Recent Progress in Algebraic Circuit Complexity

Prerona Chatterjee

October 20, 2024

Why?

Why?

• Can one succinctly represent polynomials of interest?

Why?

- Can one succinctly represent polynomials of interest?
- All *explicit* polynomials are efficiently computable $\stackrel{\text{G.R.H.}}{\Longrightarrow} P = NP$.

Why?

- Can one succinctly represent polynomials of interest?
- All *explicit* polynomials are efficiently computable $\stackrel{\text{G.R.H.}}{\Longrightarrow}$ P = NP.
- [Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.

• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p

- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

Symbolic Matrix :

$$\begin{bmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{bmatrix}$$

Symbolic Matrix :

$$\begin{bmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{bmatrix}$$

Symbolic Determinant

$$Det_n = \sum_{\sigma \in S_n} sign(\sigma) \cdot \prod_{i \in [n]} x_{i\sigma(i)}$$

Symbolic Matrix :

$$\begin{bmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{bmatrix}$$

Symbolic Determinant

$$Det_n = \sum_{\sigma \in S_n} sign(\sigma) \cdot \prod_{i \in [n]} x_{i\sigma(i)}$$

Computable efficiently by ABPs.

Symbolic Matrix :

$$\begin{bmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{bmatrix}$$

Symbolic Determinant

$$Det_n = \sum_{\sigma \in S_n} sign(\sigma) \cdot \prod_{i \in [n]} x_{i\sigma(i)}$$

Computable efficiently by ABPs.

Symbolic Permanent

$$\operatorname{Perm}_{n} = \sum_{\sigma \in S_{n}} \prod_{i \in [n]} x_{i\sigma(i)}$$

4

Symbolic Matrix :

$$\begin{bmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{bmatrix}$$

Symbolic Determinant

Symbolic Permanent

$$\operatorname{Det}_n = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot \prod_{i \in [n]} x_{i\sigma(i)}$$

Computable efficiently by ABPs.

$$\operatorname{Perm}_{n} = \sum_{\sigma \in S_{n}} \prod_{i \in [n]} x_{i\sigma(i)}$$

Complete for the class of all explicit polynomials.

$$\mathrm{ESYM}_{n,d} = \sum_{S \subset [n]} \prod_{i \in S} x_i$$

$$\mathrm{ESYM}_{n,d} = \sum_{S \subseteq [n]} \prod_{i \in S} x_i = \mathrm{coeff}_{t^d} \left(\prod_{i \in [n]} (1 + tx_i) \right)$$

$$ext{ESYM}_{n,d} = \sum_{S \subseteq [n]} \prod_{i \in S} x_i = ext{coeff}_{t^d} \left(\prod_{i \in [n]} (1 + tx_i) \right)$$

$$\begin{bmatrix} \alpha_0^0 & \cdots & \alpha_0^j & \cdots & \alpha_0^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \alpha_i^0 & \cdots & \alpha_i^j & \cdots & \alpha_i^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \alpha_d^0 & \cdots & \alpha_d^j & \cdots & \alpha_d^d \end{bmatrix} \times \begin{bmatrix} \operatorname{coeff}_{t^0} \left(\prod_{i \in [n]} (1 + tx_i) \right) \\ \vdots \\ \operatorname{coeff}_{t^j} \left(\prod_{i \in [n]} (1 + tx_i) \right) \\ \vdots \\ \operatorname{coeff}_{t^d} \left(\prod_{i \in [n]} (1 + tx_i) \right) \end{bmatrix} = \begin{bmatrix} \prod_{i \in [n]} (1 + \alpha_0 x_i) \\ \vdots \\ \prod_{i \in [n]} (1 + \alpha_i x_i) \\ \vdots \\ \prod_{i \in [n]} (1 + \alpha_d x_i) \end{bmatrix}$$

5

$$\mathrm{ESYM}_{n,d} = \sum_{S \subseteq [n]} \prod_{i \in S} x_i = \mathrm{coeff}_{t^d} \left(\prod_{i \in [n]} (1 + tx_i) \right) \text{ is efficiently computable by } \Sigma \Pi \Sigma \text{ formulas.}$$

$$\begin{bmatrix} \operatorname{coeff}_{t^0} \left(\prod_{i \in [n]} (1 + tx_i) \right) \\ \vdots \\ \operatorname{coeff}_{t^j} \left(\prod_{i \in [n]} (1 + tx_i) \right) \\ \vdots \\ \operatorname{coeff}_{t^d} \left(\prod_{i \in [n]} (1 + tx_i) \right) \end{bmatrix} = \begin{bmatrix} \alpha_0^0 & \cdots & \alpha_0^j & \cdots & \alpha_0^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \alpha_i^0 & \cdots & \alpha_i^j & \cdots & \alpha_d^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \alpha_d^0 & \cdots & \alpha_d^j & \cdots & \alpha_d^d \end{bmatrix}^{-1} \times \begin{bmatrix} \prod_{i \in [n]} (1 + \alpha_0 x_i) \\ \vdots \\ \prod_{i \in [n]} (1 + \alpha_i x_i) \\ \vdots \\ \prod_{i \in [n]} (1 + \alpha_d x_i) \end{bmatrix}$$

Iterated Matrix Multiplication

Iterated Matrix Multiplication

Canonical example of a polynomial that is computable by an ABP of width n and length d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$VP \stackrel{?}{=} VNP$$

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$VP \stackrel{?}{=} VNP$$

Central Question: Find explicit polynomials that cannot be computed by efficient circuits. **Other Motivating Questions**: Are the other inclusions tight?

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.
General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

General Circuits

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[C-Kumar-She-Volk 22]: Any formula computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$ requires $\Omega(n^2)$ vertices.

Structured *n*-variate, degree-*d* polynomial

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*.

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

implies

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

implies

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

implies

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

Examples: Det_n , $Perm_n$, $ESYM_{n,d}$, $IMM_{n,d}$.

Examples: Det_n , $Perm_n$, $ESYM_{n,d}$, $IMM_{n,d}$.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Examples: Det_n , $Perm_n$, $ESYM_{n,d}$, $IMM_{n,d}$.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require $s^{\Omega(\log d)}$ blow-up.

Examples: Det_n , $Perm_n$, $ESYM_{n,d}$, $IMM_{n,d}$.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require $s^{\Omega(\log d)}$ blow-up.

 $\mathrm{ESYM}_{n,d}$ is computable by an O(nd)-sized non-homogeneous formula, but is expected to require $n^{\Omega(\log d)}$ -sized homogeneous formulas to compute.

Examples: Det_n , $Perm_n$, $ESYM_{n,d}$, $IMM_{n,d}$.

Circuits and ABPs: Can be homogenised with an O(d) blow-up.

Formulas: Expected to require $s^{\Omega(\log d)}$ blow-up.

 $\mathrm{ESYM}_{n,d}$ is computable by an O(nd)-sized non-homogeneous formula, but is expected to require $n^{\Omega(\log d)}$ -sized homogeneous formulas to compute.

[Fournier-Limaye-Srinivasan-Tavenas 24]

Any homogeneous non-commutative formula computing $\mathrm{ESYM}_{n,n/2}$ requires size $n^{\Omega(\log \log n)}$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

Circuits and ABPs: Can be set-multilinearised with $2^{O(d)}$ blow-up.

[Raz 10]: If a homogeneous polynomial has degree $d = O(\log n)$ and is computable by a formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a homogeneous polynomial has degree $d = O(\log n)$ and is computable by a formula of size poly(n), then it is also computable by a homogeneous formula of size poly(n).

[Raz 10]: If a set-multilinear polynomial has degree $d = O(\frac{\log n}{\log \log n})$ and is computable by a formula of size poly(*n*), then it is also computable by a set-multilinear formula of size poly(*n*).

[Raz 10]: If a homogeneous polynomial has degree $d = O(\log n)$ and is computable by a formula of size poly(*n*), then it is also computable by a homogeneous formula of size poly(*n*).

[Raz 10]: If a set-multilinear polynomial has degree $d = O(\frac{\log n}{\log \log n})$ and is computable by a formula of size poly(*n*), then it is also computable by a set-multilinear formula of size poly(*n*).

Self-Reducibility of $IMM_{n,n}$

If $\text{IMM}_{n,D}$ is computable by a set-multilinear formula of size s, then $\text{IMM}_{n,d}$ is computable by a set-multilinear formula of size $s^{O(\frac{\log d}{\log D})}$.

Ways of proving Super-Polynomial Lower Bounds against Formulas:

• Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of degree $O(\log n / \log \log n)$.

Ways of proving Super-Polynomial Lower Bounds against Formulas:

- Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of degree $O(\log n / \log \log n)$.
- Prove $n^{\Omega(\log d)}$ lower bound against set-multilinear formulas for $\text{IMM}_{n,d}$ for any d.

Towards Proving General Formula Lower Bounds

Ways of proving Super-Polynomial Lower Bounds against Formulas:

- Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of degree $O(\log n / \log \log n)$.
- Prove $n^{\Omega(\log d)}$ lower bound against set-multilinear formulas for $\text{IMM}_{n,d}$ for any d.

[Tavenas-Limaye-Srinivasan 22]

 $n^{\Omega(\log \log n)}$ lower bound against set-multilinear formulas for $\mathrm{IMM}_{n,n}$.

Ways of proving Super-Polynomial Lower Bounds against Formulas:

- Prove super-polynomial lower bounds against set-multilinear formulas for a polynomial of degree $O(\log n / \log \log n)$.
- Prove $n^{\Omega(\log d)}$ lower bound against set-multilinear formulas for $\text{IMM}_{n,d}$ for any d.

[Tavenas-Limaye-Srinivasan 22]

 $n^{\Omega(\log \log n)}$ lower bound against set-multilinear formulas for $\mathrm{IMM}_{n,n}$.

[Kush-Saraf 23]

 $n^{\Omega(\log n)}$ lower bound against set-multilinear formulas for DMPY_{n,n}.

• DMPY_{*n*,*n*} is computable by an ABP of width $O(n^2)$ and length O(n).

- DMPY_{*n*,*n*} is computable by an ABP of width $O(n^2)$ and length O(n).
- Any polynomial computable by an ABP of width w and length ℓ is a projection of $IMM_{w,\ell}$.

- DMPY_{*n*,*n*} is computable by an ABP of width $O(n^2)$ and length O(n).
- Any polynomial computable by an ABP of width w and length ℓ is a projection of $IMM_{w,\ell}$.

Why doesn't this imply a tight lower bound against $IMM_{n^2,n}$?

- DMPY_{*n*,*n*} is computable by an ABP of width $O(n^2)$ and length O(n).
- Any polynomial computable by an ABP of width w and length ℓ is a projection of $IMM_{w,\ell}$.

Why doesn't this imply a tight lower bound against $IMM_{n^2,n}$?

 $DMPY_{n,n}$ is not a set-multilinear projection of $IMM_{n^2,n}$.

- DMPY_{*n*,*n*} is computable by an ABP of width $O(n^2)$ and length O(n).
- Any polynomial computable by an ABP of width w and length ℓ is a projection of $IMM_{w,\ell}$.

Why doesn't this imply a tight lower bound against $IMM_{n^2,n}$?

 $DMPY_{n,n}$ is not a set-multilinear projection of $IMM_{n^2,n}$. In fact,

[C-Kush-Saraf-Shpilka 24]

If DMPY_{*n*,*n*} were to be a set-multilinear projection of IMM_{*w*,*n*}, then $w = n^{\Omega(n)}$.

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[Bhargav-Dwivedi-Saxena 24]

Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]

For $\omega(\log n) = d \le n$, DMPY_{*n*,*d*} is a set-multilinear ABP of size poly(*n*), but any $\sum \operatorname{osmABP}$ computing $G_{n,d}$ must have super-polynomial total-width.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

[Agrawal-Vinay 08, Koiran 12, Tavenas 15]

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi 16]

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

In General (using the same techniques)

Size *s* circuits computing *n*-variate degree *d* polynomials can be converted into depth- Δ circuits of size $s^{O(d^{1/\Delta})}$.

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that $d \leq \frac{\log n}{100}$. For any $\Delta > 0$, any product-depth $\Delta \geq 1$ circuit computing $\operatorname{IMM}_{n,d}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega\left(d^{\frac{1}{\exp(\Delta)}}\right)}$.
[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that $d \leq \frac{\log n}{100}$. For any $\Delta > 0$, any product-depth $\Delta \geq 1$ circuit computing $\operatorname{IMM}_{n,d}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega\left(d^{\frac{1}{\exp(\Delta)}}\right)}$.

In particular, it shows that any depth-3 circuit computing $\text{IMM}_{n,\frac{\log n}{100}}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega(\sqrt{d})}$.

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that $d \leq \frac{\log n}{100}$. For any $\Delta > 0$, any product-depth $\Delta \geq 1$ circuit computing $\operatorname{IMM}_{n,d}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega\left(d^{\frac{1}{\exp(\Delta)}}\right)}$.

In particular, it shows that any depth-3 circuit computing $\text{IMM}_{n,\frac{\log n}{100}}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega(\sqrt{d})}$.

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Limaye-Srinivasan-Tavenas 21]

Let d, n be such that $d \leq \frac{\log n}{100}$. For any $\Delta > 0$, any product-depth $\Delta \geq 1$ circuit computing $\operatorname{IMM}_{n,d}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega\left(d^{\frac{1}{\exp(\Delta)}}\right)}$.

In particular, it shows that any depth-3 circuit computing $\text{IMM}_{n,\frac{\log n}{100}}$ over any field of characteristic zero or $\geq d$, requires size $n^{\Omega(\sqrt{d})}$.

This shows that the depth-reduction result of [Gupta-Kamath-Kayal-Saptharishi 16] is tight.

[Forbes 24]: The theorem is true over all fields.

Step 1: Convert any arbitrary product-depth Δ circuit into a homogeneous product-depth 2Δ circuit computing the same polynomial. Blow-up in size is $2^{O(\sqrt{d})} \operatorname{poly}(s)$.

Step 1: Convert any arbitrary product-depth Δ circuit into a homogeneous product-depth 2Δ circuit computing the same polynomial. Blow-up in size is $2^{O(\sqrt{d})} \operatorname{poly}(s)$.

Step 2: Convert any homogeneous product-depth 2Δ circuit computing a set-multilinear polynomial into a set-multilinear product-depth 2Δ circuit computing the same polynomial. Blow-up in size is $d^{O(d)}$ poly(s).

Step 1: Convert any arbitrary product-depth Δ circuit into a homogeneous product-depth 2Δ circuit computing the same polynomial. Blow-up in size is $2^{O(\sqrt{d})} \operatorname{poly}(s)$.

Step 2: Convert any homogeneous product-depth 2Δ circuit computing a set-multilinear polynomial into a set-multilinear product-depth 2Δ circuit computing the same polynomial. Blow-up in size is $d^{O(d)}$ poly(s).

Step 3: Prove a $n^{\Omega\left(\frac{d^{1/2^{\Delta}-1}}{\Delta}\right)}$ lower bound against set-multilinear constant depth circuits.

1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- 2. Show that if a polynomial is computable efficiently by the model of choice, then $\Gamma(f)$ must be small.
- 3. Find an explicit polynomial f such that $\Gamma(f)$ is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with f.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with *f*. The property "a matrix has low-rank" can be captured by a polynomial equation.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

The answer is not as clear as the boolean world.

• Some of the important models of computation.

- Some of the important models of computation.
- Some of the polynomials of interest.

- Some of the important models of computation.
- Some of the polynomials of interest.
- Attacking the main question \equiv Proving structural Results + Attacking structured models.

- Some of the important models of computation.
- Some of the polynomials of interest.
- Attacking the main question \equiv Proving structural Results + Attacking structured models.
- Some of the well-studied structural restrictions.

- Some of the important models of computation.
- Some of the polynomials of interest.
- Attacking the main question \equiv Proving structural Results + Attacking structured models.
- Some of the well-studied structural restrictions.
- High Level Proof Overview of most of the lower bounds in the area.

- Some of the important models of computation.
- Some of the polynomials of interest.
- Attacking the main question \equiv Proving structural Results + Attacking structured models.
- Some of the well-studied structural restrictions.
- High Level Proof Overview of most of the lower bounds in the area.
- Natural Proofs.

- Some of the important models of computation.
- Some of the polynomials of interest.
- Attacking the main question \equiv Proving structural Results + Attacking structured models.
- Some of the well-studied structural restrictions.
- High Level Proof Overview of most of the lower bounds in the area.
- Natural Proofs.

Next Big Goal of the Area: Proving lower bounds against Homogeneous Formulas.

Thank you!!!