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Complexity Theory

Addition v.s. Multiplication v.s. Factorisation

Class I v.s. Class II v.s. Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

• Can one formalise this intuition? That is what Complexity Theory tries to do.

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.
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Complexity Theory: Major Sub-Areas

P
?
= NP : Are easily verifiable boolean functions easy to compute as well?

Traditional Time Complexity

Given a boolean function f on n

inputs, how many steps are required

by a Turing machine to compute the

f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on n

inputs, how much space is required by

a Turing machine to compute the f

(in terms of n)?

Circuit Complexity Communication Complexity Proof Complexity

Quantum Computation Algebraic Computation

2
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Algebraic Circuit Complexity

Q: What is the most succinct way of representing the given polynomial of interest?

An n-variate, degree d-polynomial has
(
n+d
d

)
monomials.

Thus representing a polynomial as a vector of coefficients requires Ω(nd) size.

Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If h(x) =
∏d

i=1(x − i) can be computed using poly(log d) additions

and multiplications, then integer factoring is easy for boolean circuits.

3
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Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many additions and multiplications does it take

to compute f formally?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

4
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Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

5
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Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

VP = VNP
G.R.H.
=⇒ P = NP VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Other Motivating Questions: Are the other inclusions tight?

6
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Lower Bounds for General Models

General Circuits

[Baur-Strassen 83]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP

computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti’s method): There is an n-variate multilinear

polynomial such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk 22]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices.

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

7
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How does one make progress?

Step 1: Structural Results

Structured n-variate, degree-d polynomial

that is

computable by a general model of size s.

implies

it is also computed by a structured

model of size func(s, n, d) for some

function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f .

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

8
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Towards Better ABP Lower Bounds

[C-Kumar-She-Volk 22]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of∑
osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

9
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osmABP for a polynomial of degree d = O

(
log n

log log n

)
=⇒ super-polynomial lower bound

against ABPs.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
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osmABP computing Gn,d must have super-polynomial total-width.
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Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d ].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.
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Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of
∑

osmABP for a

polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.
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Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).
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[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

12



Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).
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ABP vs Formula in the Non-Commutative Setting

[Nisan 91]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

homogeneous non-commutative ABPs, formulas ≡ ordered set-multilinear ABPs, formulas

x1x2 + x2x1 −→ x1,1x2,2 + x1,2x2,1

x2x3 + x1x2 ←− x1,2x2,3 + x1,1x2,2

position indices ≡ bucket indices
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Tight Separation in a Structured Setting

{X1, . . . ,Xm}: Partition of the underlying set of variables {x1, . . . , xn}.

Ordered Set-Multilinear Polynomials: Every monomial has the form X1X2 · · ·Xm.

Abecedarian Polynomials: Every monomial has the form X ∗
1 X

∗
2 · · ·X ∗

m.

Abecedarian Formulas: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that

• There is an abecedarian ABP of size O(nd) that computes f .

• Any abecedarian formula computing f has size nΩ(log log n).

• There is an abecedarian formula of size nO(log log n) that computes f .

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.
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Classes Beyond VNP

VPSPACEb: Polynomials whose coefficients can be

computed in PSPACE/ poly and have

degree bounded by poly(n).

[Koiran-Perifel 09]

VNP ̸= VPSPACEb =⇒ P/ poly ̸= PSPACE/ poly.
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Proving Lower Bounds: Finding a Measure
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coeffm1·m2(f )

Mf

1. Build a function Γ : F[x]→ N.

2. Show that if a polynomial is computable

efficiently by the model of choice, then

Γ(f ) must be small.

3. Find an explicit polynomial f such that

Γ(f ) is large.

Note: Γ is almost always the dimension of

some algebraic object and most of the time is

simply the rank of a matrix associated with f .

The property ”a matrix has low-rank” can be

captured by a polynomial equation

.
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Natural Proofs

Natural Proofs in the Algebraic Setting

0 ̸= Q ∈ F[y] such that Q(coeff -vector of f ) = 0 for every f that is computable efficiently by

the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is Q ∈ VP?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VPbd-coeff.

[K-R-S-T 22]: Permn is optimally hard =⇒ no if the model of interest is VNP.

[C-Tengse]: Q ∈ VPSPACE[loglog
∗
].
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Proof Overview of Lower Bound

against Sum of osmABPs



Super-Polynomial Lower Bound against
∑

osmABPs

An ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d ], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n, d),

• any
∑

osmABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d),

• any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).
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Arc Partition
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9

8
7
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5

P1 = {(1, 2)}

P2 = {(1, 2), (3, 4)}

P3 = {(1, 2), (3, 4), (12, 5)}

P4 = {(1, 2), (3, 4), (12, 5), (10, 11)}

P5 = {(1, 2), (3, 4), (12, 5), (10, 11), (9, 6)}

P6 = {(1, 2), (3, 4), (12, 5), (10, 11), (9, 6), (8, 7)}

P6 = All possibles sequences of such pairs.
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The ABP Upper Bound
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The Hard Polynomial

[1, 2] [1, 4]

y3,4y4,3 ·
(∑n

k=1 x3,kx4,k
)

The new pair: (3, 4).

(y3,4y4,3): To select.(∑n
k=1 x3,kx4,k

)
: To achieve full-rank.

x3,1

x3,2

...

...

x3,n

x4,1 x4,2 . . . . . . x4,n

1 0 . . . . . . 0

0 1 . . . . . . 0

...

...

...

...

...

...

0 0 . . . . . . 1
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Lower Bound for a single osmABP
s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

f is a set-multilinear poly. w.r.t {x1, . . . , xd}.

[Nisan 91]: For every 1 ≤ k ≤ d , the number of

vertices in the k-th layer of the smallest osmABP(σ)

computing f is equal to the rank of Mf ,σ(k).

If A is the smallest osmABP (in order σ) computing

f , then

size(A) =
d∑

i=1

rank(Mf ,σ(k)).
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Lower Bound for a single osmABP (contd.)

s.
m
.
m
on

s.
in
{ x σ(1

),
..
.,
x σ

(k
)}

s.m. mons. in
{
xσ(k+1), . . . , xσ(d)

}

m2

m1

coeffm1·m2(f )

Mf ,σ(k)

Gn,d =
∑

P∈Pd/2

∏
(i,j)∈P

yi,jyj,i ·

(
n∑

k=1

xi,kxj,k

)
.

Properties:

• Gn,d is computable by a set-multilinear ABP of

size poly(n, d).

• For every σ ∈ Sd , there is some P such that for

at least d/8 of the P = (i , j) ∈ P, i ∈{
σ(1), . . . σ( d2 )

}
& j ∈

{
σ(1 + d

2 )), . . . σ(d)
}
.

Therefore,

rank(MGn,d ,σ(d/2)) = Ω(nd/8).
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Lower Bound for a Sum of osmABPs

• {Mw (f ) : w ∈ S} is a set of matrices such that Mw (Gn,d) has full rank for every w ∈ S.

• If Gn,d is computed by a sum of t osmABPs, then

Gn,d =
t∑

i=1

gi where gi =
∑

u1,...,uq−1

q∏
j=1

g (i)
uj−1,uj .

• Define a distribution D on S such that when w ∼ D, if gi s are computable by osmABPs

efficiently, then

for every i , w.h.p. there are many js, for which Mw (g
(i)
uj−1,uj ) is far from full rank

=⇒ for every i , w.h.p. Mw (gi ) is far from full rank

=⇒ Mw (Gn,d) is far from full rank unless t is large.
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Ongoing and Future Projects



Some Open Directions

• Better lower bounds against homogeneous formulas?

• Super-linear Lower Bounds against ABPs for constant degree polynomials?

• Super-linear Lower Bounds against Determinantal Complexity?

• Better lower bounds against set-multilinear ABPs?

• Better Lower Bounds against Non-Commutative circuits?

• Separating formulas and ABPs in the non-commutative setting?

• Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.
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Teaching

The courses I would be happy to teach:

• Computing Lab -I

• Computing Lab-II

• Discrete Mathematical Structures

• Linear Algebra for Computer Science

• Programming and Data Structures

• Algorithms

• Theory of Computation

• Linear Programming and Convex Optimization

Given enough time, I should be able to teach some of the other compulsory courses as well.
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Thank you!
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