]

nΩ(log n) lower bound against set-multilinear formulas for DMPYn,n.

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

• Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of

degree O(log n/ log log n).

• Prove nΩ(log d) lower bound against set-multilinear formulas for IMMn,d for any d .

[Tavenas-Limaye-Srinivasan 22]

nΩ(log log n) lower bound against set-multilinear formulas for IMMn,n.

[Kush-Saraf 23]

nΩ(log n) lower bound against set-multilinear formulas for DMPYn,n.

14

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

• Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of

degree O(log n/ log log n).

• Prove nΩ(log d) lower bound against set-multilinear formulas for IMMn,d for any d .

[Tavenas-Limaye-Srinivasan 22]

nΩ(log log n) lower bound against set-multilinear formulas for IMMn,n.

[Kush-Saraf 23]

nΩ(log n) lower bound against set-multilinear formulas for DMPYn,n.

14

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n.

In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

So close, yet so far...

So Close...

• DMPYn,n is computable by an ABP of width O(n2) and length O(n).

• Any polynomial computable by an ABP of width w and length ℓ is a projection of IMMw ,ℓ.

Why doesn’t this imply a tight lower bound against IMMn2,n?

DMPYn,n is not a set-multilinear projection of IMMn2,n. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPYn,n were to be a set-multilinear projection of IMMw ,n, then w = nΩ(n).

15

Towards Proving General ABP Lower Bounds

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of
∑

osmABP for a polynomial of degree

d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]

For ω(log n) = d ≤ n, DMPYn,d is a set-multilinear ABP of size poly(n),

but any
∑

osmABP computing Gn,d must have super-polynomial total-width.

16

Towards Proving General ABP Lower Bounds

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of
∑

osmABP for a polynomial of degree

d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]

For ω(log n) = d ≤ n, DMPYn,d is a set-multilinear ABP of size poly(n),

but any
∑

osmABP computing Gn,d must have super-polynomial total-width.

16

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits

of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(
√
d).

In General (using the same techniques)

Size s circuits computing n-variate degree d polynomials can be converted into depth-∆

circuits of size sO(d1/∆).

17

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits

of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(
√
d).

In General (using the same techniques)

Size s circuits computing n-variate degree d polynomials can be converted into depth-∆

circuits of size sO(d1/∆).

17

Depth Reduction

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits

of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi 16]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits

of size sO(
√
d).

In General (using the same techniques)

Size s circuits computing n-variate degree d polynomials can be converted into depth-∆

circuits of size sO(d1/∆).

17

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d , n be such that d ≤ log n
100 . For any ∆ > 0, any product-depth ∆ ≥ 1 circuit computing

IMMn,d over any field of characteristic zero or ≥ d , requires size n
Ω

(
d

1
exp(∆)

)
.

In particular, it shows that any depth-3 circuit computing IMMn, log n
100

over any field of

characteristic zero or ≥ d , requires size nΩ(
√
d).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d , n be such that d ≤ log n
100 . For any ∆ > 0, any product-depth ∆ ≥ 1 circuit computing

IMMn,d over any field of characteristic zero or ≥ d , requires size n
Ω

(
d

1
exp(∆)

)
.

In particular, it shows that any depth-3 circuit computing IMMn, log n
100

over any field of

characteristic zero or ≥ d , requires size nΩ(
√
d).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d , n be such that d ≤ log n
100 . For any ∆ > 0, any product-depth ∆ ≥ 1 circuit computing

IMMn,d over any field of characteristic zero or ≥ d , requires size n
Ω

(
d

1
exp(∆)

)
.

In particular, it shows that any depth-3 circuit computing IMMn, log n
100

over any field of

characteristic zero or ≥ d , requires size nΩ(
√
d).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

18

Super-Polynomial Lower Bound against Constant Dept Circuits

[Limaye-Srinivasan-Tavenas 21]

Let d , n be such that d ≤ log n
100 . For any ∆ > 0, any product-depth ∆ ≥ 1 circuit computing

IMMn,d over any field of characteristic zero or ≥ d , requires size n
Ω

(
d

1
exp(∆)

)
.

In particular, it shows that any depth-3 circuit computing IMMn, log n
100

over any field of

characteristic zero or ≥ d , requires size nΩ(
√
d).

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

18

Proof Overview

Step 1: Convert any arbitrary product-depth ∆ circuit into a homogeneous product-depth 2∆

circuit computing the same polynomial. Blow-up in size is 2O(
√
d) poly(s).

Step 2: Convert any homogeneous product-depth 2∆ circuit computing a set-multilinear

polynomial into a set-multilinear product-depth 2∆ circuit computing the same polynomial.

Blow-up in size is dO(d) poly(s).

Step 3: Prove a n
Ω

(
d1/2

∆−1

∆

)
lower bound against set-multilinear constant depth circuits.

19

Proof Overview

Step 1: Convert any arbitrary product-depth ∆ circuit into a homogeneous product-depth 2∆

circuit computing the same polynomial. Blow-up in size is 2O(
√
d) poly(s).

Step 2: Convert any homogeneous product-depth 2∆ circuit computing a set-multilinear

polynomial into a set-multilinear product-depth 2∆ circuit computing the same polynomial.

Blow-up in size is dO(d) poly(s).

Step 3: Prove a n
Ω

(
d1/2

∆−1

∆

)
lower bound against set-multilinear constant depth circuits.

19

Proof Overview

Step 1: Convert any arbitrary product-depth ∆ circuit into a homogeneous product-depth 2∆

circuit computing the same polynomial. Blow-up in size is 2O(
√
d) poly(s).

Step 2: Convert any homogeneous product-depth 2∆ circuit computing a set-multilinear

polynomial into a set-multilinear product-depth 2∆ circuit computing the same polynomial.

Blow-up in size is dO(d) poly(s).

Step 3: Prove a n
Ω

(
d1/2

∆−1

∆

)
lower bound against set-multilinear constant depth circuits.

19

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

20

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

20

Proving Lower Bounds: Finding a Measure

s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

20

Proving Lower Bounds: Finding a Measure
s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.

20

Proving Lower Bounds: Finding a Measure
s.
m
.
m
on

s.
in

Y
va
ri
ab
le
s

s.m. mons. in X \ Y variables

m2

m1

coeffm1·m2(f)

Mf

1. Build a function Γ : F[x] → N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f) must be small.

3. Find an explicit polynomial f such that

Γ(f) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation.

20

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP?

Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

The answer is not as clear as the boolean world.

21

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Summary

What we saw...

• Some of the important models of computation.

• Some of the polynomials of interest.

• Attacking the main question ≡ Proving structural Results + Attacking structured models.

• Some of the well-studied structural restrictions.

• High Level Proof Overview of most of the lower bounds in the area.

• Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

22

Thank you!!!

23

