Instructions

- · Discussion is allowed and infact encouraged
- · Answers must be written by yoursef.
- · All sources that one used to reach the Solution must be mentioned.
- (1) Show that in any sub-tree of a min-heap, the subtree contains the smallest value occurring anywhere in that subtree. [3]
- 2) Where in a min-heap can the largest slement reside? Assume that all the elements are distinct. [2]
- 3) Recall the Pseudo code for Brild-Min-Heap: Build Min-Heap (A)
 - 1. A. hap-size = A. length

2. for i = LA. length /2] down to 1 Min-Heapity (A). Why do me want the hop index i (in hime 2) to decrease from LA. length/21 to 1 rather than increase from 1 to [A. lugth/2]? [2] (4) Recall the Activity Selector Problem: Input: S=[&,...,&n], $T = [t_1, \dots, t_n]$ Intuitively, s; and t; one the start and end times of activity i. When T is in in Output: AOC[n] s.t.

One Greedy Algorithm to solve this would be the following: Greedy-Activity-Selector (8, f)

1. n = 8. length 2. $A_0 = \{i\}$

if &m > fk

| A = A 0 0 {m}

| k = m

8. betwee Ao

Insted, suppose we always select the last activity to start that is compatible with all the previously selected activities. Write a pseudocode for it and argue correctness.

(6) The fibonacci sequence is described as follows: $f_0 = 1$, $f_1 = 1$ and $f_1 > 2$ $f_2 = 1$ $f_3 = 1$

What is the optimal code for $\Sigma = \{a_0, ..., a_n\}$

if tie 80,1,..., n3, ai. freq = fi? [3]

From that if we arrange the characters in an alphabet in monotonically decreasing order of frequencies, then there is an optimal code whose code word lengths are monotonically increasing.

[4]