Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

March 27, 2024

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

- study the amount of resource required by the model to complete the task.

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand, - design a computational model that captures the constraints

- study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f, assuming Alice and Bob are computationally unbounded but have partial inputs $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ respectively, how many bits need to be communicated for them to know $f(\mathbf{x}, \mathbf{y})$ (in terms of n)?

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

- design a computational model that captures the constraints
- study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f, assuming Alice and Bob are computationally unbounded but have partial inputs $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ respectively, how many bits need to be communicated for them to know $f(\mathbf{x}, \mathbf{y})$ (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many \wedge, \vee, \neg gates are needed for a boolean circuit to compute f (in terms of n)?

Computing Formal Polynomials: Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Computing Formal Polynomials: Algebraic Models of Computation

$$
\text { Q: Given } f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \text { of degree } d \text {, how many }+, \times,- \text { gates are needed to compute } f \text { ? }
$$

Computing Formal Polynomials: Algebraic Models of Computation

Q: Given $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, how many,$+ \times,-$ gates are needed to compute f ?

Algebraic Branching Programs

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p

Algebraic Branching Programs

- Label on each edge: An affine linear form in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Polynomial computed by the path $p=w t(p)$: Product of the edge labels on p
- Polynomial computed by the $\mathrm{ABP}: \quad f_{\mathcal{A}}(\mathbf{x})=\sum_{p} w t(p)$

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).

VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d.

VF: Polynomials computable by formulas of size poly (n, d).
VBP: Polynomials computable by ABPs of size poly (n, d).
VP: Polynomials computable by circuits of size poly (n, d).
VNP: Explicit Polynomials

Are the inclusions tight?

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(\mathbf{x})$ requires $\Omega\left(n^{3}\right)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(\mathbf{x})$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an n-variate multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

General Formulas

[Kalorkoti]: Any formula computing the n^{2}-variate $\operatorname{Det}_{n}(\mathbf{x})$ requires $\Omega\left(n^{3}\right)$ wires.
[Shpilka-Yehudayoff] (using Kalorkoti's method): There is an n-variate multilinear polynomial such that any formula computing it requires $\Omega\left(n^{2} / \log n\right)$ wires.
[C-Kumar-She-Volk]: Any formula computing $\operatorname{ESYM}_{n, 0.1 n}(\mathbf{x})$ requires $\Omega\left(n^{2}\right)$ vertices, where

$$
\operatorname{ESYM}_{n, d}(\mathbf{x})=\sum_{i_{1}<\cdots<i_{d} \in[n]} x_{i_{1}} \cdots x_{i_{d}} .
$$

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

Study Structured Models

Prove strong lower bounds against structured models computing f.

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

How does one make progress?

Structural Results

Show that if a structured n-variate, degree- d polynomial is computable by a general model of size s, then they can also be computed by a structured model of size func (s, n, d) for some function func.

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can be converted into depth-4 circuits of size $s^{O(\sqrt{d})}$.

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can be converted into depth-3 circuits of size $s^{O(\sqrt{d})}$.

Study Structured Models

Prove strong lower bounds against structured models computing f.

A lot of work that culminated in [Limaye-Srinivasan-Tavenas] Any depth-3 or depth-4 circuit computing $\mathrm{IMM}_{n, \log n}^{n}(\mathbf{x})$ must have size $n^{\Omega(\sqrt{d})}$.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing $\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n d)$ vertices.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka]: For $\omega(\log n)=d \leq n$, there is a polynomial $G_{n, d}(\mathbf{x})$ which is set-multilinear w.r.t $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$, where $\left|\mathbf{x}_{i}\right| \leq n$ for every $i \in[d]$, such that:

- $G_{n, d}$ is computable by a set-multilinear ABP of size poly (n),
- any \sum osmABP computing $G_{n, d}$ must have super-polynomial total-width.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\}
$$

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

Set-Multilinearity

The variable set is divided into buckets.

$$
\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{d} \quad \text { where } \quad \mathbf{x}_{i}=\left\{x_{i, 1}, \ldots x_{i, n_{i}}\right\} .
$$

f is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if
every monomial in f has exactly one variable from \mathbf{x}_{i} for each $i \in[d]$.

An ABP is set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if every path in it computes a set-multilinear monomial with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.

Near Tightness of ABP Set-Multilinearisation

For $\sigma \in S_{d}$, an ABP is σ-ordered set-multilinear with respect to $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right\}$ if

- there are d layers in the ABP
- every edge in layer i is labelled by a homogeneous linear form in $\mathbf{x}_{\sigma(i)}$
\sum osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.
[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=O\left(\frac{\log n}{\log \log n}\right) \Longrightarrow$ super-polynomial lower bound against ABPs.
[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of \sum osmABP for a polynomial of degree $d=\omega(\log n)$ that is computable by polynomial-sized ABPs.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting?

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathrm{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.

Non-Commutativity

$$
f(x, y)=(x+y) \times(x+y)=x^{2}+x y+y x+y^{2} \neq x^{2}+2 x y+y^{2}
$$

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be $\Omega(n \log d)$.
[C-Hrubeš]: Any homogeneous non-commutative circuit computing

$$
\operatorname{OSym}_{n, d}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

has size $\Omega(n d)$ for $d \leq \frac{n}{2}$. The lower bound is tight for homogeneous non-commutative circuits.
[Nisan]: Any ABP computing $\operatorname{Pal}_{n}\left(x_{0}, x_{1}\right)=\sum_{w \in\{0,1\}^{n / 2}} \mathbf{x}_{w} \cdot \mathbf{x}_{w^{R}}$ has size $2^{\Omega(n)}$.

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets.

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\operatorname{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\operatorname{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
[Cha]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$,

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
[Cha]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
[Cha]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that any abecedarian formula computing it has size $n^{\Omega(\log \log n)}$.

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
[Cha]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that any abecedarian formula computing it has size $n^{\Omega(\log \log n)}$. If an n-variate polynomial is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ for $m=\log n$,

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing $\mathrm{IMM}_{n, d}(\mathbf{x})$ has size $n^{\Omega(\log \log d)}$.

```
(bucket index) ordered set-multilinear \equiv homogeneous non-commutative (position index)
```

Abecedarian Polynomials: Let $f \in \mathbb{F}\langle\mathbf{x}\rangle$ and $\left\{X_{1}, \ldots, X_{m}\right\}$ be a partition of \mathbf{x} into buckets. f is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ if every monomial in f has the form $X_{1}^{*} X_{2}^{*} \cdots X_{m}^{*}$.
[Cha]: For $\mathbf{x}=\cup_{i \in[n]}\left\{X_{i}\right\}$ with $X_{i}=\left\{x_{i, j}\right\}_{j \in[n]}$, there exists a ($\log n$)-degree abecedarian polynomial $f \in \mathbb{F}\langle\mathbf{x}\rangle$ such that any abecedarian formula computing it has size $n^{\Omega(\log \log n)}$. If an n-variate polynomial is abecedarian with respect to $\left\{X_{1}, \ldots, X_{m}\right\}$ for $m=\log n$, then any formula computing f can be made abecedarian with only poly (n) blow-up in size.

Some Open Directions

- Better lower bounds against homogeneous formulas?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number of variables?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?

Some Open Directions

- Better lower bounds against homogeneous formulas?
- Better lower bounds against set-multilinear ABPs?
- Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number of variables?
- Separating formulas and ABPs in the non-commutative setting?

Questions?

