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Exercise 1.2 — Quantifiers. Use the logical quantifiers V (for all), 3 (there
exists), as well as A, V, - and the arithmetic operations +, x, =, >, < to
write the following:

a. An expression ¢(n, k) such that for every natural number n, &,
@(n, k) is true if and only if k divides n.

b. An expression ¢(n) such that for every natural number n, ¢(n) is
true if and only if n is a power of three.

Exercise 1.3 Describe the following statement in English words:
VoenTp=nVa,b € N(a x b #p) V (a=1).

Exercise 1.13 Give an example of a pair of functions F',G : N — N such
that neither F' = O(G) nor G = O(F’) holds.

Exercise 2.7 Suppose that R : N — {0, 1}* corresponds to representing a
number z as a string of z 1’s, (e.g., R(4) = 1111, R(7) = 1111111, etc.).
If ,y are numbers between 0 and 10" — 1, can we still multiply x and
y using O(n?) operations if we are given them in the representation

R()? Whok is Ha best Upper Bowd gou wn thows?

Exercise 3.5 — XOR is not universal. Prove that for every n-bit input circuit
C that contains only XOR gates, as well as gates that compute the
constant functions 0 and 1, C is affine or linear modulo two, in the sense
that there exists some a € {0,1}" and b € {0, 1} such that for every
z€{0,1}",C(x) = 22:01 a;z; +b mod 2.

Conclude that the set {XOR, 0, 1} is not universal.
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Q) Exercise 4.14 — Circuits for threshold. Prove that there is some constant ¢
such that for every n > 1, and integers ay, ..., a,,_,b € {—2",—2" +
1,...,—1,0,+1,...,2"}, there is a NAND circuit with at most n° gates

that computes the threshold function f, .,  ,:{0,1}" — {0,1} that S’]
oninput z € {0,1}" outputs 1 if and only if Z?:_Ol a;x; >b.

exists a number § > 0 such that for every sufficiently large n and every
m there exists a function f : {0,1}" — {0,1}™ that requires at least

om 2" /n- taouku 4o Q,o'cv\f\;.tg .
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\ Exercise 5.4 — Counting lower bound for multibit functions. Prove that there

Exercise 5.5 — Size hierarchy theorem for multibit functions. Prove that there
exists a number C such that for every n,m and n+m < s < m-2"/(Cn)

there exists a function f € SIZE,, ,,(C-s) \ SIZE,, ,,(s). ‘
& +4]

Exercise 5.8 — Random functions are hard. Suppose n > 1000 and that we
choose a function F' : {0,1}" — {0, 1} at random, choosing for every
x € {0,1}" the value F(z) to be the result of tossing an independent

unbiased coin. Prove that the probability that there is a 2" /(1000n) [6 ']
Aized et thatcomputes F'is at most 2100 14

4 Hint: An equivalent way to say this is that you
need to prove that the set of functions that can be
computed using at most 2" /(1000n) #=eshas fewer
than 2710922 elements. Can you see why? Qodes

@ 0‘5 Exercise 8.5 — Longest Path. Let LONGPATH : {0,1}* — {0,1}" be
the function that on input a string encoding a triple (G, u, v) outputs
a string encoding oo if © and v are disconnected in G or a string en-
coding the length £ of the longest simple path from u to v. Prove that
LONGPATH is computable by a Turing machine. .
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Exercise 9.4 — Computable compositions. Suppose that F': {0,1}* — {0,1}
and G : {0,1}* — {0, 1} are computable functions. For each one of the
following functions H, either prove that H is necessarily computable or

give an example of a pair F' and G of computable functions such that
H will not be computable. Prove your assertions.

&). H(zx) = 1iff F(z) =1 O0R G(z) = 1.

v). H(x) = 1iff there exist two non-empty strings u, v € {0, 1}* such
21(5;1;)35:1 wv (i.e., x is the concatenation of u and v), F(u) = 1 and [2— 4 %:'(

@ Exercise 9.7 — TM Equivalence. Let EQ : {0,1}* :— {0, 1} be the func-

tion defined as follows: given a string representing a pair (A, M’)

of Turing machines, EQ(M, M’) = 1iff M and M’ are functionally
equivalent as per Definition 9.14. Prove that EQ is uncomputable. [S ]

Definition 9.14 — Semantic properties. A pair of Turing machines

M and M’ are functionally equivalent if for every € {0,1}%,
M(xz) = M’(z). (Inparticular, M (z) = Liff M'(z) = L forall
x.)




