Weekly Problems: 3 Due: 2pm on 27/08/25

Instructions

- · Discussion is allowed and infact encouraged
- · Answers must be written by yoursef.
- · All sources that one used to reach the Solution must be mentioned.
- 1) healt the maximum subarray problem:

Input: Array of lugth n whose entries one all integus. [So, AEZn]

Output: A maximum sub-array of A.

That is, io, jo E[n] with io < jo &t.

Max is, is, jo
$$E[n]$$
 With is $Z[s] > S[k]$

$$\sum_{k=1}^{j_0} A[k] = \max_{i \leqslant j \in [n]} \left\{ \sum_{k=i}^{j_0} A[k] \right\}$$

a) Write a pseudocode for Solving this problem that takes time $O(n^2)$. Arque Correctaes.

Remember to give an instance and show below your algo takes time $\mathcal{N}(n^2)$ on that instance.

[6]

b) How would the algorithm change if it was allowed for jo to be equal to io?

[2]

2) Guess a good upper bound for the recurrence

> T(n) = T(n-1) + T(n|2) + n. and prove the exprectness of your guess using induction. [2+2].

(3) Assume STRASSEN2 (A,B) is an algorithm that takes as input two 2x2 matrices A, B (over B) and returns their product using '7' B-multiplications.

Use this as a subsortine to write

the pseudocode for an algorithm that takes as input two nxn matrices (one (B))

A, B and returns their product using n legg? Q-imultiplications. [4]

Assume that n is a power of 2 for simplicity

(4) Solve the following recurrences:

a) $T(n) = T(n-a) + T(a) + c \cdot n$ b) T(n) = T(dn) + T((1-d)n) + cnHere a, d, c are all constants

s.t. a > 1

o < d < 1

c > 0

(5) What is the Smallest possible depth of a daf in a decision tree for a comparison sort? [2]