
Lower Bounds for some Algebraic Models of Computation

Prerona Chatterjee

March 27, 2024

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Complexity Theory

Q: Given a computational problem and constraints on the computational power at hand,

• design a computational model that captures the constraints

• study the amount of resource required by the model to complete the task.

Traditional Time Complexity: Given a boolean function f on n inputs, how many steps are

required by a Turing machine to compute the f (in terms of n)?

Communication Complexity: Given a boolean function f , assuming Alice and Bob are

computationally unbounded but have partial inputs x, y ∈ {0, 1}n respectively, how many bits

need to be communicated for them to know f (x, y) (in terms of n)?

Boolean Circuit Complexity: Given a boolean function f on n inputs, how many ∧, ∨, ¬
gates are needed for a boolean circuit to compute f (in terms of n)?

1

Computing Formal Polynomials: Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Computing Formal Polynomials: Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Computing Formal Polynomials: Algebraic Models of Computation

Q: Given f (x) ∈ F[x1, . . . , xn] of degree d , how many +,×,− gates are needed to compute f ?

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

+

× ×

+ + + +

x1 x2 x3 α x1 x2 x2 α

α1

α2

F

2

Algebraic Branching Programs

s

t

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3)(2x + 3) (x + 3y)(x + 3y) (y + 5)(y + 5)

10
(x + y + 7)(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Algebraic Branching Programs

s

t
(2x + 3) (x + 3y) (y + 5)

10
(x + y + 7)

A

• Label on each edge: An affine linear form in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p)

3

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight?

VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds in Algebraic Circuit Complexity

Objects of Study: Polynomials over n variables of degree d .

VF: Polynomials computable by formulas of size poly(n, d).

VBP: Polynomials computable by ABPs of size poly(n, d).

VP: Polynomials computable by circuits of size poly(n, d).

VNP: Explicit Polynomials

Are the inclusions tight? VNP

VP

VBP

VF

Central Question: Find explicit polynomials that cannot be computed by efficient circuits.

4

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing∑n
i=1 x

d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

5

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing∑n
i=1 x

d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

5

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing∑n
i=1 x

d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

5

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing∑n
i=1 x

d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

5

Lower Bounds for General Models

General Circuits

[Baur-Strassen]: Any algebraic circuit

computing
∑n

i=1 x
d
i requires Ω(n log d) wires.

General ABPs

[C-Kumar-She-Volk]: Any ABP computing∑n
i=1 x

d
i requires Ω(nd) vertices.

General Formulas

[Kalorkoti]: Any formula computing the n2-variate Detn(x) requires Ω(n3) wires.

[Shpilka-Yehudayoff] (using Kalorkoti’s method): There is an n-variate multilinear polynomial

such that any formula computing it requires Ω(n2/ log n) wires.

[C-Kumar-She-Volk]: Any formula computing ESYMn,0.1n(x) requires Ω(n2) vertices, where

ESYMn,d(x) =
∑

i1<···<id∈[n]

xi1 · · · xid .

5

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas]

Any depth-3 or depth-4 circuit

computing IMMn,log n(x) must

have size nΩ(
√
d).

6

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas]

Any depth-3 or depth-4 circuit

computing IMMn,log n(x) must

have size nΩ(
√
d).

6

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas]

Any depth-3 or depth-4 circuit

computing IMMn,log n(x) must

have size nΩ(
√
d).

6

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas]

Any depth-3 or depth-4 circuit

computing IMMn,log n(x) must

have size nΩ(
√
d).

6

How does one make progress?

Structural Results

Show that if a structured n-variate, degree-d polynomial is

computable by a general model of size s, then they can also

be computed by a structured model of size func(s, n, d) for

some function func.

Study Structured Models

Prove strong lower bounds

against structured models

computing f .

[Agrawal-Vinay, Koiran, Tavenas]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-4 circuits of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]

Size s circuits computing n-variate degree d polynomials can

be converted into depth-3 circuits of size sO(
√
d).

A lot of work that culminated in

[Limaye-Srinivasan-Tavenas]

Any depth-3 or depth-4 circuit

computing IMMn,log n(x) must

have size nΩ(
√
d).

6

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

7

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

7

Towards Better ABP Lower Bounds

[C-Kumar-She-Volk]: Any ABP computing
∑n

i=1 x
d
i requires Ω(nd) vertices.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: For ω(log n) = d ≤ n, there is a polynomial Gn,d(x) which is

set-multilinear w.r.t x = {x1, . . . , xd}, where |xi | ≤ n for every i ∈ [d], such that:

• Gn,d is computable by a set-multilinear ABP of size poly(n),

• any
∑

osmABP computing Gn,d must have super-polynomial total-width.

7

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.

8

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.

8

Set-Multilinearity

The variable set is divided into buckets.

x = x1 ∪ · · · ∪ xd where xi = {xi,1, . . . xi,ni} .

f is set-multilinear with respect to {x1, . . . , xd} if

every monomial in f has exactly one variable from xi for each i ∈ [d].

An ABP is set-multilinear with respect to {x1, . . . , xd} if every path in it

computes a set-multilinear monomial with respect to {x1, . . . , xd}.

8

Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of
∑

osmABP for

a polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.

9

Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of
∑

osmABP for

a polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.

9

Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of
∑

osmABP for

a polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.

9

Near Tightness of ABP Set-Multilinearisation

For σ ∈ Sd , an ABP is σ-ordered set-multilinear with respect to {x1, . . . , xd} if

• there are d layers in the ABP

• every edge in layer i is labelled by a homogeneous linear form in xσ(i)

∑
osmABP: Sum of ordered set-multilinear ABPs, each with a possibly different ordering.

[Bhargav-Dwivedi-Saxena]: Super polynomial lower bound against total-width of
∑

osmABP

for a polynomial of degree d = O
(

log n
log log n

)
=⇒ super-polynomial lower bound against ABPs.

[C-Kush-Saraf-Shpilka]: Super polynomial lower bound against total-width of
∑

osmABP for

a polynomial of degree d = ω(log n) that is computable by polynomial-sized ABPs.

9

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting?

For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

Non-Commutativity

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Models: The multiplication gates, additionally, respect the order.

Can we do better in this setting? For general circuits, continues to be Ω(n log d).

[C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 . The lower bound is tight for homogeneous non-commutative circuits.

[Nisan]: Any ABP computing Paln(x0, x1) =
∑

w∈{0,1}n/2 xw · xwR has size 2Ω(n).

10

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets.

f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n],

there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩

such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n,

then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

ABP vs Formula in the Non-Commutative Setting

[Tavenas-Limaye-Srinivasan]: Any homogeneous non-commutative formula computing

IMMn,d(x) has size nΩ(log log d).

(bucket index) ordered set-multilinear ≡ homogeneous non-commutative (position index)

Abecedarian Polynomials: Let f ∈ F ⟨x⟩ and {X1, . . . ,Xm} be a partition of x into buckets. f

is abecedarian with respect to {X1, . . . ,Xm} if every monomial in f has the form X ∗
1 X

∗
2 · · ·X ∗

m.

[Cha]: For x = ∪i∈[n] {Xi} with Xi = {xi,j}j∈[n], there exists a (log n)-degree abecedarian

polynomial f ∈ F ⟨x⟩ such that any abecedarian formula computing it has size nΩ(log log n).

If an n-variate polynomial is abecedarian with respect to {X1, . . . ,Xm} for m = log n, then any

formula computing f can be made abecedarian with only poly(n) blow-up in size.

11

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number

of variables?

• Separating formulas and ABPs in the non-commutative setting?

Questions?

12

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number

of variables?

• Separating formulas and ABPs in the non-commutative setting?

Questions?

12

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number

of variables?

• Separating formulas and ABPs in the non-commutative setting?

Questions?

12

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number

of variables?

• Separating formulas and ABPs in the non-commutative setting?

Questions?

12

Some Open Directions

• Better lower bounds against homogeneous formulas?

• Better lower bounds against set-multilinear ABPs?

• Bootstrapping statement, similar to [CILM], which is sensitive to both degree and number

of variables?

• Separating formulas and ABPs in the non-commutative setting?

Questions?

12

