Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

December 2, 2024

Addition v.s. Multiplication v.s. Factorisation

Addition v.s. Multiplication v.s. Factorisation Class I v.s. Class II v.s. Class IV/V

Additionv.s.Multiplicationv.s.FactorisationClass Iv.s.Class IIv.s.Class IV/V

• Why?

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

• Why? Addition seems easier than Multiplication which seems easier than Factorisation.

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition?

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

Addition	V.S.	Multiplication	V.S.	Factorisation
Class I	V.S.	Class II	V.S.	Class IV/V

- Why? Addition seems easier than Multiplication which seems easier than Factorisation.
- Can one formalise this intuition? That is what Complexity Theory tries to do.

 ${\bf Q}:$ Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Proof Complexity

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

Circuit Complexity

Communication Complexity

Proof Complexity

Quantum Computation

Traditional Time Complexity

Given a boolean function f on ninputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Traditional Space Complexity

Given a boolean function f on ninputs, how much space is required by a Turing machine to compute the f(in terms of n)?

 ${\bf Q}:$ What is the most succinct way of representing the given polynomial of interest?

 ${\bf Q}:$ What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

 ${\bf Q}:$ What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

Thus representing a polynomial as a vector of coefficients requires $\Omega(n^d)$ size.

 \mathbf{Q} : What is the most succinct way of representing the given polynomial of interest?

An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

Thus representing a polynomial as a vector of coefficients requires $\Omega(n^d)$ size.

Is there a representation that takes poly(n, d) size?

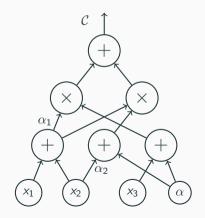
 \mathbf{Q} : What is the most succinct way of representing the given polynomial of interest?

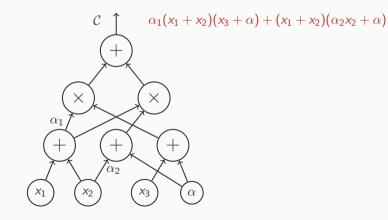
An *n*-variate, degree *d*-polynomial has $\binom{n+d}{d}$ monomials.

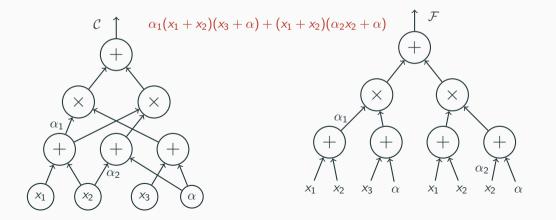
Thus representing a polynomial as a vector of coefficients requires $\Omega(n^d)$ size.

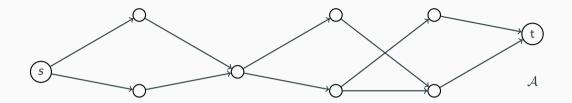
Is there a representation that takes poly(n, d) size?

[Shamir 79, Lipton 94]: If $h(x) = \prod_{i=1}^{d} (x - i)$ can be computed using poly(log d) additions and multiplications, then integer factoring is easy for boolean circuits.



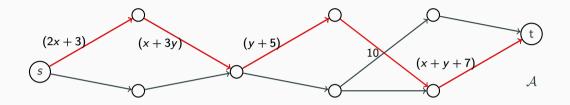




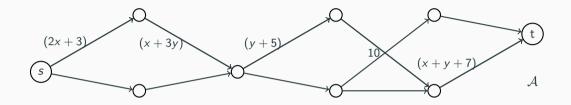




• Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$



- Label on each edge: An affine linear form in $\{x_1, x_2, \dots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p



- Label on each edge: An affine linear form in $\{x_1, x_2, \ldots, x_n\}$
- Polynomial computed by the path p = wt(p): Product of the edge labels on p
- Polynomial computed by the ABP: $f_{\mathcal{A}}(\mathbf{x}) = \sum_{p} \operatorname{wt}(p)$

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over *n* variables of degree *d*.

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

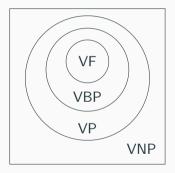
Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials



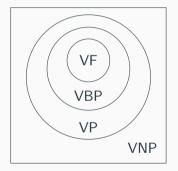
Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d). VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$\mathsf{VP}=\mathsf{VNP}\overset{\mathsf{G.R.H.}}{\Longrightarrow}\mathsf{P}=\mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

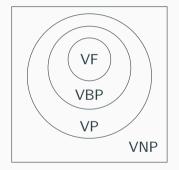
Objects of Study: Polynomials over *n* variables of degree *d*.

VF: Polynomials computable by formulas of size poly(n, d). VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

$$\mathsf{VP}=\mathsf{VNP}\overset{\mathsf{G.R.H.}}{\Longrightarrow}\mathsf{P}=\mathsf{NP}$$



Central Question: Find explicit polynomials that cannot be computed by efficient circuits. **Other Motivating Questions**: Are the other inclusions tight?

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[Baur-Strassen 83]: Any algebraic circuit computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

General Formulas

[Kalorkoti 85]: Any formula computing the n^2 -variate $Det_n(\mathbf{x})$ requires $\Omega(n^3)$ wires.

[Shpilka-Yehudayoff 10] (using Kalorkoti's method): There is an *n*-variate multilinear polynomial such that any formula computing it requires $\Omega(n^2/\log n)$ wires.

[C-Kumar-She-Volk 22]: Any formula computing $\text{ESYM}_{n,0.1n}(\mathbf{x})$ requires $\Omega(n^2)$ vertices.

$$\mathrm{ESYM}_{n,d}(\mathbf{x}) = \sum_{i_1 < \cdots < i_d \in [n]} x_{i_1} \cdots x_{i_d}.$$

Structured *n*-variate, degree-*d* polynomial

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*.

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

implies

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

implies

Structured *n*-variate, degree-*d* polynomial that is computable by a general model of size *s*. it is also computed by a structured model of size func(s, n, d) for some function func.

Step 2: Study Structured Models

Prove strong lower bounds against structured models computing f.

implies

Ultimate Goal: Prove better than func(s, n, d) lower bounds.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \operatorname{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kumar-She-Volk 22]: Any ABP computing $\sum_{i=1}^{n} x_i^d$ requires $\Omega(nd)$ vertices.

[Bhargav-Dwivedi-Saxena 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n),
- any $\sum \text{osmABP}$ computing $G_{n,d}$ must have super-polynomial total-width.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

The variable set is divided into buckets.

$$\mathbf{x} = \mathbf{x}_1 \cup \cdots \cup \mathbf{x}_d$$
 where $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,n_i}\}$.

f is set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

every monomial in f has exactly one variable from \mathbf{x}_i for each $i \in [d]$.

An ABP is set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if every path in it

computes a set-multilinear monomial with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

For $\sigma \in S_d$, an ABP is σ -ordered set-multilinear with respect to $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ if

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[B-D-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = O\left(\frac{\log n}{\log \log n}\right) \implies$ super-polynomial lower bound against ABPs.

[C-K-S-S 24]: Super polynomial lower bound against total-width of $\sum \text{osmABP}$ for a polynomial of degree $d = \omega(\log n)$ that is computable by polynomial-sized ABPs.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

$$f(x,y) = (x+y) \times (x+y) = x^2 + xy + yx + y^2 \neq x^2 + 2xy + y^2$$

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting?

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$.

$$f(x, y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

$$f(x,y) = (x + y) \times (x + y) = x^{2} + xy + yx + y^{2} \neq x^{2} + 2xy + y^{2}$$

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

[C-Hrubeš 23]: Any homogeneous non-commutative circuit computing

$$\operatorname{OSym}_{n,d}(\mathbf{x}) = \sum_{1 \le i_1 < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$$

has size $\Omega(nd)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size $O(n \log^2 n)$ that computes $OSym_{n,n/2}(\mathbf{x})$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

 $x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

 $x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$

 $x_2x_3 + x_1x_2 \longleftarrow x_{1,2}x_{2,3} + x_{1,1}x_{2,2}$

[Tavenas-Limaye-Srinivasan 22]: Any homogeneous non-commutative formula computing $IMM_{n,d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

homogeneous non-commutative ABPs, formulas \equiv ordered set-multilinear ABPs, formulas

$$x_1x_2 + x_2x_1 \longrightarrow x_{1,1}x_{2,2} + x_{1,2}x_{2,1}$$

$$x_2x_3 + x_1x_2 \longleftarrow x_{1,2}x_{2,3} + x_{1,1}x_{2,2}$$

position indices \equiv bucket indices

Tight Separation in a Structured Setting

 $\{X_1, \ldots, X_m\}$: Partition of the underlying set of variables $\{x_1, \ldots, x_n\}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$,

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

• There is an abecedarian ABP of size O(nd) that computes f.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

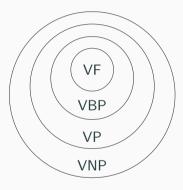
If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \ldots, X_m\}$ for $m = \log n$,

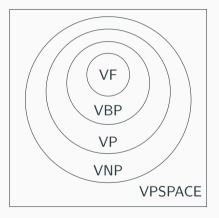
Ordered Set-Multilinear Polynomials: Every monomial has the form $X_1X_2 \cdots X_m$. **Abecedarian Polynomials**: Every monomial has the form $X_1^*X_2^* \cdots X_m^*$. **Abecedarian Formulas**: Every gate can be labelled by bucket indices of the end points.

[Cha 21]: For $\mathbf{x} = \bigcup_{i \in [n]} \{X_i\}$ with $X_i = \{x_{i,j}\}_{j \in [n]}$, there exists a (log *n*)-degree abecedarian polynomial $f \in \mathbb{F} \langle \mathbf{x} \rangle$ such that

- There is an abecedarian ABP of size O(nd) that computes f.
- Any abecedarian formula computing f has size $n^{\Omega(\log \log n)}$.
- There is an abecedarian formula of size $n^{O(\log \log n)}$ that computes f.

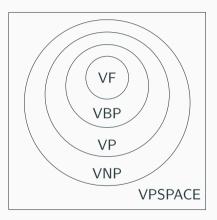
If an *n*-variate polynomial is abecedarian with respect to $\{X_1, \ldots, X_m\}$ for $m = \log n$, then any formula computing *f* can be made abecedarian with only poly(*n*) blow-up in size.





Classes Beyond VNP

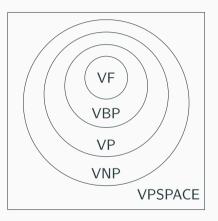
 $\label{eq:constraint} \begin{array}{l} \mbox{[Koiran-Perifel 09]} \\ \mbox{VNP} \neq \mbox{VPSPACE}_b \implies \mbox{P/poly} \neq \mbox{PSPACE/poly}. \end{array}$



Classes Beyond VNP

[Koiran-Perifel 09] $VNP \neq VPSPACE_b \implies P/poly \neq PSPACE/poly.$

 $\mathsf{VNP} \stackrel{?}{=} \mathsf{VPSPACE}_b$

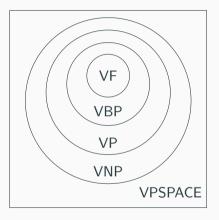


Classes Beyond VNP

 $\label{eq:constraint} \begin{array}{l} \mbox{[Koiran-Perifel 09]} \\ \mbox{VNP} \neq \mbox{VPSPACE}_b \implies \mbox{P/poly} \neq \mbox{PSPACE/poly}. \end{array}$

 $\mathsf{VNP} \stackrel{?}{=} \mathsf{VPSPACE}_b$

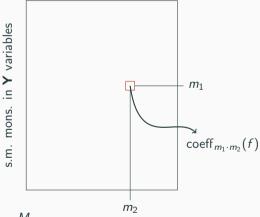
[C-Gajjar-Tengse 23]: $VNP \neq VPSPACE_b$ in the monotone setting.



1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.

- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.



- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- 2. Show that if a polynomial is computable efficiently by the model of choice, then $\Gamma(f)$ must be small.
- 3. Find an explicit polynomial f such that $\Gamma(f)$ is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with f.



- 1. Build a function $\Gamma : \mathbb{F}[\mathbf{x}] \to \mathbb{N}$.
- Show that if a polynomial is computable efficiently by the model of choice, then Γ(f) must be small.
- Find an explicit polynomial f such that Γ(f) is large.

Note: Γ is almost always the dimension of some algebraic object and most of the time is simply the rank of a matrix associated with f. The property "a matrix has low-rank" can be captured by a polynomial equation.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

 $0 \neq Q \in \mathbb{F}[\mathbf{y}]$ such that Q(coeff-vector of f) = 0 for every f that is computable efficiently by the model of interest.

Question: What is the complexity of Q when the model of interest is VP? Is $Q \in VP$?

[Forbes-Shpilka-Volk 18, Grochow-Kumar-Saks-Saraf]: Under some assumptions, no!

[C-Kumar-Ramya-Saptharishi-Tengse 20]: Yes if the model of interest is VP_{bd-coeff}.

[K-R-S-T 22]: Perm_n is optimally hard \implies no if the model of interest is VNP.

[C-Tengse]: $Q \in \mathsf{VPSPACE}[\mathsf{log}^{\mathsf{log}^*}].$

Proof Overview of Lower Bound against Sum of osmABPs

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

• $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),

- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),
- any $\sum \text{osmABP}$ of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,

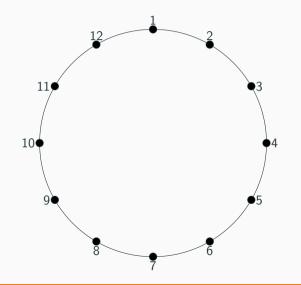
- there are *d* layers in the ABP
- every edge in layer *i* is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

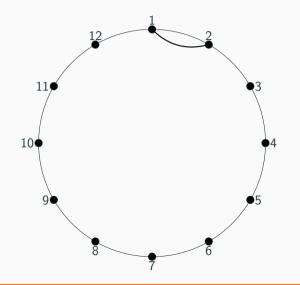
 \sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

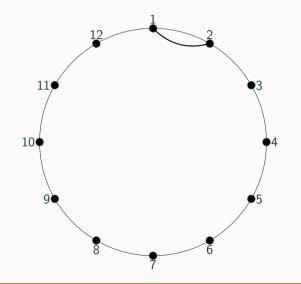
[C-Kush-Saraf-Shpilka 24]: For $\omega(\log n) = d \le n$, there is a polynomial $G_{n,d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x} = {\mathbf{x}_1, \ldots, \mathbf{x}_d}$, where $|\mathbf{x}_i| \le n$ for every $i \in [d]$, such that:

- $G_{n,d}$ is computable by a set-multilinear ABP of size poly(n, d),
- any $\sum \text{osmABP}$ of max-width poly(n) computing $G_{n,d}$ requires total-width $2^{\Omega(d)}$,
- any ordered set-multilinear branching program computing $G_{n,d}$ requires width $n^{\Omega(d)}$.

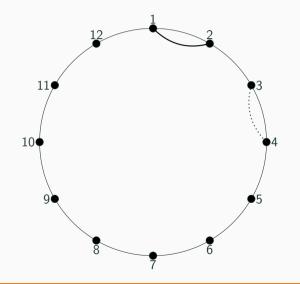
Arc Partition



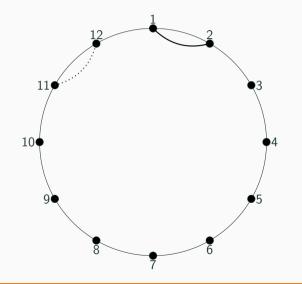




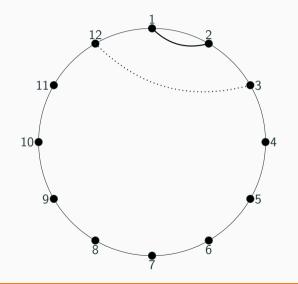
$$\mathcal{P}_1 = \{(1,2)\}$$



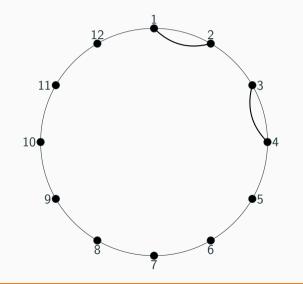
$$\mathcal{P}_1 = \{(1,2)\}$$



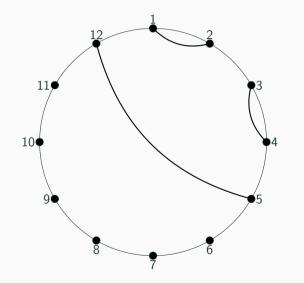
$$\mathcal{P}_1 = \{(1,2)\}$$



$$\mathcal{P}_1 = \{(1,2)\}$$

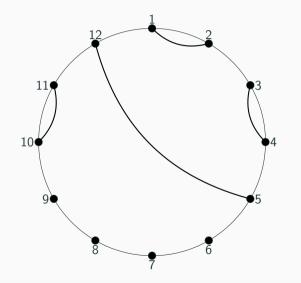


$$\mathcal{P}_1 = \{(1,2)\}$$
 $\mathcal{P}_2 = \{(1,2),(3,4)\}$

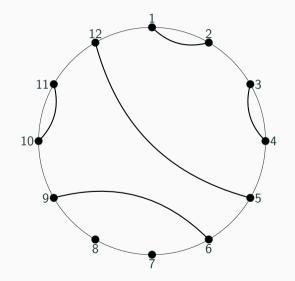


$$\mathcal{P}_1 = \{(1,2)\}$$

 $\mathcal{P}_2 = \{(1,2),(3,4)\}$
 $\mathcal{P}_3 = \{(1,2),(3,4),(12,5)\}$



$$\begin{aligned} \mathcal{P}_1 &= \{(1,2)\} \\ \mathcal{P}_2 &= \{(1,2),(3,4)\} \\ \mathcal{P}_3 &= \{(1,2),(3,4),(12,5)\} \\ \mathcal{P}_4 &= \{(1,2),(3,4),(12,5),(10,11)\} \end{aligned}$$



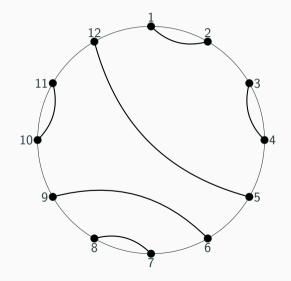
$$\mathcal{P}_{1} = \{(1,2)\}$$

$$\mathcal{P}_{2} = \{(1,2), (3,4)\}$$

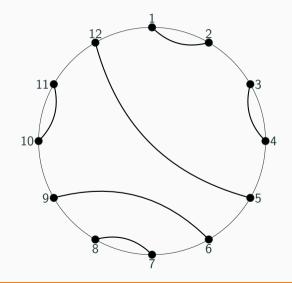
$$\mathcal{P}_{3} = \{(1,2), (3,4), (12,5)\}$$

$$\mathcal{P}_{4} = \{(1,2), (3,4), (12,5), (10,11)\}$$

$$\mathcal{P}_{5} = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$$



 $\begin{aligned} \mathcal{P}_1 &= \{(1,2)\} \\ \mathcal{P}_2 &= \{(1,2),(3,4)\} \\ \mathcal{P}_3 &= \{(1,2),(3,4),(12,5)\} \\ \mathcal{P}_4 &= \{(1,2),(3,4),(12,5),(10,11)\} \\ \mathcal{P}_5 &= \{(1,2),(3,4),(12,5),(10,11),(9,6)\} \\ \mathcal{P}_6 &= \{(1,2),(3,4),(12,5),(10,11),(9,6),(8,7)\} \end{aligned}$

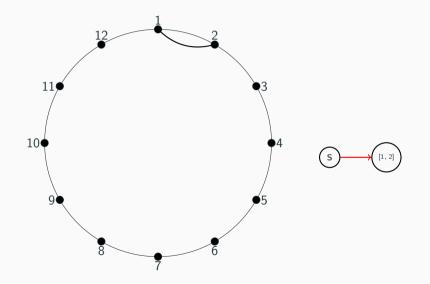


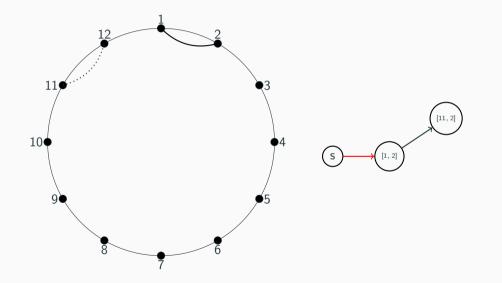
$\mathcal{P}_1=\{(1,2)\}$
$\mathcal{P}_2 = \{(1,2),(3,4)\}$
$\mathcal{P}_3 = \{(1,2),(3,4),(12,5)\}$
$\mathcal{P}_4 = \{(1,2), (3,4), (12,5), (10,11)\}$
$\mathcal{P}_5 = \{(1,2), (3,4), (12,5), (10,11), (9,6)\}$
$\mathcal{P}_6 = \{(1,2), (3,4), (12,5), (10,11), (9,6), (8,7)\}$

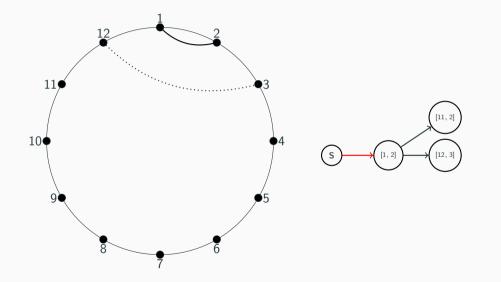
 $\mathbf{P}_6 = AII$ possibles sequences of such pairs.

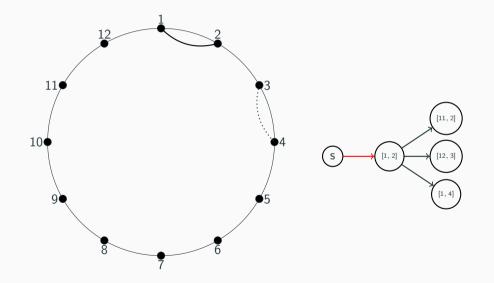
L

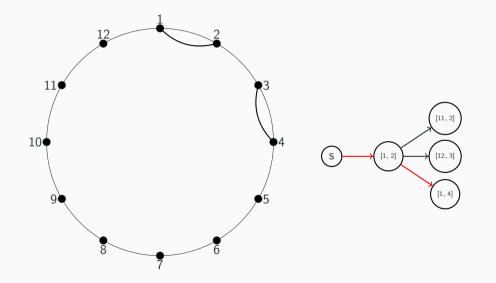


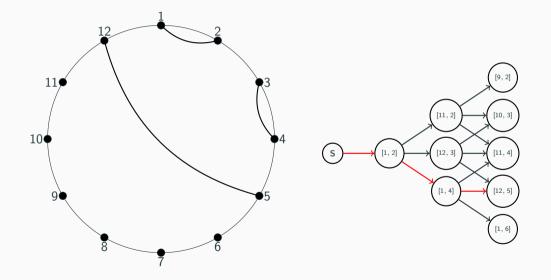


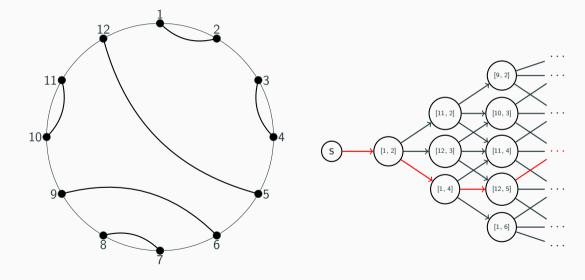


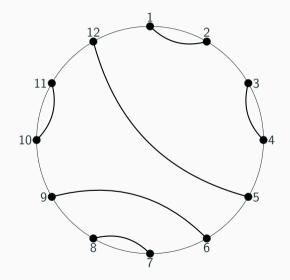




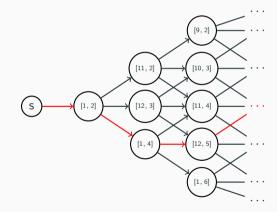




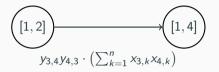


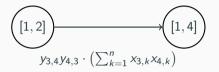


Every path corresponds to an element in $P_{d/2}$.

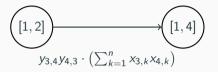


The Hard Polynomial



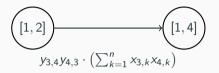


 $(y_{3,4}y_{4,3})$: To select.



 $(y_{3,4}y_{4,3})$: To select.

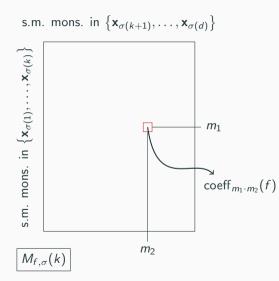
 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.



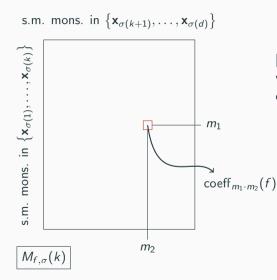
 $(y_{3,4}y_{4,3})$: To select.

 $\left(\sum_{k=1}^{n} x_{3,k} x_{4,k}\right)$: To achieve full-rank.

	<i>x</i> _{4,1}	<i>x</i> _{4,2}	 	<i>x</i> _{4,<i>n</i>}
<i>x</i> _{3,1}	1	0	 	0
<i>x</i> _{3,2}	0	1	 	0
:	:	÷		÷
÷	÷	÷		÷
<i>x</i> _{3,<i>n</i>}	0	0	 	1

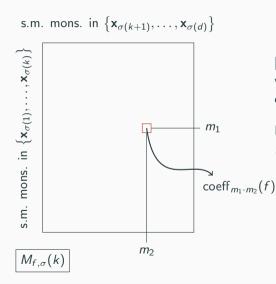


f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.



f is a set-multilinear poly. w.r.t $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$.

[Nisan 91]: For every $1 \le k \le d$, the number of vertices in the *k*-th layer of the smallest osmABP(σ) computing *f* is equal to the rank of $M_{f,\sigma}(k)$.

If \mathcal{A} is the smallest osmABP (in order σ) computing f, then

$$\mathsf{size}(\mathcal{A}) = \sum_{i=1}^{d} \mathsf{rank}(M_{f,\sigma}(k)).$$

Lower Bound for a single osmABP (contd.)

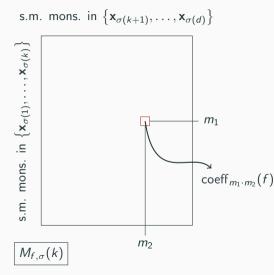
$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Lower Bound for a single osmABP (contd.)

$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

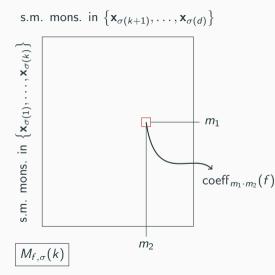
• *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i, j) \in \mathcal{P}$, $i \in$ $\{\sigma(1), \ldots \sigma(\frac{d}{2})\} \& j \in \{\sigma(1 + \frac{d}{2})), \ldots \sigma(d)\}.$



$$G_{n,d} = \sum_{\mathcal{P} \in \mathbf{P}_{d/2}} \prod_{(i,j) \in \mathcal{P}} y_{i,j} y_{j,i} \cdot \left(\sum_{k=1}^n x_{i,k} x_{j,k} \right).$$

Properties:

- *G_{n,d}* is computable by a set-multilinear ABP of size poly(*n*, *d*).
- For every $\sigma \in S_d$, there is some \mathcal{P} such that for at least d/8 of the $P = (i,j) \in \mathcal{P}$, $i \in \{\sigma(1), \ldots \sigma(\frac{d}{2})\}$ & $j \in \{\sigma(1 + \frac{d}{2})), \ldots \sigma(d)\}$.

Therefore,

$$\operatorname{rank}(M_{G_{n,d},\sigma}(d/2)) = \Omega(n^{d/8}).$$

• $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^{t} g_i$$
 where $g_i = \sum_{u_1,...,u_{q-1}} \prod_{j=1}^{q} g_{u_{j-1},u_j}^{(i)}$

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

• Define a distribution D on S such that when $w \sim D$, if g_i s are computable by osmABPs efficiently, then

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

• Define a distribution D on S such that when $w \sim D$, if g_i s are computable by osmABPs efficiently, then

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{i-1},u_i}^{(i)})$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

• Define a distribution \mathcal{D} on \mathcal{S} such that when $w \sim \mathcal{D}$, if g_i s are computable by osmABPs efficiently, then

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank \implies for every *i*, w.h.p. $M_w(g_i)$ is far from full rank

- $\{M_w(f) : w \in S\}$ is a set of matrices such that $M_w(G_{n,d})$ has full rank for every $w \in S$.
- If $G_{n,d}$ is computed by a sum of t osmABPs, then

$$G_{n,d} = \sum_{i=1}^t g_i \quad ext{where} \quad g_i = \sum_{u_1, \dots, u_{q-1}} \prod_{j=1}^q g_{u_{j-1}, u_j}^{(i)}.$$

• Define a distribution D on S such that when $w \sim D$, if g_i s are computable by osmABPs efficiently, then

for every *i*, w.h.p. there are many *j*s, for which $M_w(g_{u_{j-1},u_j}^{(i)})$ is far from full rank

 \implies for every *i*, w.h.p. $M_w(g_i)$ is far from full rank

 $\implies M_w(G_{n,d})$ is far from full rank unless *t* is large.

Ongoing and Future Projects

• Better lower bounds against homogeneous formulas?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?
- Separating formulas and ABPs in the non-commutative setting?

- Better lower bounds against homogeneous formulas?
- Super-linear Lower Bounds against ABPs for constant degree polynomials?
- Super-linear Lower Bounds against Determinantal Complexity?
- Better lower bounds against set-multilinear ABPs?
- Better Lower Bounds against Non-Commutative circuits?
- Separating formulas and ABPs in the non-commutative setting?
- Do VP have VP natural proofs under some reasonable conditions?

Branching Out

Study complexity theoretic questions about Boolean Circuits, Communication Models.

The courses I would be happy to teach:

- Computing Lab -I
- Computing Lab-II
- Discrete Mathematical Structures
- Linear Algebra for Computer Science
- Programming and Data Structures
- Algorithms
- Theory of Computation
- Linear Programming and Convex Optimization

The courses I would be happy to teach:

- Computing Lab -I
- Computing Lab-II
- Discrete Mathematical Structures
- Linear Algebra for Computer Science
- Programming and Data Structures
- Algorithms
- Theory of Computation
- Linear Programming and Convex Optimization

Given enough time, I should be able to teach some of the other compulsory courses as well.

Thank you!